making stuff real
re-feedback

Bob Briscoe, BT Research
Nov 2005
CRN DoS resistant Internet w-g
the problem: accountability for causing congestion

- main concern
 - non-compliance with e2e congestion control (e.g. TCP-friendly)?
 - how can ingress netwk detect whole path congestion? police cc?

- not just per-flow congestion response
 - **smaller**: per-packet
 - single datagram ‘flows’
 - **bigger**: per-user
 - a congestion metric so users can be held accountable
 - 24x7 heavy sources of congestion, DDoS from zombie hosts
 - **even bigger**: per-network
 - a metric for holding upstream networks accountable if they allow their users to congest downstream networks
ECN (recap)

<table>
<thead>
<tr>
<th>code-point</th>
<th>standard designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>not-ECT</td>
</tr>
<tr>
<td>10</td>
<td>ECT (0)</td>
</tr>
<tr>
<td>01</td>
<td>ECT (1)</td>
</tr>
<tr>
<td>11</td>
<td>CE</td>
</tr>
</tbody>
</table>

ECT (0) and CE

ECE in TCP

ECN rate

Resource index

0% …i… n

ECN rate

0% 3%
re-ECN (sketch)

- on every Echo-CE from TCP, sender sets ECT (0), else sets ECT (1)
- at any point on path, diff betw rates of ECT (0) & CE is downstream congestion
- routers unchanged

<table>
<thead>
<tr>
<th>code-point</th>
<th>standard designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>not-ECT</td>
</tr>
<tr>
<td>10</td>
<td>ECT (0)</td>
</tr>
<tr>
<td>01</td>
<td>ECT (1)</td>
</tr>
<tr>
<td>11</td>
<td>CE</td>
</tr>
</tbody>
</table>

\[
\nu_i \approx \text{ECT (0)} - \text{CE}
\]
incentive framework (user-network)

- packets carry view of downstream path congestion to each router
- so ingress can police rate response
 - using path congestion declared by sender
- won’t snd or rcv just understate congestion?
- no – egress drops negative balance
accountability for congestion

other applications

- congestion-history-based policer (congestion cap)
 - throttles causes of past heavy congestion (zombies, 24x7 p2p)
- DDoS mitigation
- QoS & DCCP profile flexibility
 - ingress can unilaterally allow different rate responses to congestion
- load sharing, traffic engineering
 - multipath routers can compare downstream congestion
- bulk metric for inter-domain SLAs or charges
 - bulk volume of $\text{ECT}(0)$ less bulk volume of CE
 - upstream networks that do nothing about policing, DoS, zombies etc will break SLA or get charged more
inter-domain accountability for congestion

- metric for inter-domain SLAs or charges
 - bulk volume of ECT(0)less bulk volume of CE
 - measure of downstream congestion allowed by upstream nets
 - volume charging tries to do this, but badly
 - aggregates and deaggregates precisely to responsible networks
 - upstream networks that do nothing about policing, DoS, zombies break SLA or get charged more

![Diagram showing network topology with nodes S1, N_A, N_B, N_D, and R_I, and re-ECN, v_i with percentages 3%, 2.6%, 2.1%, and 0%].
making stuff real

- tie to new product
 - the occasion when companies consider making changes
 - not just performance enhancement or cost reduction
- effort from inventors
 - not invented here has a flip side
 - hawking round every relevant forum – plan for long haul
 - creating a fashion
- unilateral action in the value chain
 - bilateral changes (e.g. vendor & operator) a second best
- bilateral between similar players (e.g. network operators)
 - bilateral between neighbours
 - overlays can turn remote networks into neighbours
re-ECN incremental deployment

- only REQUIRED change is TCP sender behaviour
- precision only if receiver is re-ECN capable too
- optional compatibility mode for ‘legacy’ ECN rcvrs
 - inclined to leave it out (so few Legacy-ECN hosts out there)
- no change from ECN behaviour for
 - routers
 - tunnels
 - IPsec
 - middleboxes etc
- add egress droppers and ingress policers over time
 - policers not necessary in front of trusted senders
re-ECN deployment transition

- if legacy firewalls block FE=1, sender falls back to FE=0
 - FE=0 on first packets anyway, so see connectivity before setting FE=1
 - if sender has to wrongly clear FE=0, makes dropper over-strict for all

- sender (and receiver): re-ECN transport (from legacy ECN)
 - ingress policer (deliberately) thinks legacy ECN is highly congested
 - 50% for nonce senders, 100% for legacy ECN
 - policers should initially be configured permissively
 - over time, making them stricter encourages upgrade from ECN to re-ECN
re-ECN deployment incentives - networks

- **access network operators**
 - revenue defence for their QoS products
 - can require competing streaming services over best efforts to buy the right to be unresponsive to congestion

- **egress access operators: dropper**
 - can hold upstream neighbour networks accountable for congestion they cause in egress access
 - without egress dropper, border congestion could be understated

- **ingress access operators: policer**
 - if downstream networks hold upstream accountable (above)
 - ingress will want to police its heavy & malicious users
 - ingress can choose to rate-limit Not-ECT

- **backbone networks**
 - unless hold upstream accountable will be held accountable by downstream
re-ECN deployment incentives - vendors

• vendors of policing equipment
 • network operators invite to tender

• sender (and rcvr): re-ECN transport (from Not-ECT)
 • network operator pressure encourages OS vendor upgrades (sweetener below)
 • Not-ECT rate-limits (above) encourage user upgrades

• end device OS vendors
 • network operators hold levers (policers) to encourage customer product upgrades

everyone gains from adding accountability to TCP/IP except the selfish and malicious
making stuff real

- tie to new product
 - the occasion when companies consider making changes
 - not just performance enhancement or cost reduction
- effort from inventors
 - not invented here has a flip side
 - hawking round every relevant forum – plan for long haul
 - creating a fashion
- unilateral action in the value chain
 - bilateral changes (e.g. vendor & operator) a second best
- bilateral between similar players (e.g. network operators)
 - bilateral between neighbours
 - overlays can turn remote networks into neighbours