Guidelines for Adding Congestion Notification to Protocols that Encapsulate IP

draft-briscoe-tsvwg-ecn-encap-guidelines-03

Bob Briscoe, BT
John Kaippallimalil, Huawei
Pat Thaler, Broadcom

IETF-88 Nov 2013
aim of this draft

• guidelines for writing specs to propagate ECN up to IP from:
 • L2 protocols (e.g. IEEE802, TRILL)
 • tunnelling protocols (L2TP, GRE, PPTP, GTP,…)
• for authors who may not be ECN experts

draft status

• intended status: best current practice
• individual draft-03, ready for WG adoption

ECN = explicit congestion notification
L2TP = layer 2 tunnelling protocol [RFC2661]
PPTP = Point-to-point Tunnelling Protocol [RFC2637]
GRE = generic routing encapsulation [RFC1701, RFC2784]
QCN = quantised congestion notification [IEEE 802.1Qau]
GTP = GPRS tunnelling protocol [3GPP TS 29.060]
context / problem

- growing interest in ECN again
 - in recognition of the importance of low delay
 - particularly in L2 networks (backhaul, data centres) & mobile
- AQM & ECN are for queues at any layer
 - not just IP
- ECN has to be explicitly propagated
 - up the layers
- in contrast drop is easy
 - it naturally propagates up the layers

AQM = active queue management (e.g. RED, CoDel, PIE, DCTCP threshold, PCN)
a variety of arrangements

- avoid precluding L2 innovation
- must not be over-prescriptive

- guidelines for each mode
 - see draft (or spare slides)

- wide expertise needed for authoring & review
how would this draft BCP be used?

• authors of L2 & tunnel protocols often not L4 experts
• for IETF maintained protocols
 • e.g. trill, L2TP, GRE, PPTP
 • they can be referred to this draft BCP (e.g. by IESG)
• for protocols maintained by other SDOs
 • while considering this for BCP, and once issued as a BCP
 IAB would issue liaisons, e.g.
 – to IEEE for 802 protocols
 – to 3GPP for GTP
 – etc.
new in draft-03

Technical
• §1.1 Scope:
 • Added dependence on correct propagation of traffic class
 • For the feed backward mode only: deemed multicast and anycast out of scope
• §4 Feed-Forward-and-Up Mode
 • Wherever it only talked of subnet technologies widened it to tunnels
 • and the converse
• §8 Security Considerations added (all sections now complete)
 • congestion signal fields should be classed as immutable
 • congestion signal integrity best done end-to-end rather than hop-by-hop

Editorial
• none (document is fairly mature now)
next steps

• process
 • request adoption onto wg agenda
 • if adopted, need liaison with other WGs & SDOs
 – notify IETF TRILL, IEEE 802, 3GPP, at least
 – setting requirements for interfacing IP with their protocols

• outstanding document issues
 • listed in Appendix A (next slide)

• thanks to those volunteering to review, so far:
 • Andrew McGregor
 • Wei Xinpeng
 • Richard Scheffenegger
 • Dirk Kutscher
 • (and Gorry Fairhurst already reviewed draft-01)

• and thanks for 12+ expressions of support for adoption on list
Outstanding Document Issues

• Recent review comments
 • [PO’H] clarify that ECN ‘as is’ gives only incremental benefit
 • [JT] INT area not even motivated by wider recommendations

• Outstanding from previous reviews (recorded in Appendix A):
 • [GF] Certain guidelines warrant MUST (NOT) rather than SHOULD (NOT). Esp:
 • If inner is a Not-ECN-PDU and Outer is CE (or highest severity congestion level),
 MUST (not SHOULD) drop?
 • Proposed approach: Express overall intent, not just decap, as MUST (NOT)
 • Consider whether an IETF Standard Track doc will be needed to Update the IP-in-IP
 protocols listed in Section 4.1 – at least those that the IETF controls – and
 which Area it should sit under.
 • Proposed approach: we think a proposed standard RFC will be needed (probably INT
 Area, or in TSV for INT), but too early to call

• Double check: should intended status be BCP or INF?
 • Proposed approach: Contains normative statements and extrapolates approach in
 IP-in-IP and MPLS proposed standards, so BCP not just INF seems correct?
Guidelines for Adding Congestion Notification to Protocols that Encapsulate IP

draft-briscoe-tsvwg-ecn-encap-guidelines-03

Q&A & spare slides
status of congestion notification in protocols that encapsulate IP

- IETF

 done: MPLS-in-MPLS, IP-in-MPLS [RFC5129], IP-in-IP [RFC6040]

 to do: trill-rbridge-options (in progress), & pass ECN thru tunnel protocols, eg. L2TP, GRE

- Other standards bodies:

 done: QCN [802.1Qau], Frame Relay, ATM [I.371] (all subnet-local)

 todo: IEEE 802.1, (802.3, 802.11), ...? & pass ECN thru tunnel protocols, eg. 3GPP GTP

L2TP = layer 2 tunnelling protocol [RFC2661]
GRE = generic routing encapsulation [RFC1701, RFC2784]
QCN = quantised congestion notification
GTP = GPRS tunnelling protocol - user plane [3GPP TS 29.281]
motivating example
3GPP LTE/SAE – sequence of tunnels

More than 1 tunnel between policy enforcement points.
Example: UE PDN connection traverses [eNB] << S1-U >> [SGW] << S5/S8 >> [PGW].
forward and upward mode: requirements

- identifying whether transport will understand ECN
- identifying whether egress will understand ECN
- propagating ECN on encapsulation
- propagating ECN on decapsulation
- reframing issues
forward and upward mode: guidelines

- identifying whether transport will understand ECN
 - ‘ECN-capable transport’ codepoint or other approaches
- identifying whether egress will understand ECN
 - new problem
- propagating ECN on encapsulation
 - copying ECN down for monitoring purposes
- propagating ECN on decapsulation
 - combining inner & outer
- reframing issues
 - marked bytes in ≈ marked bytes out
 - timeliness – don’t hold back any remainder
the main problem: incremental deployment

- IP-ECN designed for incremental deployment

<table>
<thead>
<tr>
<th>transport supports ECN?</th>
<th>IP header</th>
<th>congested queue supports ECN?</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Not-ECT</td>
<td>drop</td>
</tr>
<tr>
<td>Y</td>
<td>ECT</td>
<td>drop</td>
</tr>
</tbody>
</table>

- if transport only understands drop
 - lower layer must not send it congestion indications
- need not mimic IP mechanism (grey)
 - but needs to achieve same outcome (white)
- also, must check egress understands ECN too

ECT = ECN-capable transport
CE = Congestion Experienced
up and forward mode guidelines

- identifying whether transport will understand ECN
 - use IP mechanism
 - identifying whether egress will understand ECN

- propagating ECN on encapsulation

- propagating ECN on decapsulation

- reframing issues

- a layering violation
 - but safe if guidelines apply
backward mode

- often designed for where the subnet is the whole network
- doesn’t interwork efficiently with IP’s forwards-only mode

incoming load unchanged

back up into L3

slows down L2

congestion f/b

IEEE 802.1Qau (QCN)
ATM ITU-T-I.371
Frame Relay