Network Performance Isolation in Data Centres using ConEx

draft-briscoe-conex-data-centre-00.txt

Bob Briscoe, BT
Murari Sridharan, Microsoft
IETF-84 ConEx Jul 2012
draft status

- Network Performance Isolation in Data Centres using ConEx draft-briscoe-conex-data-centre-00.txt
- new individual draft Jul 2012, requested by w-g Mar 2012
- one of a (growing) set of ConEx deployment arrangement drafts
- largely complete (31pp)
 - another rev to fill a few ToDo’s
 - technical ideas complete, but 2 works in progress:
 - detail design of tunnelling alternative for guest OSs that may not support ConEx or ECN
 - parameter setting section
- purpose of this talk
 - generate more interest in readers & reviewers
audience

- data centre (private or cloud) people, not ConEx
- not written as a way to deploy ConEx
- rather two ways to solve the isolation problem
 1. ConEx: better (warrants “using ConEx” in title)
 2. tunnelling: works for non-ConEx guest OSs, but inferior

- audience assumed sceptical
 - how it works is simple
 - why it works is outside people’s comfort zones
 - isolate tenants with no per-tenant config on the switches?
document structure

• Frontpieces (Abstract, Intro)
2. Features of Solution
3. Outline Design
4. Performance Isolation: Intuition
5. Design
6. Parameter Setting
7. Incremental Deployment
8. Related Approaches
• Tailpieces (Security, Conclusions, Acks)
Features of Solution

• Network performance isolation between tenants
• No loss of LAN-like multiplexing benefits
 • work-conserving
• Zero (tenant-related) switch configuration
• No change to existing switch implementations
 • if ECN-capable
• Weighted performance differentiation
• Simplest possible contract
 • per-tenant network-wide allowance
 • tenant can freely move VMs around without changing allowance
 • sender constraint, but with transferable allowance
• Transport-Agnostic
• Extensible to wide-area and inter-data-centre interconnection
Outline Design

- Edge policing like Diffserv
 - but congestion policing
- Hose model
- Flow policing unnecessary, but optional

- intra-class isolation in FIFO queues
- ECN marking
performance isolation intuition

- congestion policer enforces bit-rate, $x = \frac{w}{p}$, where
 - w is a constant for that tenant (the policy)
 - p is % congestion
- similar to a so-called ‘scalable congestion control’
 - but for aggregate (hose) from source, made up of flows
 - TCP is evolving towards this (Compound, Cubic, DCTCP etc)
- property easy-to-say but hard to grasp:
 - same rate of congestion per tenant, however many other tenants capacity is shared with
 - congestion-bit-rate in one flow is the same
 - but under contention it goes on for longer

\[
\begin{align*}
0.02\% \text{ congestion} \times 100\text{Mb/s} &= 20\text{kb/s congestion} \\
0.04\% \text{ congestion} \times 50\text{Mb/s} &= 20\text{kb/s congestion}
\end{align*}
\]
intuition built-up as follows

- 'scalable congestion control' as boundary case (previous slide)
- single link
 - long running flows, single link
 - similar to (weighted) round-robin
 - on-off flows
 - congestion-volume accounts for how often a tenant is not 'on'
 - weighted on-off flows
 - longer flows shift away
- network of links
 - congestion-volume allows for how many links tenant is 'on' in
- transients
work in progress & innovations
incremental deployment

- Can deploy all infrastructure under control of one administration
- ConEx & ECN depend on sender and receiver in guest OS
 - trusted feedback tunnel back to policer
 - without ConEx or ECN in guest OS
 - under control of DC operator
 - concrete example builds on NV-GRE
- Hybrid
 - non-ConEx packets: feedback tunnel
 - non-ECN packets: feedback tunnel
 - ConEx packets: no feedback tunnel
- tunnel egress, if not-ECT on inner header
 - feedback CE to ingress
 - drops any ECN-marked packets
- tunnelling inferior:
 - less isolation (congestion knowledge delayed by RTT)
 - more complicated (tunnel feedback set-up)
 - less efficient (duplicates TCP feedback)
- reward ConEx at policer for being more efficient?
work in progress & innovations

interconnection

- DC operator buys WAN pipe
 - between data centres
 - to enterprise customers’ (uncontended) LANs
- within pipe tenants share as within DC
 - based on loss or ECN at ingress to pipe
 - just another internal link
plans

- intent: working group item
- present in other working groups at next IETF (e.g. NVO3)

working group input

- could the “intuition” section (16pp) be a stand-alone draft?
 - already well-summarised in the introduction
- review please
Network Performance Isolation in Data Centres using ConEx

draft-briscoe-conex-data-centre-00.txt

Q&A