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ABSTRACT     – Ideally, everyone should be free to use 
as much of the Internet resource pool as they can take. 
But, whenever too much load meets too little capacity, 
everyone's freedoms collide. We show that attempts to 
isolate users from each other have corrosive side-effects - 
discouraging mutually beneficial ways of sharing the 
resource pool and harming the Internet's evolvability. We 
describe an unusual form of traffic policing which only 
pushes back against those who use their freedom to limit 
the freedom of others. This offers a vision of how much 
better the Internet could be. But there are subtle aspects 
missing from the current Internet architecture that 
prevent this form of policing being deployed. This paper 
aims to shift the research agenda onto those issues, and 
away from earlier attempts to isolate users from each 
other.  

1. INTRODUCTION 
Resource pooling allows separate resources to appear as 
one larger resource, giving resilience and efficiency gains. 
Recently it has been noted [1] that the history of 
communications has seen advances in resource pooling 
over more and more dimensions.  
• Packet switching allows each link to act as a pool for 

packets from many separate sessions instead of needing 
one circuit per session.  

• Packets can be time-shifted into a continuous time pool 
by utilising a buffer at a link rather than using time slots. 

• Multipath routing pools together separate links into one 
network resource [9]. 

• Network coding pools multiple messages into fewer 
messages over a pool of links [8].  

• With swarming downloads (e.g. BitTorrent) each receiver 
pools multiple peers sending the same data into one data 
source; and it pools the network paths from these peers. 

By design, the public Internet gives everyone the freedom 
to use as large a share as they can take of any network 
equipment in the world, as often as they want. It is the 
classic pooled (or cloud) resource. This freedom has 
fostered an amazing array of inventive new uses for 
computers and communications.  

Although pooling can make maximal use of available 
resources, congestion still results if too much pooled load 
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meets too little pooled capacity. When any one customer's 
freedom to use the pool starts to limit the freedom of others 
we have no principled way to resolve the resulting 
conflicts. As we shall see, the cause turns out to be a subtle 
lack of architectural support.  

In the eighties, over provisioning and voluntary restraint 
allowed the problem of resource accountability to be last in 
the list of requirements for the Internet architecture [4]. 
But, in today's primarily commercial deployment, lack of 
architectural support for resolving conflicts over pooled 
resources is fuelling an 'arms race'. 

ISPs want to prevent a few customers hogging the whole 
resource pool when it is congested. Otherwise everyone 
assumes the ISP has grossly under-supplied capacity. So as 
each new way is found to pool resources, new piecemeal 
constraints are invented to 'unpool' usage into pieces that 
ISPs know how to control (we survey the most influential 
approaches in §3). This becomes a vicious cycle and it is 
becoming increasingly hard to invent a new use for the 
Internet that can also pick its way through the trail of 
throttles and blocks resulting from this arms race. 
Everyone's freedom to shift around what should be a 
general purpose resource pool is gradually being stifled. 

Everyone's usage should be able to range freely over all 
dimensions of the resource pool and only be constrained 
when they restrict the freedom of others. Any usage should 
also be free not to yield to other usage, but the pressure to 
yield should increase the more congestion it experiences, 
and the longer this congestion persists. We are not saying 
ISPs ought to provide such an unconstrained service, but 
the architecture shouldn't prevent them doing so. 

To this end, this paper uses a familiar conceptual device – a 
token bucket – but in an unfamiliar way. It controls the 
'congestion bit rate' of a customer, rather than their actual 
bit rate. Readers will be familiar with token buckets that 
discard packets that locally exceed the token rate and burst 
size. Instead the proposed policer solely counts the subset 
of packets that are congestion marked. Its token rate and 
burst size then places an overall limit on how much 
congestion packets traversing it can cause everywhere else 
– when all taken together regardless of flows.  

In the body of the paper we give an example where one 
customer accesses multiple remote sites using multiple 
flows, with all congestion-marked packets being counted by 
the congestion policer. As congestion rises for a subset of 
the flows, the policer makes it advantageous to have a 



transport that shifts more traffic onto less congested paths 
[1], which is feasible if all the remote sites are serving the 
same data (e.g. using BitTorrent) or multiple paths are 
being used to the same service. If however some flows can 
only use those paths with rising congestion, the policer 
gives them no choice but to reduce their rate.  

Thus, as well as limiting the total cost (congestion) that one 
customer can cause others, this simple bulk policer ensures 
each flow exhibits a dynamic response to congestion, but 
without policing each flow. Not all applications have to 
respond quickly to congestion, as long as the overall 
response is sufficient. If it isn't, the policer will eventually 
force even inelastic flows to terminate. 

Note that we are not proposing this policer as an essential 
piece of the Internet architecture. It is a simple (albeit 
effective) example of what ISPs ought to be able to do, but 
currently cannot because the Internet architecture prevents 
them. The aim is to use this policer to focus the research 
agenda on the architectural changes needed to resolve 
conflicts within the Internet  resource 'cloud'. 

Next we present the target architecture we believe is 
required for congestion policing to be feasible. Then we 
place our work in the context of other influential ways to 
police network traffic. In §4 we introduce the details of the 
policer itself. In §5, we describe how policing congestion in 
bulk encourages individual flows to respond to congestion. 
We defer discussion to §6, before concluding.  

2. TARGET ARCHITECTURE  
• We avoid locating any mechanism at network resources 

themselves for resolving usage conflicts. Otherwise, each 
resource would have to check how much each customer 
was using every other resource in the pool; 

• Instead, policing is located at the 'enforcement point' 
where a customer attaches (Fig.1); 

• To police congestion experienced elsewhere, we need 
remote congestion to be visible in network layer headers;  

• To do this we need every resource to randomly mark 
packets as it approaches congestion (explicit congestion 
notification or ECN [13]);  
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Fig. 1 – A set of congestion policers protecting  

all the entrances to a resource pool 

• ECN reveals remote congestion to policers at the exits of 
the resource pool. Policers at the entrances can see 
remote congestion by making packet delivery conditional 

on the sender also marking packets with the congestion it 
expects on the rest of the path (re-ECN [3]).  

• To be concrete, we assume policing at every entrance 
(Fig 1), then §6.4. compares it with policing on exit.. 

• The literature [3] explains how to use congestion revealed 
in packets for inter-domain traffic contracts; 

• Only the overall traffic of each customer is policed; 
• Making individual flows conform to a given congestion 

response is a non-goal; it would prevent evolution of 
perfectly reasonable new behaviours that shift the duty of 
responding to congestion around the pool of usage; 

• There is no need to identify or to trust remote endpoint 
identifiers like source IP addresses and port numbers. 
Even if virtual customers share the same physical 
attachment, only locally assigned identifiers need to be 
trusted (link-local IDs like L2TP or VPNs).  

This architecture polices packets not flows. It can only do 
this by adding information about remote congestion to 
network layer headers, which makes each packet 
sufficiently self-contained to be accountable. This is 
feasible because congestion is a property of every bit in 
each packet, unlike bit-rate which is meaningless below 
flow granularity. Once packets are accountable, in turn 
those who transfer them into (or out of) the resource pool 
can be made accountable–locally at their attachment point. 

This architecture currently only improves resource pooling 
for ECN-capable packets. This places a new question on 
the research agenda: To support resource accountability 
should the network include some aspect of loss detection, 
rather than leaving it solely to endpoint transports? 

3. RELATED WORK 
Table 1 displays some of the most influential approaches 
for policing Internet resource usage, arranged along a 
spectrum that characterises how flexible each approach is 
to resource pooling. Each is further characterised by what 
'Metric' it uses to judge excessive usage and what 
'Constraint' it places on usage when the metric rises.  

In terms of flexibility to pool resources, the critical feature 
of each approach is the granularity at which it applies 
metering and policing ('/customer', '/source', '/link', etc). 
The term 'per customer' doesn’t mean 'per user' but 'per 
locally attached contractual entity'. The customer 
relationship need not be commercial. The term customer 
includes customers with many users. 'Per link' means that 
usage conflicts are resolved at each bottleneck link (not 
necessarily all links, just those likely to congest). For 
brevity, we will only discuss some rows of the table.  

Voluntary restraint  is exercised in the current Internet by 
application developers who choose to use a congestion 
responsive transport like TCP. In an unpublished 'survey of 
14 surveys' (2003-6) we found that TCP comprises 73%-
94% of traffic. But some customers can run more TCP 
sessions than others and for much more of the time, so it is 
a fallacy that prevalent use of TCP implies anything about 



fair, equitable sharing of capacity. It implies only that a 
voluntary dynamic response to congestion is still prevalent. 

Name Metric Constraint Flexibility 
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constrained 
↓ 

(W)FQ 
-ditto- but /flow 
/link 

-ditto- but /flow /link 

bottleneck         
flow policer 

rate share 
/flow /link 

rate cap /flow /link 

both & 
neither 

Table 1 – Spectrum of policing approaches 

Congestion pricing involves deployment of ECN then 
charging for the volume of packets marked 'congestion 
experienced'. It is structurally very similar to the congestion 
policing scheme of this paper. Gibbens & Kelly wanted to 
allow applications to evolve without specific constraints on 
how they should respond to congestion, but within an 
overall economic incentive to cause no more congestion 
than you would be prepared to pay for [7]. 

Congestion policing is the focus of this paper. We show it 
can provide the same incentives as dynamic congestion 
pricing with the same clean engineering simplicity. But we  
want ISPs to be free in their choice of pricing model, 
including flat fees. So we follow the advice of Odlyzko, 
who gathered evidence across many market sectors to show 
that, on short timescales, customers prefer rationing of 
supply to dynamic variation in price [11]. Congestion 
pricing gives people too much freedom – they worry they 
will spend more than they have budgeted for.  

Volume is used as the metric in the next three rows of the 
table.  Unlike congestion, using volume doesn't produce 
particularly correct incentives, but it is currently a 
pragmatic alternative, given ECN is not widely deployed 
and the Internet architecture wasn't designed for remotely 
detecting losses in the network layer. 
Counting only peak volume would better approximate 
congestion. However, this still counts traffic on 
uncongested paths as much as on congested paths. Also, the 
majority of traffic in a network is in the large transfers, but 
accounting for volume gives them no incentive to back 
away during peaks in congestion, whereas accounting 
directly for congestion does. If a large transfer gave short 
flows the space to go faster they would finish much earlier, 
freeing up capacity sooner for the long-running traffic. So 

accounting for congestion makes the network appear very 
fast for interactive traffic without affecting the completion 
time of larger transfers. Whereas accounting for volume 
gives no incentive for traffic to re-arrange itself along the 
time dimension of the resource pool. 

Fair queuing (FQ) [10], which may be weighted (WFQ), 
divides up a link's instantaneous rate into equal (or 
weighted) proportions, but only among those sources that 
are currently sending. So if there are 200 possible sources 
but only 5 are active, they will get 1/5 of the capacity. If 
some of the active sources send a lot more than others, 
(W)FQ grows their own queue rather than encroaching on 
the shares of others. But, if more sources become active, 
(W)FQ reduces everyone's share – in our example it 
guarantees each source 1/200 in the worst case. 
Sources that are infrequently active share a link much more 
efficiently than high activity factor sources, but (W)FQ 
gives no credit for a low activity factor. Prior inactivity 
entitles you to no more than if you had been permanently 
active. By not recognising the time dimension of the 
resource pool, (W)FQ doesn't encourage activity to shift in 
time to avoid other activity, even though a lot of 
applications can do this, either shifting by seconds 
(buffering) or by hours (e.g. into the night). 
Of course, the original goal of FQ was to isolate users from 
each other. We are not implying this is never a worthwhile 
goal. Our aim is merely to highlight that isolation hides 
opportunities for valuable co-operation. 

Two proposed approaches at per flow granularity are 
shown at the bottom of the table. Demers et al proposed 
that fair queuing would be more appropriate per flow than 
per source, as large sources (e.g. servers) deserved a 
greater share [5]. However, the authors recognised that any 
host could increase its link share without bound by opening 
connections with multiple other endpoints.  

Despite this well-known flaw, research proposals to police 
on a per-flow basis have continued [6, 12]. These per-flow 
approaches constrain each flow too much and all flows too 
little. They proscribe reasonable transport designs where 
flows use the flexibility of the resource pool while doing 
nothing at run-time to prevent the set of a customer's flows 
overloading the resource pool [2]. 

4. POLICING CONGESTION  
A system will encourage optimal behaviour if all the costs 
each individual causes others to suffer are reflected back on 
that individual. The challenge we set ourselves is to do this 
without unpredictable bills.  

We set the constraint that the customer pays a flat monthly 
fee to its ISP. This funds a constant rate, w, of congestion 
tokens filling a bucket (Fig 2)  – ISPs may give customers 
the choice between different values of w. Unlike with a 
classic token bucket, only congestion marked packets 
consume tokens. So tokens are not consumed based on the 



amount of traffic sent, but on the amount of congestion the 
traffic causes, which ensures the customer suffers the cost 
of its behaviour on others. If the policed customer 
generates flows i=1..N, each of throughput xi(t) over a path 
experiencing congestion pi(t), the bucket empties at a rate 
∑ pi(t)·xi(t), which we will call the congestion bit rate (a 
classical token bucket would consume tokens at rate 
∑ xi(t)). The depth β of the bucket allows the customer to 
cause bursts of congestion, allowing for fluctuations in 
network conditions, and in the customer's own needs. 

w

xi , piΣΣΣΣi xi · pi

ββββ

 
Fig. 2. A congestion policer can be implemented simply as a 

modified token bucket 

So long as the customer stays below its congestion 
allowance, the policer merely monitors the congestion bit 
rate passively. But whenever the congestion bit rate empties 
the bucket, the policer penalises the aggregate it monitors. 
The penalty can take different forms: packets may be 
delayed or dropped. Dropping traffic keeps the congestion 
bit rate within the allowance and gives customers the 
strongest incentive to control their congestion bit rate 
themselves. The policer might transition smoothly from 
passive monitoring to actively penalising traffic. However, 
initial analysis suggests a smooth transition serves no 
purpose, though further research is required to confirm this.  

5. IMPACT OF THE POLICER  
5.1 Impact on the flows of the policed customer  

One of the key features of the congestion policer is that it 
doesn’t enforce a specific response to congestion per flow. 
Each flow is free to use any congestion response so long as 
all flows together don't cause the overall congestion bit rate 
of the customer to exceed the allowance given.   

To explain, let’s first imagine a policer configured to allow 
only an unrealistically low congestion bit-rate. Fig. 3 
illustrates the effect of such a policer on a single long-
running flow: either a TCP flow (congestion response: yTCP) 
or a constant bit-rate flow (congestion response: yCBR). If 
congestion increases enough, and the flow runs at a high 
enough rate for long enough, the sustained high congestion 
bit rate will empty the bucket. The policer will then 
override the congestion response of the flow so that the 
congestion bit rate equals the allowance (p.ypoliced(p)=w) 
which gives the shape of the congestion response imposed 
by the policer:   ypoliced(p)=w/p. 
The TCP flow has its own congestion response, yTCP(p) (for 
brevity we assume constant segment size and RTT).  If the 
customer's allowance is low enough, it crosses the policer's 

congestion response at pTCP. As long as p<pTCP, the policer 
has no effect and the throughput is given by the TCP 
congestion response. If p>pTCP for long enough the policer 
starts to limit throughput to ypoliced instead.  

The effect is even more significant for the unresponsive 
flow. Its throughput remains constant while p<pCBR. But if 
p>pCBR for long enough, the policer makes the flow follow 
the congestion response defined by ypoliced too.  
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Fig. 3. If set harshly, the congestion policer would impose 

default congestion response ypoliced on single flows 

More realistically, the allowance would be much higher to 
allow multiple flows of customer traffic. In the special case 
where all flows exhibited the same congestion response and 
shared the same path, the scenario would be equivalent but 
linearly scaled: a policer with 100 times higher allowance 
would start limiting 100 sustained TCP flows over a path 
with congestion pTCP. 

More generally, given the policer treats all flows in bulk, 
the congestion bit rate of each flow has the potential to 
affect the throughput of all others. In order to see how this 
encourages more elastic flows to compensate for  less 
elastic flows, we must first quantify the cross-flow 
interaction the policer introduces. 

The unpoliced congestion bit rate generated by a customer 
is v =Σpi·yi(pi), where yi is the congestion response of flow 
i 's data rate. The policer starts to intervene if v>w for long 
enough. The penalty imposed to ensure v doesn’t exceed w 
is the same on all packets. Thus the policer increases the 
congestion level for all flows by the same amount π.  
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Fig. 4. Effect of bulk policing on a responsive flow 

Fig. 4 shows how the throughput of a responsive flow is 
reduced to xi = yi(pi + π), based on its congestion response.  
TCP flows in steady state have a congestion response 
proportional to 1/√p. So, for small values of π, linear 
approximation gives the flow’s throughput as:   

 xi = yi(pi + π) 
 ~ yi(pi ) + π·yi'(pi+ π) = yi(pi )·(1 - π/(2pi )) 



The pi in the denominator shows that the congestion policer 
has the greatest effect on flows on the least congested 
paths. Customers aiming to maximise their total throughput 
thus have the incentive to take charge of congestion control 
across all their flows (esp. those on the most congested 
paths), to make the most of their congestion allowance.  
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Fig. 5. Effect of bulk policing on an unresponsive flow  

Using the same analysis, Fig. 5 illustrates how the policer 
forces unresponsive flows to respond to congestion, 
reducing throughput from yCBR,i to xi = yCBR,i ·(1- π). The 
congestion bit rate of the flow is reduced from the larger 
grey area to the smaller hatched area.  

If a customer has a mix of elastic and CBR traffic the 
policer allows the customer to let its CBR flows remain 
unresponsive through heavy congestion. At the same time,  
it causes packet drops that force elastic flows to 
compensate. These extra drops should encourage evolution 
of host optimisation software that ensures elastic flows 
compensate in advance by reacting more strongly to 
congestion, as the customer's overall traffic approaches the 
policed allowance. Effectively, elastic transports don't have 
to be modified for the policer to make them self-sacrifice to 
CBR flows, but if they do, the customer is better off.  

5.2 Impact on cross traffic 

Each customer’s traffic clearly benefits if the congestion 
bit-rate of competing cross-traffic is limited. Indeed, every 
other customer benefits when sources of heavy congestion 
are pressured to shift to less congested bottlenecks and if 
they can be prevented from contributing excessive 
congestion, across one or several parallel bottlenecks.  

6. DISCUSSION 
6.1 Why per flow responsiveness is not enough    

Imagine customer A uses 98 shares of a bottleneck and 
customer B uses 2. If the bottleneck loses half its capacity, 
they can both halve their usage to prevent congestion. 
However, A still has 49 times more than B. A might have 
opened 98 TCPs while B opened only 2. Or A might keep 2 
TCPs active 49 times more often.  

Therefore prevalent per flow congestion responsiveness 
certainly prevents congestion collapse. But it is a fallacy 
that it also controls fair sharing of resources, particularly 
given it ignores sharing over time.  

However, our congestion policer shows the reverse 
approach is fruitful. Ensuring fair shares of everyone's 
overall congestion contribution does also ensure per flow 
congestion responsiveness – both voluntarily and ultimately 
by enforced intervention (§5). 

6.2 Endpoint evolution driven by congestion policing   

Policing a customers’ overall congestion is designed to 
make their own congestion control evolve beneficially. If 
the policing is triggered by the customer's overall 
behaviour, it doesn’t discriminate between flows. So any 
valuable flows over uncongested paths will be 
unnecessarily throttled. Endpoint developers will be driven 
by demanding users to create software to maximise the 
value they get out of the network under such a constraint. It 
is likely strategies will be found that minimise user 
intervention, so they can spread to the mass market. 
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Fig. 6. A dual ‘shadow’ policer assists endpoints that 
can distinguish foreground and background traffic  

For instance, software that can discriminate between 
foreground and background flows could benefit from using 
the dual “shadow” policer shown in Fig. 6. Foreground 
traffic is unconstrained by this policer but its congestion bit 
rate v* is monitored (as long as it remains within the overall 
allowance). Meanwhile, background traffic is more 
severely constrained by another congestion policer, against 
the surplus allowance w-v* unused by foreground traffic.  

Currently some operators are using deep packet inspection 
to prioritise packets by their payload. The example above 
shows that we actually only need a bulk constraint on 
congestion in the network to encourage application 
discrimination to evolve where it is more appropriate – on 
endpoints.  

6.3 Choice of Bucket Depth 
The bucket depth gives the extent to which sporadic 
customers can 'roll over' the congestion allowance gained 
during idle periods. It also defines the maximum congestion 
burst a customer may cause over the network.  

Congestion would be more predictably smooth if everyone 
were limited to smaller bucket depths, but this would 
reduce flexibility to make urgent demands on the network. 
Further research is planned to formalise this trade-off. 

6.4 Policing upstream or downstream?   

The same token bucket-based contract could be used to 
either police a customer's upstream (outgoing) as in Fig. 1, 



or downstream (incoming) traffic - or both. However, the 
choice has profound architectural implications. 

A strong argument can be made for policing upstream 
traffic, so that it can be limited before it does any damage. 
Also, at the network layer, the sender is ultimately 
responsible for sending excess traffic into the network. 
Certainly the receiver may have originally requested the 
connection (and blame might be traced back further), but 
that is all strictly above the scope of the packet forwarding 
layer that a policer protects. However, the policer we have 
described relies on counting congestion markings in the 
packets it handles, and at the ingress, they haven't yet 
traversed any congestion. The re-ECN protocol [3], which 
forces the sender to mark expected congestion into packets, 
is a proposed solution to this problem.  

On the other hand, ECN already makes it straightforward 
for the policer to count congestion information arriving in 
downstream traffic. Discarding downstream traffic doesn't 
necessarily stop the sender continuing to cause congestion, 
but it does stop the receiver getting the data. In most cases, 
except deliberate malice, the receiver's feedback loop 
would have the desired effect of slowing the sender to the 
policed rate. However, any sender could run down the 
receiver's token bucket with unsolicited traffic, so policing 
downstream traffic would open a new DoS vulnerability. 

We need to make it clear that, if network A deploys the 
policer we have proposed at its customer's attachment 
point, it doesn't only police congestion experienced in 
network A. It is intended to count congestion experienced 
all along the path in other networks. Nonetheless, at the 
start of incremental deployment, a network gains from 
having policers deployed for both traffic directions. 

7. CONCLUSION 
We lack principled ways for ISPs to prevent customers 
over-using a 'cloud' service like the Internet. ISPs often use 
ad hoc techniques to isolate users from the adverse effects 
of others. But users' software then lacks adequate signals 
and incentives to shift traffic around the resource pool - to 
less congested links or times. As fast as advances in 
resource pooling are being invented, these over-restrictive 
ad hoc controls are undermining them.  

We propose a general purpose traffic conditioning contract 
that is more appropriate for a cloud service than these rate 
and volume-based alternatives. It can be implemented by a 
simple token bucket at the customer's attachment point, 
which limits the customer's total contribution to congestion 
anywhere in the resource pool.  

Without imposing any particular behaviour on individual 
flows, this policer encourages flows to move to less 

congested paths and to respond to congestion on their own 
path. If they don't, it protects the freedoms of others using 
the resource pool by forcing a response across all flows. 
But the imposed response will always be worse than the 
customer's own software taking charge of each flow's 
separate response.  

The proposed alternative of imposing a response on each 
flow certainly prevents congestion collapse but it wouldn’t 
control resource sharing as claimed and it restricts 
evolution of new transport behaviours.  

We believe the architectural agenda should shift from 
promoting per-flow controls to improving information 
sufficiency in packet headers. We ask what information 
would make packets sufficiently self-contained to be held 
accountable for the congestion they contribute to. We have 
shown that ECN may be sufficient, but open questions 
remain concerning whether resource accountability also 
requires prevailing loss to be revealed in packet headers, 
and whether rest-of-path congestion is needed.  
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