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The Slow-Start Dilemma
● The more a flow accelerates
● The greater the overshoot of queuing delay

● before the sender can notice one round trip later

● This is the received wisdom from slow-start in TCP
● but it's a general dilemma for any capacity-seeking e2e transport:

● It's possible to sense when to stop earlier, using delay
● but then it takes longer to converge (e.g. hybrid slow-start)

● Paced Chirping escapes this dilemma



  

Flow completion time and queue spike plots

● Intensity is mean flow inter-arrival time (Exp. distributed) [ms]



  

Applicability

● Solely delay-based, to be applicable to the Internet
● cannot rely on special logic (AQM, ECN, etc.) at every possible bottleneck

● Most interesting where Q delay already ultra-low 
('cos adds max 2-3ms1 pulses to queuing delay already present):

● low latency with congestion control like DCTCP
isolated from Classic TCP, e.g.

– Data Centre2

– Internet with L4S DualQ Coupled AQM @bottleneck

● These are the environments we're interested in
● but from limited testing it seems applicable to the general Internet too
● try it for your environment – open sourced

                    
1 Over a 20ms base RTT path at 120Mb/s
2 Can use shallow buffers without loss

AQM: Active Queue Management
ECN: Explicit Congestion Notification
DCTCP: Data Centre TCP
L4S:  Low Latency Low Loss 

Scalable throughput

AQM: Active Queue Management
ECN: Explicit Congestion Notification
DCTCP: Data Centre TCP
L4S:  Low Latency Low Loss 

Scalable throughput



  

Caveats

● This is research, not production-ready
● We've focused on proving the concept
● Many open issues for investigation / solution

● Listed at end, but main ones are:

1) Delayed ACKs & ACK thinning
2) Bursty MACs and schedulers
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Approach (1/3)

● Packet chirps
● continually pulse queue by a few packets, then relax

● Samples available (and max) capacity
● available: rate where ACKs spread from sent pattern (see next slide)

(after filtering noise within chirp)
● max: ACK rate of last 2 packets

● Maximizes ratio of capacity-information-rate to harm (queue delay)
● run each (per chirp) measurement through EWMA
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Using chirps to measure available capacity

Resulting per-packet rate arriving at receiverResulting per-packet rate arriving at receiver

Per-packet rate leaving sender

● This example measures constant available capacity
● Code to interpret chirps filters noise to measure varying available capacity



  

Approach (2/3): paced chirps

● Avg rate of each chirp depends on EWMA of available 
capacity measured in previous rounds

● Noisy, but increasingly frequent measurements
● Queue delay solely depends on chirp geometry
● Notice, chirp length reduces

●  as available capacity measured in last round increases
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Approach (3/3): adaptive gain

● Growth in #chirps per RTT depends on a gain variable
● the more stable the measurements, the more gain increases (squeeze guard interval) 

● Push-in a little harder than available capacity grows:
● other flows yield
● goal: activity-triggered link scheduler expands per-user capacity

● Still, queue delay solely depends on chirp geometry, not gain
● When to shift from paced chirps to ACK clocking?

● when chirps fill the round trip
● or …? (to be determined, perhaps using ECN for extra precision?)
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A Whole Short Flow

● Inter-receive gap measured at sender using ACKS



  

Outcome

● Fast convergence

● Low queueing delay
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Discussion

● Slow Start vs. Pacing – 2 extremes:
● sending 2 pkts per ACK is a great way to build a queue 
● pacing at constant rate, increasing each round trip 

– if slightly below capacity: 
a great way to get no info about capacity at all

– if slightly above capacity: 
a great way to build a huge queue

● Line-rate Burst vs. Chirp
● chirp measures available capacity (and max)
● ACK-rate from a burst only measures max capacity

– Intuition
● chirp fits increasing amount between existing pkts, 

and measures its ACK-rate when a queue started to build
● burst squeezes as much as possible between existing packets, 

and its ACK-rate measures how fast the resulting queue drained



  

Where Paced Chirping Fits (1/2)

● No need to chirp during stable periods of congestion 
avoidance

● each chirp is a signal for the sender, but noise for other flows
– chirping elephants just confuse mice

● using ACK clock reduces timer burden on servers
(large majority of packets are sent in steady state)

● So, goal of paced chirping: “Do one thing and do it well” 
● reach smooth transition to closed loop (ACK-clocking, ECN, etc.)



  

DCTCP any rate
v = 2

Where Paced Chirping Fits (2/2)
● A building block, to replace all the instances of open loop capacity seeking:

● flow start
● re-start after idle
● when congestion avoidance goes open-loop, 

e.g. another flow ends, radio capacity increases

● Future work: with Scalable CC, e.g. TCP Prague, DCTCP, etc.
● after 2 round trips without ECN-marks
● start paced chirps to rapidly find new operating point

● Infeasible with unscalable CC, e.g. 500-1000 round trips for Cubic @800Mb/s
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Much Further Work Needed

● Research
● Termination condition – when to stop pushing in
● Improving noise filtering & precision of chirps

– esp. for bursty MACs: LTE/5G, DOCSIS, GPON

● Exploiting ECN if available
● Initial avg. gap for a wide range of possible networks
● Evaluation over much wider range of conditions & iterate design

– much lower/higher BDP, hi as well as lo stat. mux. bottlenecks, etc.

● Engineering
● Delayed ACKs & ACK thinning
● Handling loss, reordering during slow start
● TFO when RTT estimate is stale in the first RTT
● Apply the idea from QUIC where a stretch ACK lists arrival times



  

Design Contributions (1/2)

● Queue is independent of scale
● depends solely on geometry of chirp, not on pkts per RTT

● Achieved by the guard interval betw. each chirp
● if estimate of available capacity were perfect

– back-to-back chirps should build a few pkts of Q, then relax it

● guard interval allows for error in the estimation
– the more consistent available capacity measurements are
– the faster the guard-interval can shrink
– and the faster the congestion window can grow



  

Design Contributions (2/2)
● Paced chirping is continually crafting the packets it sends

● around its measurements in previous rounds
● while allowing for the possibility of change and error

● It is simultaneously
● evolving its estimate of available capacity
● sending packets at a spread of rates around this
● sampling at multiple points across each round trip time
● pushing back possible competing traffic
● tracking variability of its measurements
● reducing its guard interval accordingly
● and therefore increasing its window

● Paced chirping shrinks the measurement-response loop
● it makes flow-start closed-loop 



  

Contributions to Experimentation

● Open sourced
● github.com/JoakimMisund/PacedChirping

● Implementation in Linux
● based on internal pacing in 4.13 kernel (earliest with internal pacing)
● added kernel support for list of inter-packet times
● paced chirping kernel module

● Advice on how to suppress certain kernel assumptions
● disabled kernel pacing rate calculation
● made it possible to hide CE marks from the TCP stack

● Published initial evaluation
● “Rapid Acceleration in TCP Prague”, Masters Thesis of Joakim Misund 

(University of Oslo)  (May 2018).

https://github.com/JoakimMisund/PacedChirping
https://riteproject.files.wordpress.com/2018/07/misundjoakimmastersthesissubmitted180515.pdf


  

Summary

● TCP slow-start is mimicked in most transport 
protocols

● an open loop phase characterized by arbitrary numbers

● Paced chirping
● closes the open loop – frequent startup information
● queue delay solely depends on geometry of each chirp,

not pace of chirps
● Aims to maximize ratio: ( capacity-information-rate / harm )

● Initial research
● much more testing and development to do
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Delayed ACKs & ACK thinning

● Could put arrival times in ACKs (as in QUIC)
● Could introduce a 1-bit option for sender to request quickacks
● Failing either, we need rcvr to suppress delayed ACKs during SS

● Linux rcvr quickacks during SS
● but paced chirping confuses its heuristics



  

Measuring Available Capacity using Chirps
● Find inter-packet gap where path delay starts to persistently 

increase

1) Record each inter-packet path delay increase
Δqn = qn – qn-1

where q = tsrcv – tssnd; ts are timestamps; and n is the packet number

2) Ideally one-way delay: timestamp each packet:
● when sent (not when scheduled to send)
● when received

– in practice use when ACK rec'd (round trip delay)

3) Filter out noise. Simple example filter:
● only count an increasing trend of more than L packets

to count as an increase, 
● default: L=5, F=1.5

Δqq>
maxi=1

n
(Δqqi)

F



  

Linux Pacing Framework

modifications in red



  

Linux kernel 
Structure to set up per-packet rates



  

Escaping the Slow-start dilemma

● Probably broken version of BBR over v4.13 kernel



  

Higher intensity;
Paced Chirping needs a better termination condition
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