
knowledge plane

• based on high level declaration of intent
• assemble, re-assemble, detect failures & repair

• focus of this rant 
• failure detection & repair aspects

knowledge plane: preliminaries

• KP definition:
• a plane orthogonal to separations between other 

functions, managing system failures

• understands intent

• an architectural direction

• types of failure
• non-functioning component

• incorrect information

• poor performance (congestion or partial failure)



failure detection issues

• detection hard for 
• ‘incorrect information’ failures, e.g. incorrect DNS 

mapping
– supplied IP address exhibits some failure (host not found, 

doesn’t understand protocol, object not found)
– or next process steps work, but do the wrong thing, e.g. a stale

DNS mapping leads to a stale information object
– or perhaps addresses aren’t accessed, but used to build an 

(incorrect) topology map, perhaps for route optimisation

• ‘poor performance’ failures, e.g. time-out interaction
– slow response leads to time-out of request at head of request 

cascade

never-ending scope: scenario

• underlying comms svc (DNS, forwarding, proxies) all fine
• database behind Web server accidentally rolled back 1 day
• hyperlink stored in the database points to stale address
• causes the output of a sensor to go to the wrong place
• so faults in production line (monitored by sensor) reported 

to contractor who lost contract yesterday... 
• KP should find root cause (the database roll back)
• factory ex-contractor doesn't even realise she is part of a 

communication system
• let alone that her data is needed to trigger fixing it



intent

• “what the network is supposed to do” ?≡ “what the superset of its applications are supposed to do”

• application author (partially) knows intent
• doesn’t consider all the things that might go wrong

• source code partial representation of intent
• only the mechanism considered nec. to achieve the intent with 

traps for foreseen potential failures

• if 3rd parties (KP) try to infer intent
• inference errors will compound
• discriminates against minority (incl. emerging) apps

• no intent role for KP
• reduces KP role to correlation detection

responsibility

• declaration of operator responsibility & value 
chain relationships 
• need framework
• nice problem to bite off separately
• e.g. whois++ programme

– who is responsible for IP address x? system y?
– who has the contract for dealing with consumer/business faults 

due to failure z?

• some companies won’t publish their relationships
• KP breaks ‘modularise design along tussle boundaries’



incentive issues

• incentives to reveal failure
• my revenue depends on not admitting to failures unless forced
• alternatives: 

– exception peering
– failures affect retail revenue only; bulk allce in wholesale charges

– hiding within aggregates
– militates against fault tracing

• both models require free-rider detection & penalty enforcement
– see www.mmapps.org

• incentives to invest in KP
• which model is realistic?:

– p2p end-users only? operators too? 3rd parties as well?
• will have to be bundled: people don’t buy fault mgmt software

– why haven’t we even got good component fault detection?
• who will invest the time to write federated code?

grandiosity

• need better bottom up component failure detection
• better error reporting from components

• less weakly defined semantics (defining time-outs etc)

• consequent better application writing

• need to ask why we haven’t even got that: no incentive

• ways to supply mgmt expertise to app developers
• KP involves operating a separate service (run-time KP)

• preferably supply mgmt libraries (build time KP)
– hints to app developer on which exceptions to handle



knowledge plane: summary

• need framework to declare operator responsibility
• need inter-provider/layer correlation detection
• don’t need inference of intent – ever
• outstanding incentives issues:

• why isn’t low level failure notification done well now?
• incentives to reveal failure
• incentives to build KP?

• KP ends & means: correct & questionable resp.
• KP has helped make comms mgmt research sexy

better alternative

• focus on whole system robustness
• diversity in all dimensions

• underlying simplicity

• occasional system use → less reliable
• half the time, KP won’t work when you need it

• management not the main driver of revenue

• so give up KP direction now


