
More Accurate ECN Feedback in TCP (AccECN)

draft-kuehlewind-tcpm-accurate-ecn-03

Bob Briscoe, BT

Richard Scheffenegger, NetApp

Mirja Kühlewind, Stuttgart Uni

IETF-90, Jul’14
Bob Briscoe’s work is part-funded by the European Community

under its Seventh Framework Programme through the

Reducing Internet Transport Latency (RITE) project (ICT-317700)

and through the Trilogy 2 project (ICT-317756

Purpose of Talk

• Introduce latest AccECN protocol spec

– awesome protocol design (IMHO)

– satisfies numerous conflicting requirements

• except not as simple as we’d have liked �

• seeking adoption, expert review and opinions

– intent: Experimental

– full spec (38pp) plus pseudocode examples,
design alternatives & outstanding issues (+17pp)

– consensus prior to implementation

2

The Problem (Recap)

Congestion Extent, not just Existence

• Current ‘classic’ ECN feedback in TCP [RFC3168]
if (any packet marked in RTT) {signal 1}

else {signal 0}

• <ironic> Imagine using a 128b field for 2 addresses
if (any bit set) {address = 1}

else {address = 0}

</ironic>

• Only ECN-for-TCP is so clunky
– TCP widely uses SACK to identify individual drops

– modern transports (DCCP, SCTCP, RTP/UDP etc) feed back extent of ECN

– need to update TCP, in its role as 1 of 2 transport protocols that work

• DCTCP feedback scheme would be nice, but:
1. new wire protocol but no negotiation

2. greatly confused by ACK loss

3. higher congestion → more ACKs

0

0123456789

1

0123456789

2

0123456789

3

01

{0 | 1}

3

CE=0 CE=1
ACK every

m pkts
with ECE=0

ACK with
ECE=1

ACK every
m pkts

with ECE=1

ACK with
ECE=0

a new problem:

feedback of bleached ECN

• erasure of ECN field to Not-ECT (00) in transit

• RFC3168 notes that this could happen

• and says it would be very bad

• but doesn’t say what to do about it

• if Not-ECT arrives at a classic ECN receiver

• it does nothing, and can do nothing

• some tests show that bleaching ECN is common

• AccECN now includes Not-ECT feedback

4

Protocol Design I

Where to find spare bits?

• Satisfied requirements with zero extra bits
– essential part: overloaded 3 existing ECN flags in main TCP header

– supplementary part: overloaded 15b in Urgent Pointer when redundant

• Non-Zero Urgent Pointer when TCP URG flag = 0?
– middlebox traversal

• seems better than for new TCP options in initial tests*

– opportunistic – not available when URG = 1
• not useful for most other protocols that need more bits

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Port no’s, Seq no’s...

Data

Offset

Res-

erved

N

S

C

W

R

E

C

E

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

Window

Checksum Non-Urgent (if URG == 0)

TCP Options...

5
* Perhaps because earlier Windows versions did not zero the Urgent Pointer when URG=0

I

Protocol Design II

2 complementary signals

• After successful capability negotiation

1. cumulative counters of the 3 ECN codepoints

2. the sequence of ECN codepoints covered by each
delayed ACK

• note: packet-based not byte-based counters

• note: pure ACKs are not counted

(there are deep questions behind both these points)

6

III

IV

V

II

Protocol Design III

Capability Negotiation

• AccECN is a change to TCP wire protocol
• only to be used if both ends support it

• client negotiates support on initial SYN
• using the 3 ECN-related TCP flags

• server sets the 3 flags accordingly on the SYN/ACK
– or it replies as the latest variant it recognises

• if nec. client downgrades to match the server

• supp. field not used until 3rd leg of handshake
• consumes no TCP option space on SYN

• if at any time supp. field = 0 → middlebox interference

SYN

N

S

=

1

C

W

R

=

1

E

C

E

=

1

SYN/ACK

N

S

=

0

C

W

R

=

1

E

C

E

=

0

7

III

Protocol Design IV

Cumulative ECN Codepoint Counters

after SYN/ACK

• Data receiver counts arriving CE, ECT(1) & Not-ECT (11, 01 & 00)*

• Selects one counter to feed back in each ACK
– encodes in the ACE field, overloading the 3 ECN flags

– encoding fits a base 4, base 3 and base 1 counter in 3 bits!

– includes 4 most significant bits of the
selected counter in the supp. field

ACE CE

(base 4)

ECT(1)

(base 3)

Not-ECT

(base 1)

000 0

001 1

010 2

011 3

100 0

101 1

110 2

111 0

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

Top-ACE

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

...

Data

Offset

Res-

erved ACE

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

...

8
* ECT(0) found from remainder and from sequence field if available

IV

Protocol Design V

ECN Sequence covered by each Delayed ACK

• ECN Sequence (ESQ) field
• encodes 2 Run-Lengths of SPaces,

each ending in one possibly different MarK

• Value of ACE selects MK2 (no need to encode in ESQ)

• Receiver sends a Delayed ACK on any of these events:
a) Max delayed ACK coverage is reached (e.g. 2 full-sized segments)

b) Delayed ACK timer expires (e.g. 500ms)

c) Pattern becomes too complex to encode

• in one ACK, it is possible to encode a sequence of:
• up to 15 segments for typical marking patterns Examples

• 3 segments for any possible marking pattern

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

RL1 RL2 SP MK1

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

ESQ Top-ACE

RL1 = 5RL2 = 2

MK1MK2

next RL1

9

VI

V

AccECN Protocol Features Summary

Requirement
Classic

ECN

ECN

Nonce
DCTCP

AccECN

Urg-Ptr

AccECN

TCP opt

AccECN

essential

Resilience + + - + + o

Timeliness o o - + + +

Integrity - o +* +* +* +*

Accuracy - - - + + +

Ordering - - + + + -

Complexity ++ + o - - o

Overhead ++ o o + o ++

Compatibility o o - o - o

* = compatible with an independent zero-overhead integrity solution
10

Opportunistic but not Presumptuous?

• Presumptuous to reassign Urgent Pointer experimentally?

• While experimental:
• use a TCP option for the supplementary part

• Reserved 15b in Urgent Pointer
– to use if this progresses to standards track

• Experimental implementations required to recognise either location

• AccECN still ‘works’ if TCP option is cleared or discarded
0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Port no’s, Seq no’s...

Data

Offset

Res-

erved

N

S

C

W

R

E

C

E

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

Window

Checksum Urgent Pointer

TCP Options...

Kind = 0xKK Length = 4 Supplementary AccECN

TCP Options...

11

Interaction with other TCP variants

• Server can use AccECN with SYN Cookies
• capability negotiation can be inferred

• AccECN compatible with main TCP options:
• Max Segment Size (MSS)

• Timestamp

• Window Scaling

• Selective ACKs (SACK)

• Authentication Option (TCP-AO)

• TCP Fast Open (TFO)

• Multipath TCP (MPTCP)

• AccECN consumes no option space on the SYN
– even when deployed experimentally as a TCP option

12

Open Design Issues

1. Could simplify by removing sequence (ESQ) feedback entirely?

– Instead require the receiver to disable delayed ACKs?
• during slow-start (Linux receiver does this heuristically)?

• requested by the sender?

– But, is ACKing every segment acceptable?

2. Could simplify by using Urgent Pointer for experimental protocol?

• See Appendix C of draft, for these and 7 other more detailed issues

13

ESQ Top-ACEx?

Alternative Design Choices

Roughly highest importance first

• Earlier ECN feedback (on SYN/ACK)

• Remote Delayed ACK Control

• Earlier ECN fall-back (on SYN/ACK)

• Shave 1 bit off ECN sequence field

See Appendix B of draft

where to draw the line?

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

D
A
C

ESQ Top-ACE

14

summary & next steps

• awesome protocol design (IMHO)
– capability negotiation and 3 counters in 7b

• even works in 3b, if middlebox clears other 4b

– sequence of up to 15 x 4 codepoints in 10b
• most likely of 230 combinations in a 210 space

– zero (extra) header bits

• still room for improvement
– draft written to support consensus process

– fully specified protocol, but also...

– a container for design alternatives & issues

• adoption call please

15

Requirement
AccECN

Urg-Ptr

Resilience +

Timeliness +

Integrity +

Accuracy +

Ordering +

Complexity -

Overhead +

Compatibility o

More Accurate ECN Feedback in TCP (AccECN)

Requirements

draft-ietf-tcpm-accecn-reqs-06

Proposed Protocol Spec

draft-kuehlewind-tcpm-accurate-ecn-03

Q&A

spare slides

Protocol Design VI

ECN Sequence covered by each Delayed ACK

• SPace or MarK1 can be any of:
N: Not-ECT (00)

0: ECT(0) (10)

1: ECT(1) (01)

C: CE (11)

• Examples

a) 1 0 0 0 0 C 0 0 0 0 0

b) 0 0 C C C

c) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d) C 0 0 0 0 C

e) N N

0

0 1 2 3 4 5 6 7 8 9

1

0 1

RL1 RL2 SP MK1

0

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

ESQ Top-ACE

6 4 0 C1

4 0 C 00

7 7 0 00

1 4 0 CC

0 1 N [0]N

ACE

17

VI

Protocol Features
detailed explanations

• Resilience
• DCTCP confused by ACK loss

• Timeliness
• Classic ECN: only timely once per RTT

• DCTCP is always 1 transition behind

• Integrity
• ECN nonce: relies on receiver incriminating itself

• DCTCP & AccECN compatible with approach in draft-moncaster-tcpm-rcv-cheat

• Accuracy
• DCTCP lack of resilience impacts accuracy

• Ordering
• ‘AccECN essential’ is the fall-back when a middlebox clears the sequence field

• Complexity
• Hard to quantify

• Overhead
• ECN Nonce marked down because it consumes the last ECN-IP codepoint

• AccECN Urg-Ptr marked down because it prevents others using the Urgent Pointer

• Compatibility
• Class ECN has had continuing problems with middlebox traversal

• DCTCP is unsafe to interoperate with other TCP variants

• ‘AccECN Urg-Ptr’ seems good at traversal, but more experiments needed

• ‘AccECN TCP opt’ unlikely to traverse middleboxes that wipe TCP options
18

Requirement
Classic

ECN

ECN

Nonce

DC

TCP

AccECN

Urg-Ptr

AccECN

TCP opt

AccECN

essential

Resilience + + - + + o

Timeliness o o - + + +

Integrity - o +* +* +* +*

Accuracy - - - + + +

Ordering - - + + + -

Complexity ++ + o - - o

Overhead ++ o o + o ++

Compatibility o o - o - o

