An open ECN service in the IP layer

19 Mar 2001
Bob Briscoe, BT & UCL
Jon Crowcroft, UCL

M3I - Market Managed Multi-service Internet
IST Project No 11429 under the
EU Vth Framework Information Society Technologies Programme

motivation

• Q: why add to ECN at this late stage?
• A: ensure space for ECN research
 (A2: + clarifications for implementors)

• fully support ECN to standards track ASAP
• deeply grateful for many years of work behind this from KKR/SF/DB etc.
ECN in IETF tsvwg

• “TCP/ECN” I-D Ramakrishnan, Floyd, Black
draft-ietf-tsvwg-ecn-02.txt
 – “The Addition of Explicit Congestion Notification (ECN) to IP”
 – standards track (last call before proposed standard)

• “ECN nonce” I-D Wetherall, Ely, Spring
draft-ietf-tsvwg-tcp-nonce-00.txt
 – “Robust ECN Signaling with Nonces”

• “IP/ECN” I-D Briscoe, Crowcroft
draft-ietf-tsvwg-ecn-ip-00.txt
 – “An Open ECN Service in the IP layer”

“IP/ECN” status

• review comments on –01 of “TCP/ECN”
 • intended for incorporation in –02
 • not intended to go anywhere itself

• off-line discussions
 • digests on tsvwg list

• few of our words used in –02, but sufficient
 • we’re happy :–)

• 3 aspects where minor disagreement remains
 • ...agreed to “take to tsvwg”
 • otherwise ‘broadly’ happy with –02 as it stands
“IP/ECN” contents

- highlighted issues with “TCP/ECN” at the IP layer
 - code-points not bits ➔ standards track
 - diffserv interactions ➔ standards track
 - multicast interactions ➔ no conflict with stds track
 - other transport protocols than TCP ➔ a later RFC
 - IP ECN service interface
 - access semantics to ECN field ➔ a later RFC
 - congestion ctrl proxies
 - fragmentation interactions ➔ standards track

ECN code-points, not bits

- **TCP/ECN was:**
 - ECT = ECN capable transport
 - CE = congestion experienced

- **IP/ECN suggests:**
 - separate bits meaning nothing, only whole ECN code-point
 - unmarkable \(<ECT=0, CE=0>\)
 - markable \(<ECT=1, CE=*>\), \(<ECT=0, CE=1>\)
 - marked \(<ECT=1, CE=1>\)
 - unmarked \(<ECT=1, CE=0>\), \(<ECT=0, CE=1>\)
 - potentially marked = \(<ECT=0, CE=1>\)

- **TCP/ECN now agrees, but using own terminology**
buffer filling vs. starving
(background to ECN/diffserv discussion)

keep queue empty for low latency
keep queue full for high utilisation

from load to queue length

expected queue length 100%
marking probability 1

buffer starving
buffer filling

ave. output load/ %
marking probability

ave queue length 100%

fact

goal
ECN mark/drop equivalence

<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>non-ECN-capable</th>
<th>ECN-capable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starving</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **ECN mark/drop equivalence**
- **1 probability drop average queue length**
- **“mark ≡ drop”**
- **1 probability drop average queue length**
- **“drop ≡ drop”**

ECN interactions with diffserv

- **TCP/ECN – 01**
 - no explicit mention of diffserv marking behaviours
- **TCP/ECN – 02**
 - “mark ≡ drop” defined as default for all PHBs
 - if don’t want default...?
 - PHB definitions MAY include marking behaviour
- **clarification**
 - definition of marking behaviour
 - diffserv already provides framework
 - part of queuing behaviour (like discard behaviour)
 - per PHB
 - no change to who defines each: standards /operators
 - above statement in TCP/ECN updates *informational* diffserv architecture guidelines
implementation advice

mark/drop equivalence

- **TCP/ECN said “mark ≡ drop”**
 - decide to notify *then* decide how (by ECN capability)
 - embedded this assumption in implementation advice
- **IP/ECN has future-proofed implementation advice:**
 - may decide marking/discard *behaviour* by ECN capability
 - *then* marking & discard behaviours MAY be same
 - (e.g. for buffer filling behaviours)
 - “mark ≡ drop” doesn’t make sense for buffer starving
 - “mark < drop” & “drop ≡ drop” allowed
 - ECT code-points like a 2-state extension to DSCP

ECN mark/drop equivalence

- *default in “TCP/ECN” is sufficient for now*
- *except...*
 - where future research allowed, constraint needed:
 - within each PHB, definition of equivalence between marking and discard behaviours needs to be consistent
 - ...for all routers & host protocols using that PHB

- **if research shows value of buffer starving...**
 - ...take up in a diffserv w-g
multicast forwarding of ECN

IP/ECN suggests:

1. Data duplicated
2. Mark randomly selected (per packet) unicast
3. Mark becomes potential mark for remainder

Legend: XX = <ECT, CE>

- motivation
 - Duplicating congestion indication was incorrect, but unavoidable with loss-signalled congestion
- Congestion control protocol can choose meaning of ‘potential mark’ <ECT=0, CE=1>
 - Multi-rate schemes (e.g. layered multicast) treat it as unmarked
 - Single rate schemes (e.g. pgmcc) treat it as marked
- May not be necessary - research issue
- ECN nonce is compatible (see IP/ECN I-D)
 - No need to mention multicast in TCP/ECN stds track
IP’s ECN service to layer 4

- **“IP/ECN”:**
 - documents service interface that IP provides
 - not just for TCP
 - potentially for UDP, IGMP, ICMP, RSVP, RIP
- **“TCP/ECN” says nothing**
 - don’t want to encourage UDP/ECN anarchy until most routers are ECN-capable
- **“IP/ECN” forms basis of future RFC on this?**
 - silence won’t stop UDP apps using ECN-capable routers
 - banning contraceptive advice doesn’t prevent pregnancy

UDP/ECN unsafe?

- does “mark ≡ drop” give wrong incentives?
- “drop ≡ drop” gives ECN capable flows:
 - no delivery advantage (functional)
 - latency advantage (non-functional)
 - ...through network supporting co-operation

<table>
<thead>
<tr>
<th></th>
<th>non-ECN-capable</th>
<th>ECN-capable</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffer starvag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>probability</td>
<td>drop</td>
<td>mark</td>
</tr>
<tr>
<td>probab.</td>
<td>drop ≡ drop</td>
<td>mark</td>
</tr>
<tr>
<td>ave queue length</td>
<td></td>
<td>ave queue length</td>
</tr>
</tbody>
</table>
ECN & IP fragmentation

- **IP/ECN says:**
 - IPv4 MUST set don’t fragment (DF) flag
 - best practice (path MTU discovery)
 - IPv6: don’t fragment is implicit

- **TCP/ECN −01 said nothing**

- **TCP/ECN −02 now says:**
 - TCP/IPv4 SHOULD set don’t fragment
 - if not set & fragments arrive, receiver uses logical OR

- **argument...**
 - SHOULD leaves doubt, so all implementers MUST add complex re-assembly code that will never be used
ECN & IP fragmentation solution

- **what “TCP/ECN” –02 says, another way:**

- **don’t fragment MUST be set...**
 - ...UNLESS the sending TCP knows the receiving IP will not ignore CE on any fragment
 - this document doesn’t describe negotiation of such a capability

- **old ECN implementations not compatible**
 - bug fix for something we didn’t notice

summary

- **we’re happy with standards track I-D as it is, but...**

- **3 wishes**
 1. add explicit guideline on marking/discard equivalence being consistent within a PHB
 2. define IP’s ECN interface to higher layers (soon)
 3. don’t fragment: best as a MUST...UNLESS

- **nothing worth fighting about**
- **what does the w-g think?**