DoS-resistant Internet Grand Strategy
technical and economic measures

Bob Briscoe
Jun 2006
why

• goal of group
 • to galvanise co-ordinated actions to make the Internet more resistant to denial of services attacks, without unduly blocking the emergence of innovative new applications of the Internet

• goal of writing a grand strategy
 • to lay out the space of possible activity across fields in order to prioritise
 – identify approaches that require less co-ordination between companies, industries, disciplines, jurisdictions
 – identify gaps where co-ordination unavoidable
 – identify approaches not worth pursuing
 • foster consensus, rather than “not invented here”

• audience
 • pt I discursive: internal, members, researchers
 • pt II conclusive: regulators, operators (regulatory, operations), vendors, researchers
status

• structure
 • table of contents
 • bullet point content

• one review pass so far
• on group wiki (at LINX)
• recruited expert authors
multidisciplinary contents

- intro
- technical measures
- economic & incentive-based measures
- contractual measures
- regulatory measures
- commercial realities
- conclusions

- Malcolm Hutty (LINX)
- Bob Briscoe (BT)
- Mark Handley (UCL)
- Bob Briscoe (BT)
- Scott Shenker (ICSI & UCB)
- Malcolm Hutty (LINX)
- Chris Marsden (Rand)
- placeholder for all
- Malcolm Hutty (LINX)
technical measures

• operational best common practices
 • summary of BCP (separate thread of work)

• survey of proposed technical measures
 • described through a common reference model
 • guidance on avenues to avoid and most fruitful approaches
 • incremental deployment issues
architectural component ideas
candidate list for the ‘network layer’

- **Network Ingress Filtering of Source Address Spoofing**
 - Defeating Denial of Service Attacks that Employ IP Source Address Spoofing. [IETF RFC2827]

- **Traceback**

- **Pushback**

- **Overlay Indirection Services**

- **Symmetric paths, client-server address separation, RPF checks, state set-up bit, nonce exchange, middlewalls**
 - M Handley and A Greenhalgh “Steps towards a DoS-resistant Internet architecture” [FDNA (2004)]

- **Re-feedback**
 - B Briscoe et al “Policing Congestion Response in an Internetwork using Re-feedback” [SIGCOMM (2005)]

- **Receiver-driven Capabilities**
 - T. Anderson, T. Roscoe, and D.Wetherall, “Preventing Internet denial of Service with Capabilities” [HotNets-II, (Nov. 2003)]
 - X Yang et al, “DoS-limiting Internet architecture” [SIGCOMM (2005)]

- **Routing: off by default**
 - Hitesh Ballani, Yatin Chawathey, Sylvia Ratnasamy, Timothy Roscoe, Scott Shenker “Off by Default!” [HotNets (2005)]

- **Traffic symmetry**
reference model: datagram comms

• intent: to describe all the architectural approaches within a common reference model

• simple high level abstraction of datagram comms
 • devices are the congestible resource
 – memory, network interface, disk, processor
 • abstracts essential features of device addressing
 • via explicit hierarchical addressing and implicit addressing of relays through routing process (incl DHT overlay)
 • includes multipath access to same resource
(controversial) guidance: “to be avoided”

- intend to include ‘obvious’ guidance
 - eventually for public policy audience

- avoid attack detection by what the payload says it is
 - app identifiers, port numbers
 - encryption & dynamic ports rule these out (cf. IP over Skype)

- avoid attack mitigation through hooks to real-world identity then manual intervention
 - not credible deterrent given DoS on the legal redress service
 - unless last resort for rare cracks in automated system
 - the global Internet lowest common denominator is anonymity
 - not even anonymity behind delegated traceability
(controversial) guidance
perhaps not so useful stuff

- attack detection by claimed source identifier
 - not without broad validation measures in place
- attack detection by tests of humanity
 - most human-usable services evolve to use by unattended computers
- attack detection by inferring attack signature from its behaviour
 - perhaps promising, but perhaps war-game not worth starting
- attack mitigation by requiring receiver permission
 - biggest targets are sites with most (anonymous) clients: server request floods
 - not useful unless receiver willing to randomly select clients
- mitigation by push-back beyond where congestion is being caused
 - requires uncongested router to validate push-back request
 - rather than validation through self-evident congestion caused
 - push-back requests become amplifying attack vector
(controversial) guidance: fruitful avenues

- attack detection & mitigation by how traffic behaves
 - ideally by congestion response
 given DoS is congestion, which is a valid network layer concern
- hooks in network for higher layers
 - state set-up flag, nonce exchange
giving research guidance: with care!

• too early to rule out research avenues
 • but I’m going to follow my intuition anyway

• other researchers will follow their noses too
 • our advice is there to be ignored
 if assumptions can be circumvented

• defence in depth can be useful
 • but, then again, too many depths will stifle innovation
economic & incentive-based measures

• pricing to increase the cost of attacks
 • more useful for interconnection charging than for retail user
 • to localise pain to the network allowing pain to be caused
 • internal ‘pricing’ to drive throttles and policers
 • encouraging the clean up of zombie hosts
 • alternatively, SLA-type penalties for breaking thresholds

• limits of economic approaches
 • value of attack to attacker >> cost to attacker, irrational attackers
 – both avoided if only use economic approach at interconnection
 • insurance blurs responsibility
 – even if localise pain to irresponsible networks
 insurance tends to spread risk back to responsible networks

• re-ECN being progressed through IETF
 • basis for interconnection congestion charging
 – draft-briscoe-tsvwg-re-ecn-tcp-02
 – draft-briscoe-tsvwg-re-ecn-border-cheating.01
recent working group activity
on technical-economic measures

• tactical approaches
 • BGP-based push-back
 • distributing DNS name server records

• strategic approaches
 • policing congestion response using re-feedback/re-ECN
 • state set-up flag
summary

- setting an agenda for action
- towards a DoS resistant Internet

going involved

- edit on LINX WiKi
 access controlled: via Mark Handley <M.Handley@cs.ucl.ac.uk>
- first substantial draft from all authors: mid Apr
- snapshot
 <www.cs.ucl.ac.uk/staff/B.Briscoe/projects/dos/DoSGrandStrategy.html>

Bob Briscoe <bob.briscoe@bt.com>