QoS interconnect best without effort

Bob Briscoe
Chief Researcher
BT
Sep 2009

This work is partly funded by Trilogy, a research project supported by the European Community
www.trilogy-project.org
simplicity ahead!
cannot be QoS

on exit
check mirrors
– it was QoS
both value *and* cost

- industry contractual metrics are largely value-based
 - e.g. advertised routes, volume ratio
 - even a CEO should understand both value *and* cost
- competitive market drives revenues down towards provider’s marginal cost
 - those who understand marginal costs will succeed
marginal cost of network usage?

- volume is NOT a good measure
- green user yields whenever detects high congestion
 - very high volume but very low cost to others
 - e.g. LEDBAT (BitTorrent’s low extra delay background transport) or weighted TCP
- by counting volume, ISPs kill nice behaviour
 - not just file transfers, e.g. congestion-sensitive video codec transfers >100% more videos thru same capacity (same MoS)
- correct measure: congestion-volume
 - volume weighted by congestion when it is forwarded
 - easily measured by a host
 - bytes sent x loss fraction = bytes lost

\[
\begin{align*}
&10GB & 0.01\% \\
&300MB & 3MB & 1\% \\
&100MB & 1MB & \\
&1MB & \\
\end{align*}
\]
Initial results measured on Naples Uni net
Each point is a user correlation coefficient: 0.43

WARNING: Requires validation with more sample data
congestion is not evil
congestion signals are healthy

• no congestion across whole path ⇒ feeble transport protocol
 – to complete ASAP, transfers should sense path bottleneck & fill it

the trick
congestion signal *without* impairment
 – explicit congestion notification (ECN)
 • update to IP in 2001: mark more packets as queue builds
 – then tiny queuing delay and tiny tiny loss for all traffic
• no need to avoid congestion (whether core, access or borders) to prevent impairment
congestion exposure

- by Internet design, endpoints detect & handle losses
 - very hard for networks to see losses (marginal costs)
- proposed IETF working group: "congestion exposure"
 - protocol for sender to mark IP headers to expose congestion
 - to measure traffic cost as easily as we measure volume
 - just count volume of marked packets in aggregate
 - >40 offers of help just in the last fortnight
- named re-ECN (re-inserted ECN)
 - builds on explicit congestion notification (ECN [RFC3168])
congestion exposure with ECN & re-ECN
measurable upstream, downstream and path congestion

- sender re-inserts feedback by marking packets **black**
- at any point on path, diff between fractions of **black** & **red** bytes is downstream congestion
- **forwarding unchanged (ECN)**
- **black** marking end-to-end but visible at net layer for accountability

IPv4 header

- re-feedback

re-ECN fraction

feedback

0.4% **red** (ECN)
congestion-volume metric
dual demand & supply role

- a resource accountability metric
 1. of customers to ISPs (too much traffic)
 2. and ISPs to customers (too little capacity)

1. cost to other users of my traffic
2. the marginal cost of upgrading equipment
 • so it wouldn’t have been congested

- competitive market matches 1 & 2

note: diagram is conceptual
congestion volume would be accumulated over time
capital cost of equipment would be depreciated over time
example consumer use of exposed congestion
fee can stay flat

Acceptable Use Policy
'congestion-volume' allowance: 1GB/month

Allows ~70GB per day of data in typical conditions

- only throttles congestion-causing traffic when your contribution to congestion EVERYwhere in the Internet exceeds your allowance
- side-effect: mitigates and reveals distributed denial of service

Acceptable Use Policy

bulk congestion policer

Internet

0.3% congestion

0.1%

0%

2 Mb/s
0.3 Mb/s
6 Mb/s

© British Telecommunications plc
reveals congestion dumped into rest of Internet

area = instantaneous downstream congestion volume

path

just two counters at border meter monthly bulk volume of each packet marking
difference = downstream congestion-volume

without measuring flows

legend:
re-ECN downstream congestion marking [%]

bit rate
I’m a conservative, get me out of here!

- if we don’t listen to the economics, we’re all dead
 - shift from value-based to cost-based is unstoppable
 - competition
 - bit transport needs to be viable on its own

(another talk)

- as cost pressures grow
- existing capacity sharing methods feed an arms race
 - TCP doesn’t share capacity fairly by any means
 - recent unanimous consensus in IETF Transport Area
 - ISPs have quietly been fighting TCP with piecemeal tools
 - WFQ, volume capping, deep packet inspection
- with congestion in IP header, wouldn’t need to look deeper
best without effort

- did you notice the interconnected QoS mechanism?
 - *endpoints* ensure tiny queuing delay & loss for all traffic
 - if your app wants more bit-rate, it just goes faster
 - effects seen in bulk metric at every border (for SLAs, AUPs)

- simple – and all the right support for operations

- the invisible hand of the market
 - favours ISPs that get their customers to manage their traffic in everyone else’s best interests

- incentives to cooperate across Internet value chain
 - content industry, CDNs, app & OS authors, network wholesalers & retailers, Internet companies, end-customers, business, residential

- if you want this, vote early and vote often!
 - re-ecn@ietf.org list
 - IETF, Hiroshima, Nov’09
• White paper – the whole story in 7pp
 • Internet: Fairer is Faster, Bob Briscoe (BT), BT White Paper TR-CXR9-2009-001 (May 2009)
 - an abridged version of this article appeared in IEEE Spectrum, Dec 2008
• Inevitability of policing
 • The Broadband Incentives Problem, Broadband Working Group, MIT, BT, Cisco, Comcast, Deutsche Telekom / T-Mobile, France Telecom, Intel, Motorola, Nokia, Nortel (May ‘05 & follow-up Jul ‘06) <cfp.mit.edu>
• Stats on p2p usage across 7 Japanese ISPs with high FTTH penetration
• Slaying myths about fair sharing of capacity
 • Bob Briscoe, "Flow Rate Fairness: Dismantling a Religion" ACM Computer Communications Review 37(2) 63-74 (Apr 2007)
• How wrong Internet capacity sharing is and why it's causing an arms race
 • Bob Briscoe et al, "Problem Statement: Transport Protocols Don't Have To Do Fairness", IETF Internet Draft (Jul 2008)
• Understanding why QoS interconnect is better understood as a congestion issue
 • Bob Briscoe and Steve Rudkin "Commercial Models for IP Quality of Service Interconnect" BT Technology Journal 23 (2) pp. 171--195 (April, 2005)
• Re-architecting the Internet:
 • The Trilogy project
• Re-ECN & re-feedback project page:
 <http://bobbriscoe.net/projects/refb/>
 <trac.tools.ietf.org/area/tsv/trac/wiki/re-ECN>
best without effort
QoS interconnection

Q&A...
problems using congestion in contracts

<table>
<thead>
<tr>
<th></th>
<th>1. loss</th>
<th>2. ECN</th>
<th>3. re-ECN</th>
</tr>
</thead>
<tbody>
<tr>
<td>can't justify selling an impairment</td>
<td>☹️</td>
<td>☺️</td>
<td>☺️</td>
</tr>
<tr>
<td>absence of packets is not a contractible metric</td>
<td>☹️</td>
<td>☺️</td>
<td>☺️</td>
</tr>
<tr>
<td>congestion is outside a customer's control</td>
<td>☹️</td>
<td>☹️</td>
<td>☺️</td>
</tr>
<tr>
<td>customers don't like variable charges</td>
<td>☹️</td>
<td>☹️</td>
<td>☺️</td>
</tr>
<tr>
<td>congestion is not an intuitive contractual metric</td>
<td>☹️</td>
<td>☹️</td>
<td>☹️</td>
</tr>
</tbody>
</table>

1. **loss**: used to signal congestion since the Internet's inception
 - computers detect congestion by detecting gaps in the sequence of packets
 - computers can hide these gaps from the network with encryption

2. **explicit congestion notification (ECN)**: standardised into TCP/IP in 2001
 - approaching congestion, a link marks an increasing fraction of packets
 - implemented in Windows Vista (but off by default) and Linux, and IP routers (off by default)

3. **re-inserted ECN (re-ECN)**: standards proposal since 2005
 - packet delivery conditional on sender declaring expected congestion
 - uses ECN equipment in the network unchanged
explicit congestion notification (ECN)

IETF proposed std: RFC3168 Sep 2001 most recent change to IPv4&6

probabilistic packet marking algorithm on all egress interfaces

marked ACK

marked packet

ACKnowledgement packets

packet headers

DSCP

0 5 6 7

ECN

bits 6 & 7 of IP DS byte

00: Not ECN Capable Transport (ECT)
01 or 10: ECN Capable Transport - no Congestion Experienced (sender initialises)
11: ECN Capable Transport - and Congestion Experienced (CE)
congestion exposure in one bit

1. Congested queue debit marks some packets
2. Receiver feeds back debit marks
3. Sender re-inserts feedback (re-feedback) into the forward data flow as credit marks
4. Outcome: End-points still do congestion control But sender has to reveal congestion it will cause Then networks can limit excessive congestion
5. Cheaters will be persistently in debt So network can discard their packets (In this diagram no-one is cheating)

no changes required to IP data forwarding

standard ECN (explicit congestion notification + re-inserted feedback (re-feedback)) = re-ECN

IPv4 header

Congestion exposure in one bit

Feedback path

Data packet flow

Networks

Routers

Sender

Receiver

© British Telecommunications plc

no changes required to IP data forwarding
main steps to deploy re-feedback / re-ECN

• network
 • turn on explicit congestion notification in routers (already available)
 • deploy simple active policing functions at customer interfaces around participating networks
 • passive metering functions at inter-domain borders
• terminal devices
 • (minor) addition to TCP/IP stack of sending device
 • or sender proxy in network
• customer contracts
 • include congestion cap
• oh, and first we have to update the IP standard
 • started process in Autumn 2005
 • using last available bit in the IPv4 packet header
 • proposal for new working group, Nov 2009 IETF
how Internet sharing ‘works’

TCP-friendliness

- endemic congestion
- voluntarily restraint by algorithms in endpoints

- a game of chicken – taking all and holding your ground pays

- or start more ‘TCP-friendly’ flows than anyone else (Web: x2, p2p: x5-100)

- or for much longer than anyone else (p2p file-sharing x200)

- net effect of both (p2p: x1,000-20,000 higher traffic intensity)
none of these harness end-system flexibility

1. TCP
 - light usage can go much faster
 - hardly affects completion time of heavy usage
 - weighted TCP sharing

2. (weighted) fair queuing

3. volume caps

4. deep packet inspection (DPI)

NOTE: weighted sharing doesn't imply differentiated network service
- just weighted aggressiveness of end-system's rate response to congestion

simpler & better...
congestion competition – inter-domain routing

- if congestion \rightarrow profit for a network, why not fake it?
 - upstream networks will route round more highly congested paths
 - N_A can see relative costs of paths to R_1 thru N_B & N_C
- the issue of monopoly paths
 - incentivise new provision
 - as long as competitive physical layer (access regulation), no problem in network layer

Diagram:
- Downstream route cost
- Routing choice
- Resource sequence index, i