

Flow-start: Faster and Less Overshoot
with Paced Chirping

Joakim Misund, Simula and Uni Oslo
<joakim.misund@gmail.com>

Bob Briscoe, Independent
<research@bobbriscoe.net>

IRTF ICCRG, Jul 2018

The Slow-Start Dilemma
● The more a flow accelerates
● The greater the overshoot of queuing delay

● before the sender can notice one round trip later

● This is the received wisdom from slow-start in TCP
● but it's a general dilemma for any capacity-seeking e2e transport:

● It's possible to sense when to stop earlier, using delay
● but then it takes longer to converge (e.g. hybrid slow-start)

● Paced Chirping escapes this dilemma

Flow completion time and queue spike plots

● Intensity is mean flow inter-arrival time (Exp. distributed) [ms]

Applicability

● Solely delay-based, to be applicable to the Internet
● cannot rely on special logic (AQM, ECN, etc.) at every possible bottleneck

● Most interesting where Q delay already ultra-low
('cos adds max 2-3ms1 pulses to queuing delay already present):

● low latency with congestion control like DCTCP
isolated from Classic TCP, e.g.

– Data Centre2

– Internet with L4S DualQ Coupled AQM @bottleneck

● These are the environments we're interested in
● but from limited testing it seems applicable to the general Internet too
● try it for your environment – open sourced

1 Over a 20ms base RTT path at 120Mb/s
2 Can use shallow buffers without loss

AQM: Active Queue Management
ECN: Explicit Congestion Notification
DCTCP: Data Centre TCP
L4S: Low Latency Low Loss

Scalable throughput

AQM: Active Queue Management
ECN: Explicit Congestion Notification
DCTCP: Data Centre TCP
L4S: Low Latency Low Loss

Scalable throughput

Caveats

● This is research, not production-ready
● We've focused on proving the concept
● Many open issues for investigation / solution

● Listed at end, but main ones are:

1) Delayed ACKs & ACK thinning
2) Bursty MACs and schedulers

0 2 4 6 8 10 12
0

10

20

30

40

50

60

16-packet chirp

Geometry = 2

Time [ms]

In
te

r-
p

a
ck

e
t r

a
te

 [M
b

/s
]

Approach (1/3)

● Packet chirps
● continually pulse queue by a few packets, then relax

● Samples available (and max) capacity
● available: rate where ACKs spread from sent pattern (see next slide)

(after filtering noise within chirp)
● max: ACK rate of last 2 packets

● Maximizes ratio of capacity-information-rate to harm (queue delay)
● run each (per chirp) measurement through EWMA

1*
m

in
G

ap
2*

m
in

G
ap

3*
m

in
G

ap

Using chirps to measure available capacity

Resulting per-packet rate arriving at receiverResulting per-packet rate arriving at receiver

Per-packet rate leaving sender

● This example measures constant available capacity
● Code to interpret chirps filters noise to measure varying available capacity

Approach (2/3): paced chirps

● Avg rate of each chirp depends on EWMA of available
capacity measured in previous rounds

● Noisy, but increasingly frequent measurements
● Queue delay solely depends on chirp geometry
● Notice, chirp length reduces

● as available capacity measured in last round increases

time [RTT]
1

round

2

3

4

1

5

1/20

5

8 8

16 16

16 16 16 16

0 2 4 6 8 10 12
0

10

20

30

40

50

60

Approach (3/3): adaptive gain

● Growth in #chirps per RTT depends on a gain variable
● the more stable the measurements, the more gain increases (squeeze guard interval)

● Push-in a little harder than available capacity grows:
● other flows yield
● goal: activity-triggered link scheduler expands per-user capacity

● Still, queue delay solely depends on chirp geometry, not gain
● When to shift from paced chirps to ACK clocking?

● when chirps fill the round trip
● or …? (to be determined, perhaps using ECN for extra precision?)

time [RTT]
1

round

2

3

4

1

5

1/20

5

8 8

16 16

16

exponent = 2

exponent = 2.516 16 16 16
guard

interval

A Whole Short Flow

● Inter-receive gap measured at sender using ACKS

Outcome

● Fast convergence

● Low queueing delay

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

16-packet line-rate burst

Time [ms]

In
te

r-
p
a
ck

e
t r

a
te

 [M
b
/s

]

0 2 4 6 8 10 12
0

10

20

30

40

50

60

16-packet chirp

Time [ms]

In
te

r-
p
a
ck

e
t r

a
te

 [M
b
/s

]

Discussion

● Slow Start vs. Pacing – 2 extremes:
● sending 2 pkts per ACK is a great way to build a queue
● pacing at constant rate, increasing each round trip

– if slightly below capacity:
a great way to get no info about capacity at all

– if slightly above capacity:
a great way to build a huge queue

● Line-rate Burst vs. Chirp
● chirp measures available capacity (and max)
● ACK-rate from a burst only measures max capacity

– Intuition
● chirp fits increasing amount between existing pkts,

and measures its ACK-rate when a queue started to build
● burst squeezes as much as possible between existing packets,

and its ACK-rate measures how fast the resulting queue drained

Where Paced Chirping Fits (1/2)

● No need to chirp during stable periods of congestion
avoidance

● each chirp is a signal for the sender, but noise for other flows
– chirping elephants just confuse mice

● using ACK clock reduces timer burden on servers
(large majority of packets are sent in steady state)

● So, goal of paced chirping: “Do one thing and do it well”
● reach smooth transition to closed loop (ACK-clocking, ECN, etc.)

DCTCP any rate
v = 2

Where Paced Chirping Fits (2/2)
● A building block, to replace all the instances of open loop capacity seeking:

● flow start
● re-start after idle
● when congestion avoidance goes open-loop,

e.g. another flow ends, radio capacity increases

● Future work: with Scalable CC, e.g. TCP Prague, DCTCP, etc.
● after 2 round trips without ECN-marks
● start paced chirps to rapidly find new operating point

● Infeasible with unscalable CC, e.g. 500-1000 round trips for Cubic @800Mb/s

W
,

w
in

do
w

20ms round trips

1,000250 500 750 1,250 1,500 1,750 2,000

Cubic 100 Mb/s
v=1/250

Cubic 800 Mb/s
v= 1/500

DCTCP any rate
v = 2

v : number of congestion
signals per round trip

v : number of congestion
signals per round trip

Much Further Work Needed

● Research
● Termination condition – when to stop pushing in
● Improving noise filtering & precision of chirps

– esp. for bursty MACs: LTE/5G, DOCSIS, GPON

● Exploiting ECN if available
● Initial avg. gap for a wide range of possible networks
● Evaluation over much wider range of conditions & iterate design

– much lower/higher BDP, hi as well as lo stat. mux. bottlenecks, etc.

● Engineering
● Delayed ACKs & ACK thinning
● Handling loss, reordering during slow start
● TFO when RTT estimate is stale in the first RTT
● Apply the idea from QUIC where a stretch ACK lists arrival times

Design Contributions (1/2)

● Queue is independent of scale
● depends solely on geometry of chirp, not on pkts per RTT

● Achieved by the guard interval betw. each chirp
● if estimate of available capacity were perfect

– back-to-back chirps should build a few pkts of Q, then relax it

● guard interval allows for error in the estimation
– the more consistent available capacity measurements are
– the faster the guard-interval can shrink
– and the faster the congestion window can grow

Design Contributions (2/2)
● Paced chirping is continually crafting the packets it sends

● around its measurements in previous rounds
● while allowing for the possibility of change and error

● It is simultaneously
● evolving its estimate of available capacity
● sending packets at a spread of rates around this
● sampling at multiple points across each round trip time
● pushing back possible competing traffic
● tracking variability of its measurements
● reducing its guard interval accordingly
● and therefore increasing its window

● Paced chirping shrinks the measurement-response loop
● it makes flow-start closed-loop

Contributions to Experimentation

● Open sourced
● github.com/JoakimMisund/PacedChirping

● Implementation in Linux
● based on internal pacing in 4.13 kernel (earliest with internal pacing)
● added kernel support for list of inter-packet times
● paced chirping kernel module

● Advice on how to suppress certain kernel assumptions
● disabled kernel pacing rate calculation
● made it possible to hide CE marks from the TCP stack

● Published initial evaluation
● “Rapid Acceleration in TCP Prague”, Masters Thesis of Joakim Misund

(University of Oslo) (May 2018).

https://github.com/JoakimMisund/PacedChirping
https://riteproject.files.wordpress.com/2018/07/misundjoakimmastersthesissubmitted180515.pdf

Summary

● TCP slow-start is mimicked in most transport
protocols

● an open loop phase characterized by arbitrary numbers

● Paced chirping
● closes the open loop – frequent startup information
● queue delay solely depends on geometry of each chirp,

not pace of chirps
● Aims to maximize ratio: (capacity-information-rate / harm)

● Initial research
● much more testing and development to do

Flow-start: Faster and Less Overshoot
with Paced Chirps

Q&A
and

Spare Slides

Delayed ACKs & ACK thinning

● Could put arrival times in ACKs (as in QUIC)
● Could introduce a 1-bit option for sender to request quickacks
● Failing either, we need rcvr to suppress delayed ACKs during SS

● Linux rcvr quickacks during SS
● but paced chirping confuses its heuristics

Measuring Available Capacity using Chirps
● Find inter-packet gap where path delay starts to persistently

increase

1) Record each inter-packet path delay increase
Δqn = qn – qn-1

where q = tsrcv – tssnd; ts are timestamps; and n is the packet number

2) Ideally one-way delay: timestamp each packet:
● when sent (not when scheduled to send)
● when received

– in practice use when ACK rec'd (round trip delay)

3) Filter out noise. Simple example filter:
● only count an increasing trend of more than L packets

to count as an increase,
● default: L=5, F=1.5

Δqq>
maxi=1

n
(Δqqi)

F

Linux Pacing Framework

modifications in red

Linux kernel
Structure to set up per-packet rates

Escaping the Slow-start dilemma

● Probably broken version of BBR over v4.13 kernel

Higher intensity;
Paced Chirping needs a better termination condition

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

