Byte and Packet Congestion Notification
draft-briscoe-tsvwg-byte-pkt-mark-01.txt

Bob Briscoe, BT & UCL
IETF-70 tsvwg Dec 2007
updated individual draft

• Byte and Packet Congestion Notification
 • updated draft: draft-briscoe-tsvwg-byte-pkt-mark-01.txt
 • intended status: informational
 • immediate intent: move to WG item

reminder (exec summary)
• in any AQM
 propose SHOULD NOT give smaller packets preferential treatment
• adjust for byte-size when transport reads NOT when network writes

Terminology: RED’s ‘byte mode queue measurement’ (often called just ‘byte mode’) is OK, only ‘byte mode packet drop’ deprecated
NOTE: don’t turn off RED completely: drop-tail is as bad or worse
favouring small packets, main change:

DoS vulnerability

- small packet attacks push out larger packets
 - leaving most small packets to attack the next queue
 - & the next, & the next

- DoS vulnerability similar to that of drop tail queues
- AQM was partly about not locking-out large packets*
 - shouldn’t add lock-out back again in the AQM algorithm

* not stated and not a motivation according to at least one author (Floyd)
other changes

- emphasised equal applicability to any AQM and to drop or ECN
 - e.g. PCN, RED (with drop or ECN)
- restructured
 - pulled main recommendations together into the conclusions
 - moved a couple of lumps of text to appendices
- fixed for (Floyd’s) original motivations for RED’s byte-mode drop
 - protecting SYNs & pure ACKs more than equalising small segment TCPs
- added more examples of preferable transport approaches
 - tcpm-ecn-syn & tcpm-ackcc added to TFRC-SP etc
- updated survey data (but no change since IETF-69 slides)
- clarification & update throughout
- full diff at <www.cs.ucl.ac.uk/staff/B.Briscoe/pubs.html#byte-pkt-mark>
thoughts for next draft

• long off-list discussions haven’t resolved differences, but could

• main points in favour of size-dependent drop:
 • control packets tend to be small (e.g. SYNs, pure ACKs)
 – so less drop of small packets gives performance win
 • already have mix of size-dependent (drop-tail) and size-independent drop
 – so doesn’t reduce complexity by only having size-independent
 • apps have other (OS) incentives not to use small packets

• main points in favour of size-independent drop
 • not all small pkts are control, so favouring all smallness creates unintended consequences
 • the more size-independent AQM, the less transport uncertainty over queue behaviours
 • mustn’t provide incentives for new transports to use small data pkts

• possible ways forward
 • focus only on PCN?
 • but still mileage in reaching consensus on RED too
conclusion

• unequivocal UPDATE to RFC2309 (‘RED manifesto’)
 • adjust for byte-size when transport reads NOT when network writes
 • previously gave both options with ‘more research needed’

• all known implementations don’t do byte-mode drop anyway
 • retrospective tidy-up to RFC series

• not reached consensus

• discuss

• WG item pls
Byte and Packet Congestion Notification

draft-briscoe-tsvwg-byte-pkt-mark-01.txt

Q&A
example: comparing each RED mode
simple packet streams (no congestion response)

RED packet-mode packet drop
- same drop probability for any packet
- universally deployed
- **propose:** SHOULD

<table>
<thead>
<tr>
<th></th>
<th>1500B pkts</th>
<th>60B pkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>1Mbps</td>
<td>1Mbps</td>
</tr>
<tr>
<td>drop prob.</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>output</td>
<td>750kbps</td>
<td>750kbps</td>
</tr>
</tbody>
</table>

RED byte-mode packet drop
- lower drop probability for smaller packets
- ‘RED’ RFC2309 (sort of) recommends
- **propose:** SHOULD NOT

<table>
<thead>
<tr>
<th></th>
<th>1500B pkts</th>
<th>60B pkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>1Mbps</td>
<td>1Mbps</td>
</tr>
<tr>
<td>drop prob.</td>
<td>25%</td>
<td>1%</td>
</tr>
<tr>
<td>output</td>
<td>750kbps</td>
<td>990kbps</td>
</tr>
</tbody>
</table>
proof

- proof strategy
 - fix the amount of congestion in flight, then consider how much notification needed
- Imagine aggregate overload of 103Mbps in flight (for 1 RTT)
- arrives at queue running at its desired operating point
 \[\Rightarrow 3Mbps \text{ for } 0.1s = 300kb = 37.5kB \text{ to discard (or mark)} \]
- If all the traffic is in packets of size \(s \) [B], \(e \) packets need to be lost

<table>
<thead>
<tr>
<th>(s)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500B</td>
<td>25</td>
</tr>
<tr>
<td>60B</td>
<td>625</td>
</tr>
<tr>
<td>9000B</td>
<td>4</td>
</tr>
</tbody>
</table>

- to lose this excess
- if queue reduces drop rate for smaller packets
 - if all packets are small, queue will have to be longer
to notify the same congestion queue shouldn’t have to change its length
- so transports need to respond more strongly to larger missing packets

\[\therefore \text{TCP’s insensitivity to drop size is an artefact, not a principle to be copied} \]