Guidelines for Adding Congestion Notification to Protocols that Encapsulate IP

draft-briscoe-tsvwg-ecn-encap-guidelines-04

Bob Briscoe, BT
John Kaippallimalil, Huawei
Pat Thaler, Broadcom
IETF-89 Nov 2014
aim of this draft

- guidelines for writing specs to propagate ECN up to IP from:
 - L2 protocols (e.g. IEEE802, TRILL)
 - tunnelling protocols (L2TP, PPTP, GRE, VXLAN, GTP,…)
- for authors who may not be ECN experts
- scope: wire protocol, not algorithms

draft status

- intended status: best current practice
- individual draft-04, ready for WG adoption

ECN = explicit congestion notification
L2TP = layer 2 tunnelling protocol [RFC2661]
PPTP = Point-to-point Tunnelling Protocol [RFC2637]
GRE = generic routing encapsulation [RFC1701, RFC2784]
QCN = quantised congestion notification [IEEE 802.1Qau]
GTP = GPRS tunnelling protocol [3GPP TS 29.060]
context / problem

• urgency due to growing interest in ECN again
 • in recognition of the importance of low delay
 • particularly in L2 networks (backhaul, data centres) & mobile

• AQM & ECN are for queues at any layer
 • not just IP

• ECN has to be explicitly propagated
 • up the layers

• in contrast drop is easy
 • it naturally propagates up the layers

AQM = active queue management (e.g. RED, CoDel, PIE, DCTCP threshold, PCN)
a variety of arrangements

- avoid precluding L2 innovation
- must not be over-prescriptive
- guidelines for each mode
 - see draft (or spare slides)
- wide expertise needed for authoring & review
how would this draft BCP be used?

• authors of L2 & tunnel protocols often not L4 experts
• for IETF maintained protocols, e.g.
 • TRILL, L2TP, PPTP, GRE, VXLAN (in INTAREA, NVO3, ...)
 • they can be referred to this draft BCP (e.g. by IESG)
• for protocols maintained by other SDOs*
 • while considering this for BCP, and once issued as a BCP
 IAB would issue liaisons, e.g.
 – to IEEE for 802 protocols
 – to 3GPP for GTP, E-UTRAN
 – etc.

• summary: given ECN has changed IP
 • this doc sets requirements for interfacing these protocols with the new IP

this has become urgent

* SDO = Standards Developing Organisations
new in draft-04

Technical

• §5 Feed up and forward mode:
 • Added 3GPP eNodeB case, given Evolved UTRAN TS 36.300 now requires ECN marking
 • Section was previously devoted to Ethernet

Editorial

• Rearranged Introduction
 • to motivate ECN after motivating cross-layer propagation

Document is already fairly mature
Open Issues
recorded in Appendix A

• How to update all the standards track tunnelling protocols:
 • Consider whether an IETF Standard Track doc(s) will be needed to Update the IP-in-IP protocols listed in Section 4.1 – at least those that the IETF controls – and which Area/WG it should sit under.
 • [JT] “INT area not even motivated by wider tunnelling recommendations”
 • Proposed approach: BCP ECN-specific guidelines in tsvwg, plus a proposed standard RFC on tunnels (INT Area + NVO3 cross-review)

• Outstanding from previous reviews:
 • [GF] “Certain guidelines warrant MUST (NOT) rather than SHOULD (NOT). Esp:
 • If inner is a Not-ECN-PDU and Outer is CE (or highest severity congestion level), MUST (not SHOULD) drop?”
 • Proposed approach: Express overall intent, not just decap, as MUST (NOT)

• Double check: should intended status be BCP or INF?
 • Proposed approach: Contains normative statements and extrapolates approach in IP-in-IP and MPLS proposed standards, so BCP not just INF seems correct?
next steps - process

• chairs to request adoption onto tsvwg agenda

• thanks to those volunteering to review, so far:
 • Andrew McGregor
 • Wei Xinpeng
 • Richard Scheffenegger
 • Dirk Kutscher
 • Ingemar Johansson
 • (already Gorry Fairhurst reviewed draft-01 & draft-03 Intro)

• and thanks for 14+ expressions of support for adoption on list
Guidelines for Adding Congestion Notification to Protocols that Encapsulate IP

draft-briscoe-tsvwg-ecn-encap-guidelines-04

Q&A & spare slides
status of congestion notification in protocols that encapsulate IP

- IETF
 - **done:** MPLS-in-MPLS, IP-in-MPLS [RFC5129], IP-in-IP [RFC6040]
 - **to do:** trill-rbridge-options (in progress), & pass ECN thru tunnel protocols, eg. L2TP PPTP, GRE, VXLAN

- Other standards bodies:
 - **done:** QCN [802.1Qau], Frame Relay, ATM [I.371] (all subnet-local)
 - **todo:** IEEE 802.1, (802.3, 802.11), ...?
 & pass ECN thru tunnel protocols, eg. 3GPP GTP

L2TP = layer 2 tunnelling protocol [RFC2661]
GRE = generic routing encapsulation [RFC1701, RFC2784]
QCN = quantised congestion notification
GTP = GPRS tunnelling protocol - user plane [3GPP TS 29.281]
motivating example
3GPP LTE/SAE – sequence of tunnels

More than 1 tunnel between policy enforcement points.
Example: UE PDN connection traverses
\[eNB \] << S1-U >> [SGW] << S5/S8 >> [PGW].
forward and upward mode: requirements

- identifying whether transport will understand ECN
- identifying whether egress will understand ECN
- propagating ECN on encapsulation
- propagating ECN on decapsulation
- reframing issues
forward and upward mode: guidelines

• identifying whether transport will understand ECN
 • ‘ECN-capable transport’ codepoint or other approaches
• identifying whether egress will understand ECN
 • new problem
• propagating ECN on encapsulation
 • copying ECN down for monitoring purposes
• propagating ECN on decapsulation
 • combining inner & outer
• reframing issues
 • marked bytes in ≈ marked bytes out
 • timeliness – don’t hold back any remainder
the main problem: incremental deployment

- IP-ECN designed for incremental deployment

<table>
<thead>
<tr>
<th>transport supports ECN?</th>
<th>IP header</th>
<th>congested queue supports ECN?</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Not-ECT</td>
<td>drop</td>
</tr>
<tr>
<td>Y</td>
<td>ECT</td>
<td>drop</td>
</tr>
</tbody>
</table>

- if transport only understands drop
 - lower layer must not send it congestion indications
- need not mimic IP mechanism (grey)
 - but needs to achieve same outcome (white)
- also, must check egress understands ECN too

ECT = ECN-capable transport
CE = Congestion Experienced
up and forward mode guidelines

- identifying whether transport will understand ECN
 - use IP mechanism
- identifying whether egress will understand ECN
- propagating ECN on encapsulation
- propagating ECN on decapsulation
- reframing issues
- a layering violation
 - but safe if guidelines apply
backward mode

- often designed for where the subnet is the whole network
- doesn’t interwork efficiently with IP’s forwards-only mode

incoming load unchanged

backs up into L3

slows down L2

congestion f/b

not a good fit

IEEE 802.1Qau (QCN)
ATM ITU-T-I.371
Frame Relay