goals & non-goals, approach

- goals & non-goals
 - goal: fix Internet's resource allocation and accountability architecture
 - non-goal: solve the whole DoS problem
 - non-goal: solve app-layer/user-space flooding
 - goal: foundation for wider DoS solution(s)

- approach
 - part of effort to determine new Internet architecture
 - mechanism for non-co-operative end-game in case things get nasty
 - network economics & incentives, but no fiddling with retail pricing
 - network operators (not users) assumed to be rational

- work in progress
 - simulations in progress
 - not even submitted yet
the problem: rate policing

- short & long term congestion
 - short: e.g. policing TCP-friendliness (or any agreed response)
 - long: e.g. policing zombie hosts, p2p file-sharing (selfish not malicious)

- user congestion response voluntary
 - why is TCP compliance stable? what shouldn’t we do to keep it?
 - TCP-friendly malware?? imagine a TCP virus

- network congestion response voluntary
 - why care if my users cause congestion in downstream networks?

pre-requisite knowledge:
explicit congestion notification (ECN)

IETF proposed std: RFC3168
Sep 2001
most recent change to IPv4&6

marked ACK
ACKnowledgement packets

marked packet

00: Not ECN Capable Transport (ECT)
01 or 10: ECN Capable Transport - no Congestion Experienced (sender initialises)
11: ECN Capable Transport - and Congestion Experienced (CE)

bits 6 & 7 of IP DS byte
path characterisation via data headers

- loss rate
- explicit congestion notification (ECN)

255 time to live (TTL)

Communications Innovation Institute

downstream knowledge upstream: the idea

prop’n time congestion hop count etc

before...

...after re-feedback

receiver aligned

re-inserted
downstream knowledge upstream — re-feedback

Communications Innovation Institute

congestion protocol terms

- ECN = Explicit Congestion Notification
- ECL = Explicit Congestion Level (my term)
- ‘re-’ = receiver aligned (or re-inserted)

<table>
<thead>
<tr>
<th>aligned at</th>
<th>binary</th>
<th>multi-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>sender</td>
<td>ECN</td>
<td>ECL</td>
</tr>
<tr>
<td>receiver</td>
<td>re-ECN</td>
<td>re-ECL</td>
</tr>
</tbody>
</table>
incentive framework

downstream path metric, ρ_i

congestion pricing

routing

dropper

policer/scheduler

incentives

apps

deployment

discussion

Communications Innovation Institute

incentive framework

downstream path metric at receiver

naïve dropper

incentive framework

Snd

Rcv

dropper

downstream congestion probability distribution

downstream path metric at rcvr, ρ_n
penalising uncertain misbehaviour

incentive framework

adaptation drop probability

systematic cheating, $\Delta \rho_c$

stateless dropper

downstream congestion probability distribution

downstream path metric at receiver, ρ_n

incentive framework

no systematic cheating, $\Delta \rho_c = 0$
spawning focused droppers

- use penalty box technique [Floyd99]
 - examine (candidate) discards for any signature
 - spawn child dropper to focus on subset that matches signature
 - kill child dropper if no longer dropping (after random wait)
- push back
 - send hint upstream defining signature(s)
 - if (any) upstream node has idle processing resource
 test hint by spawning dropper focused on signature as above
- cannot DoS with hints, as optional & testable
 - no need for crypto authentication – no additional DoS vulnerability
incentive compatibility – hosts

- incentivise:
 - responsible actions
 - honest words

inter-domain policing

- bulk congestion charging emulates policing: passive & simple
- capacity charge modulated by congestion charge
- sending domain pays \(C = \eta X + \lambda Q \) to receiving domain (e.g. monthly)
- \(\eta, \lambda \) are (relatively) fixed prices of capacity, \(X \) and congestion, \(Q \) resp.
 - ‘usage’ related price \(\lambda \geq \theta \) (safe against ‘denial of funds’)
 - any receiver contribution to usage settled through end to end clearinghouse
- congestion charge, \(Q \) over accounting period, \(T_a \) is \(Q = \sum_{T_a} \rho_i \)
- \(\rho_i \) metered by single bulk counter on each interface
- note: negative \(\rho_i \) worthless – creates incentive to deploy droppers
incentive compatibility – inter-domain routing

- why doesn’t a network overstate congestion?
 - **msecs**: congestion response gives diminishing returns (for TCP: $\Delta \Pi \propto \sqrt{\Delta \rho}$)
 - **minutes**: upstream networks will route around more highly congested paths
 - by sampling data N_1 can see relative costs of paths to R_1 thru N_2 & N_3
 - **months**: persistent overstatement of congestion:
 - artificially reduces traffic demand (through congestion response)
 - ultimately reduces capacity element of revenue
- also incentivises provision, to compete with monopoly paths

![Diagram of inter-domain routing](image)

long term congestion incentives

per-user policer

- effectively shuts out zombie hosts
- incentivises owners to fix them
- (also incentivises off-peak file-sharing)
incentives for other metrics

- downstream unloaded delay (emulated by TTL)
 - approximates to $\frac{1}{2}$ feedback response time (near source) \(\Rightarrow \text{RTT} \)
 - each node can easily establish its local contribution
 - identical incentive properties to congestion
 - increasing response time increases social cost
 - physically impossible to be truthfully negative
 - incentive mechanism identical to that of congestion

- assess other metrics case-by-case

slow-enough-start

- initial value of metric(s) for new flows?
 - undefined – deliberately creates dilemma
 - if too low, may be dropped at egress
 - if too high, may be deprioritised at ingress

- without re-feedback (today)
 - if congested: all other flows share cost equally with new flow
 - if not congested: new flow rewarded with full rate

- with re-feedback
 - risk from lack of path knowledge carried solely by new flow
 - creates slow-start incentive
 - once path characterised, can rise directly to appropriate rate
 - also creates incentive to share path knowledge
 - can insure against the risk (see differentiated service)
single datagram-dominated traffic mix

- current Internet would collapse
 - not designed for all eventualities
 - 10^{12} devices, 10^9 users, RPCs, sensor nets, event avalanches

- with re-feedback
 - service protected against completely uncorrelated traffic mix
 - demanding users can still insure against risk

- for brief flows, TCP slow start sets rate limit
 - …not technology performance advances
 - with re-feedback, once characterised path, can hit full rate

distributed denial of service

- merely enforcing congestion response

- honest sources
 - increase initial metric & reduce rate

- malicious sources
 - if do increase initial metric
 - policer at attacker’s ingress forces rate response
 - have to space out packets even at flow start
 - if don’t increase initial metric
 - negative either at the point of attack or before
 - distinguished from honest traffic and discarded
 - push back kicks in if persistent
migration

- approach
 - realign metrics by modifying sender and/or receiver stack only
 - unchanged router path characterisation (protocol & routers)
 - re-ECN possible without contravening existing ECN code-points
 - reason: changing hosts: incremental; changing routers: flag day

- deployment path
 - network operators add incentive mechanisms to edge routers
 - add policers & droppers, but permissively configured
 - increasing strictness incentivises incremental host upgrades