Reducing Internet Latency: a survey of techniques and their merits

Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael Welzl
summary

• industry roadmap of techniques
• gain vs pain
 – latency reduction against deployability

• “A Survey of Latency Reducing Techniques and their Merits”
 – 322 references
 – available via http://riteproject.eu/publications/

• evolved from BT roadmap work, but repurposed
 – a company tries to prioritise the quick wins
 – an industry also needs to identify hard problems being avoided
roadmap around body of survey I

Sources of delay and techniques for reducing latency

Structural delays § II
 - Sub-optimal routes/paths § II-A
 - Name resolution § II-B
 - Content placement § II-C
 - Network proxies and caches § II-C1
 - Client caches § II-C2
 - Prediction and latency-hiding § II-C3
 - Structured peer-to-peer § II-D1
 - Cloud server placement § II-D2
 - Cloud cache placement § II-D3
 - Virtualizing chains of network functions § II-D4

Interaction between endpoints § III
 - Transport Initialization § III-A
 - Secure session initialization § III-B
 - Building encryption into TCP § III-B2
 - Fast opening of TCP connections § III-A3
 - Application pipelining § III-A4
 - Path MTU discovery § III-A5
 - Faster transport security negotiation § III-B1
 - Bootstrapping security from the DNS § III-B3
 - Application tolerance to loss § III-C1
 - Reduce packet loss detection times § III-C2
 - Combining redundancy and retransmission § III-C3
 - Explicit congestion notification § III-C4

Packet loss recovery delays § III-C

Signal propagation delay § IV-A
 - Straighter cable paths § IV-A1
 - Higher signal velocity § IV-A2

Medium acquisition delays § IV-B
 - Higher velocity with straighter routes § IV-A3

Serialization delay § IV-C
Fig. 1. Techniques for reducing latency organized by sources of delay.
case (1a): small (20kB) flow over WAN

- QoS
- microwave
- TFO
- AQM
- DNS pre-fetch
- RTO-restart
- IW10
- sender only

For example...
- all at once
- both ends & network
- both ends
- network only
- network only

Reduction in completion time:
- 0%
- 50%
- 100%
case (1b): small (20kB) flow over LAN

for example...

- QS
- hollow fibre
- Straighter links
- CDN
- AQM
- RTO-restart
- TFO
- IW10
- DNS pre-fetch
case (2a): large flow over WAN

- Data pre-fetch
- CDN

For example... all at once, both ends & network, network only.
case (2b): large flow over LAN

Data pre-fetch

For example...
- all at once
- both ends & network
- network only
- sender only