Support for ECN and PCN in MPLS networks

draft-davie-ecn-mpls-01.txt

Bruce Davie
Cisco Systems

Bob Briscoe
June Tay
BT Research
Problem Overview

- ECN (RFC 3168) encodes 3 states in 2 bits
 - ECT, not ECT, CE
 - ECN nonce uses up the extra codepoint
- MPLS header has only 3 bits (EXP field) suitable for this purpose
- EXP values widely used for Diffserv
- Even stealing one bit for ECN would be tough
Overview of proposal

- Don’t define a bit, use a codepoint (or 2)
 - Given < 8 codepoints in use, can add ECN capability for any single PHB by using one more codepoint
 - “Original” codepoint means “PHB X, not-CE”, new codepoint means “PHB X AND CE”

- Handle ECT at egress
 - If IP header is ECT: Copy MPLS CE state to IP header
 - If IP header is not-ECT: drop packet if MPLS EXP codepoint is CE

- Permissive approach
 - Other uses of EXP permitted
Changes in new (-01) version

- Remove dependency on PCN
 - There as an example only
- Corrected reference to [Shayman00]
 - Our encoding proposal quite similar to his
- Copying ECN information to exposed header on egress (pop) is not mandatory
- Crossing from ECN-enabled to ECN-disabled domain is addressed
- Typos, nits
Summary

- Increased interest in ECN (& PCN) combined with widespread use of MPLS & Diffserv, motivates a solution to ECN support in MPLS
 - Real impediment to ECN deployment otherwise
- One extra codepoint is enough for ECN
- Approach is consistent with prior ECN-MPLS drafts and with RFCs 3168 (ECN) and 3270 (MPLS-Diffserv)
- TSVWG seems appropriate home for this draft
 - Needs ECN expertise
 - ECN deployment benefits from draft
Backup Slides
Issues addressed in -01

- When leaving an MPLS domain, we don’t insist the ECN information be propagated back to IP header
 - You could imagine using ECN to control congestion purely in the MPLS cloud - this is up to the operator

- When crossing from ECN-enabled domain to ECN-disabled domain, need to check the ECN state and drop if packet is not-ECT AND congestion-marked
 - This implies peeking below MPLS label at an MPLS-labelled interconnect point
Prior Work

- **Floyd, Ramakrishnan & Davie, 1999**
 - draft-ietf-mpls-ecn-00.txt
 - Encoded 3 states in 1 bit (!) by overloading Not-ECT and CE
 - Would drop ECT packets that experienced congestion marking twice

- **Shayman, 2000**
 - draft-shayman-mpls-ecn-00.txt
 - Encodes only CE state in EXP (hence may mark non-ECT packets)
 - Figures out the “right thing” at egress
 - Adds explicit signaling from egress to ingress

- **RFC 3270**
 - Defines usage of 3-bit MPLS EXP field for Diffserv
 - Does not preclude other uses of the field
Example

- Suppose we want to add ECN to just one PHB (e.g. a “premium” data class, AF11)
- Suppose EXP=010 is used for AF11, and that EXP values of 000, 001, 100 are in use for some other PHBs
- We add ECN support to AF11 traffic only, defining EXP=101 to be the “CE” codepoint for AF11
- Encaps/decaps rules on next slide:
Example (cont.)

Ingress (push)

<table>
<thead>
<tr>
<th>IP</th>
<th>MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF11 & ECT</td>
<td>010 (CE)</td>
</tr>
<tr>
<td>AF11 & ECT</td>
<td>010 (CE)</td>
</tr>
<tr>
<td>AF11 & CE</td>
<td>101 (CE)</td>
</tr>
<tr>
<td>Not AF11</td>
<td>See RFC 3270</td>
</tr>
</tbody>
</table>

Egress (pop)

<table>
<thead>
<tr>
<th>MPLS</th>
<th>IP (in)</th>
<th>IP (out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>010 (CE)</td>
<td>Any</td>
<td>IP (in)</td>
</tr>
<tr>
<td>101 (CE)</td>
<td>ECT</td>
<td>CE</td>
</tr>
<tr>
<td>101</td>
<td>ECT</td>
<td>drop</td>
</tr>
<tr>
<td>101</td>
<td>CE</td>
<td>CE</td>
</tr>
<tr>
<td>Other EXP</td>
<td>Any</td>
<td>See RFC 3270</td>
</tr>
</tbody>
</table>

- In this example, 010 is the “Not CE” codepoint and 101 is the “CE” codepoint and all other codepoints/PHBs do not support ECN.
- Note that ECN nonce propagates through the MPLS domain.
Deployment

- Can create an ECN-enabled MPLS domain by enabling ECN-aware push/pop behavior at ingress/egress
 - All ingress/egress routers MUST be enabled before any ECN core behavior is enabled
- ECN behavior can be added one core router at a time
Tunneling & RFC3168

- Subtle difference between this draft and “full functionality” tunnel mode of RFC3168
 - RFC3168 does not copy CE state to outer header at ingress; this draft does

- We prefer to copy CE state to enable marking that depends on current state (useful for PCN)

- Authors of 3168 agree it makes no difference for ECN
 - If you don’t like copying info to outer header, don’t! (the limited functionality model)
PCN support

- Just like ECN, but more codepoints
- E.g. Add PCN to one PHB by allocating 3 codepoints to that PHB
 - Not marked (NM)
 - Admission-marked (AM)
 - Pre-emption marked (PM)
- Rules for pushing/popping headers are similar to ECN