DCTCP & CoDel the Best is the Friend of the Good

Bob Briscoe, **BT**

Murari Sridharan, Microsoft IETF-84 TSVAREA Jul 2012

Voltaire

menu

- 1. why DCTCP is important
- an (untested) roadmap how might DCTCP be deployed and coexist with current Internet traffic & AQMs

Data Centre TCP (DCTCP)

high utilisation in steady state still leaves room for bursts

Data Center TCP Algorithm

Switch side:

Mark packets when Queue Length > K

B Mark K Don't Mark

Sender side (differences from TCP New Reno): • Maintain *moving average* of *fraction* of marked packets (α) each RTT: $F = \frac{\# \text{ of marked ACKs}}{\text{Total } \# \text{ of ACKs}} \Rightarrow \alpha \leftarrow (1-g)\alpha + gF$ • Adaptive congestion window decrease: $W \leftarrow (1-\frac{\alpha}{2})W$

DCTCP in Action

Throughput-Latency Tradeoff

DCTCP only for data centres?

- named for a feasible deployment scenario
 - a change to all senders, receivers and switches*
- not intended to be its sole applicability
 - addresses high bandwidth-delay product
 - should be applicable to slow links & long RTTs
- 100Mb/s x 500 µs only tested down to 100Mb/s so far[†]
 250kb/s x 200ms

^{*} Switches/routers only require reconfig if they support ECN senders (and receivers) require implementation change

[†] An issue with a wide range of RTTs has been addressed

DCTCP activity

- E2e Transport
 - In Windows 8 Server data center template
 - I-D for DCTCP feedback (intended EXP) [draft-kuehlewind-tcpm-accurate-ecn-01]
- AQM
 - Existing kit: Just a degenerate config of RED
 - Can be implemented as just a step at K packets (single 'if' command)
 - For zero-delay can use a virtual queue [RC5670]
 - hardware implementations ["How to Build a Virtual Queue from Two Leaky Buckets"]

Marking

probability DCTCP

- see <u>HULL</u> for specifics with DCTCP
- Analysis, papers, Linux & ns2 implementation, etc
 - <<u>http://www.stanford.edu/~alizade/Site/DCTCP.html></u>
 - SIGCOMM paper gives entry point

max

Marking

probability

RED

ø

et

DCTCP: differences from traditional AQMs e.g. CoDel

- source smooths signals
 - not the queue
- source responds to extent of signals
 - not just their existence
- designed for ECN only

which node owns the RTT?

- we want to smooth away queues that disappear within ~1 RTT
 - but which RTT?

the network?

- traditional AQMs hold back signals for the 'nominal' worst-case (long RTT)
- DCTCP signals immediately
 - no 'nominal' RTT to configure / hard-code / adapt

the host?

- each DCTCP flow smooths over its own RTT
- short RTT flows can fill troughs & avoid peaks on behalf of longer ones (and themselves)

DCTCP & CoDel the Best is the Friend of the Good

But DCTCP's approach only makes sense with ECN...

Encore, le mieux est l'ennemi du bien

ECN and drop are not equivalent

- ECN is solely a signal
 - no problem sending out a burst of ECN and later smoothing it away at the source

- drop is both an impairment and a signal
 - simultaneously want to avoid it and hear it
 - a burst of loss can't just be smoothed away
 - collateral damage from timeouts etc.

Can smoothing on the host interoperate with smoothing in the network?

current rule (paraphrased from RFC 3168)

- Signal ECN when queue would otherwise drop
- Respond to ECN exactly as a drop
- intended to prevent starvation of one by the other

proposal: overload the meaning of an ECN-capable pkt

- for queue, ECN also means SHOULD NOT smooth
- for transport, ECN also means SHOULD smooth
- under persistent congestion
 - need to ensure shares stabilise and no-one starves
 - despite different dynamics

interoperability between old & overloaded meanings of ECN

host queue	one big instant response to ECN per RTT	small smoothed responses to each ECN
smoothed ECN		√2
instant ECN	√1	

ticks are based on conjecture, not experimental evidence

¹ don't get full gain in latency until host upgrades as well

² doubly delayed response to congestion

message

- zero-config AQMs are good
 - CoDel for drop
 - simple step for ECN
 - far greater potential gains
- in parallel to CoDel field testing
 - work on interop with unsmoothed AQM for ECN
 - otherwise the lazy option (ECN = drop) prevails
 - would be a wasted opportunity

DCTCP & CoDel the Best is the Friend of the Good

Data Center TCP Algorithm

Switch side:

Mark packets when Queue Length > K

Sender side:

Maintain moving average of fraction of marked packets (α)

each RTT: $F = \frac{\# \text{ of marked ACKs}}{\text{Total } \# \text{ of ACKs}} \Rightarrow \alpha \leftarrow (1-g)\alpha + gF$

• Adaptive congestion window decrease:

$$W \leftarrow (1 - \frac{\alpha}{2})W$$