Policing Freedom
to Use the Internet Resource Pool

Arnaud Jacquet
BT

Bob Briscoe
BT and UCL

Toby Moncaster
BT

<firstname.lastname@BT.com>

ABSTRACT - Ideally, everyone should be free to use
as much of the Internet resource pool as they cake.
But, whenever too much load meets too little capgci
everyone's freedoms collide. We show that attemiots
isolate users from each other have corrosive siffecs -
discouraging mutually beneficial ways of sharing é¢h
resource pool and harming the Internet's evolvabjli We
describe an unusual form of traffic policing whictonly
pushes back against those who use their freedontintt
the freedom of others. This offers a vision of hawuch
better the Internet could be. But there are subtlepects
missing from the current Internet architecture that
prevent this form of policing being deployed. Thigper
aims to shift the research agenda onto those issuexl
away from earlier attempts to isolate users fromcha
other.

1. INTRODUCTION

Resource pooling allows separate resources to aga

one larger resource, giving resilience and efficyegains.

Recently it has been noted [1] that the history of

communications has seen advances in resource goolin

over more and more dimensions.

» Packet switching allows each link to act as a pool
packets from many separate sessions instead ofngeed
one circuit per session.

» Packets can be time-shifted into a continuous {imel

by utilising a buffer at a link rather than usinge slots.

Multipath routing pools together separate linkoione

network resource [9].

* Network coding pools multiple messages into fewer
messages over a pool of links [8].

» With swarming downloads (e.g. BitTorrent) each rese
pools multiple peers sending the same data intodarte
source; and it pools the network paths from theszgp

By design, the public Internet gives everyone tieedom

to use as large a share as they can take of amyonket
equipment in the world, as often as they wantslthe
classic pooled (or cloud) resource. This freedons ha
fostered an amazing array of inventive new uses for
computers and communications.

Although pooling can make maximal use of available
resources, congestion still results if too muchlepddoad

All authors are partly funded by Trilogy, a resgaproject (ICT-
216372) supported by the European Community. Thsvwi
expressed here are those of the author(s) only.

meets too little pooled capacity. When any onearust's
freedom to use the pool starts to limit the freeddrathers
we have no principled way to resolve the resulting
conflicts. As we shall see, the cause turns obieta subtle
lack of architectural support.

In the eighties, over provisioning and voluntargtraint
allowed the problem of resource accountability éddst in
the list of requirements for the Internet architeet [4].
But, in today's primarily commercial deploymentclaof
architectural support for resolving conflicts oveooled
resources is fuelling an 'arms race'.

ISPs want to prevent a few customers hogging thelevh
resource pool when it is congested. Otherwise every
assumes the ISP has grossly under-supplied cap&citsis
each new way is found to pool resources, new pieaém
constraints are invented to 'unpool' usage integsethat
ISPs know how to control (we survey the most irihisd
approaches in 83). This becomes a vicious cycleitaisd
becoming increasingly hard to invent a new use thar
Internet that can also pick its way through thel tod
throttles and blocks resulting from this arms race.
Everyone's freedom to shift around what should be a
general purpose resource pool is gradually beifigdst

Everyone's usage should be able to range freely ae
dimensions of the resource pool and only be constia
when they restrict the freedom of others. Any usstgsuld
also be freaotto yield to other usage, but the pressure to
yield should increase the more congestion it expegs,
and the longer this congestion persists. We aresaging
ISPs ought to provide such an unconstrained serbice
the architecture shouldn't prevent them doing so.

To this end, this paper uses a familiar conceptagice — a
token bucket — but in an unfamiliar way. It consrdhe
‘congestionbit rate' of a customer, rather than thesitual

bit rate. Readers will be familiar with token butkehat
discard packets that locally exceed the tokenaateburst
size. Instead the proposed policer solely courgsstibset
of packets that are congestion marked. Its tokém aad
burst size then places an overall limit on how much
congestion packets traversing it can caexserywhere else

— when all taken together regardless of flows.

In the body of the paper we give an example whew o
customer accesses multiple remote sites using ptaulti
flows, with all congestion-marked packets beingrted by
the congestion policer. As congestion rises foulaset of
the flows, the policer makes it advantageous toehav

transport that shifts more traffic onto less cotgggpaths
[1], which is feasible if all the remote sites aerving the
same data (e.g. using BitTorrent) or multiple patine
being used to the same service. If however somesfltan
only use those paths with rising congestion, théceo
gives them no choice but to reduce their rate.

Thus, as well as limiting the total cost (congestithat one
customer can cause others, this simple bulk poéosures
each flow exhibits a dynamic response to congestiom
without policing each flow. Not all applications veato
respond quickly to congestion, as long as the divera
response is sufficient. If it isn't, the policerivéventually
force even inelastic flows to terminate.

Note that we are not proposing this policer as ssestial
piece of the Internet architecture. It is a simfddbeit
effective) example of what ISPs ought to be ablddpbut
currently cannot because the Internet architeqiuesents
them. The aim is to use this policer to focus thsearch
agenda on the architectural changes needed toveesol
conflicts within the Internet resource ‘cloud'.

Next we present the target architecture we belisve
required for congestion policing to be feasible efftwe
place our work in the context of other influentighys to
police network traffic. In 84 we introduce the distaf the
policer itself. In 85, we describe how policing gestion in
bulk encourages individual flows to respond to @stipn.
We defer discussion to 86, before concluding.

2. TARGET ARCHITECTURE

* We avoid locating any mechanism at network res@urce
themselves for resolving usage conflicts. Otherwésesh

on the sender also marking packets with the coiogest
expects on the rest of the path (re-ECN [3]).

« To be concrete, we assume policing at every ergranc

(Fig 1), then 8§6.4. compares it with policing ofitex

The literature [3] explains how to use congestievealed

in packets for inter-domain traffic contracts;

« Only the overall trafficof each customer is policed;

« Making individual flows conform to a given congesti
response is a non-goal; it would prevent evolutain
perfectly reasonable new behaviours that shiftdiltg of
responding to congestion around the pool of usage;

e There is no need to identify or to trust remote perit
identifiers like source IP addresses and port nusbe
Even if virtual customers share the same physical
attachment, only locally assigned identifiers néede
trusted (link-local IDs like L2TP or VPNSs).

This architecture polices packets not flows. It cay do

this by adding information about remote congestion
network layer headers, which makes each packet
sufficiently self-contained to be accountable. This
feasible because congestion is a property of ebéryn
each packet, unlike bit-rate which is meaninglestows
flow granularity. Once packets are accountable tum
those who transfer them into (or out of) the reseysool

can be made accountable—locally at their attachpmint.

This architecture currently only improves resoypoeling
for ECN-capable packets. This places a new question
the research agenda: To support resource accolitytabi
should the network include some aspect of lossctiete
rather than leaving it solely to endpoint transg®rt

resource would have to check how much each customer3' RELATED WORK

was using every other resource in the pool;
Instead, policing is located at the 'enforcemenintbo
where a customer attaches (Fig.1);

Table 1 displays some of the most influential apphes
for policing Internet resource usage, arranged galan
spectrum that characterises how flexible each ambras

. To police congestion experienced elsewhere, we neeq!0 resource pooling. Each is further characterizgdvhat

remote congestion to be visible in network layeadess;
* To do this we need every resource to randomly mark
packets as it approaches congestion (explicit cxiiage

notification or ECN [13]);
upstrear
palicer

c§stomer

customer
networ

upstrea

customer
networ policer

Fig. 1 — A set of congestion policers protecting
all the entrances to a resource pool

» ECN reveals remote congestion to policers at tliks ex
the resource pool. Policers at the entrances can se
remote congestion by making packet delivery coodil

'‘Metric' it uses to judge excessive usage and what
'‘Constraint' it places on usage when the metrasris

In terms of flexibility to pool resources, the @#l feature

of each approach is thgranularity at which it applies
metering and policing (‘/customer’, ‘/source'nkili etc).
The term 'per customer' doesn’t mean 'per user"gart
locally attached contractual entity'. The customer
relationship need not be commercial. The term ensto
includes customers with many users. 'Per link' reghat
usage conflicts are resolved at each bottlenedk (imot
necessarily all links, just those likely to congedtor
brevity, we will only discuss some rows of the bl

Voluntary restraint is exercised in the current Internet by
application developers who choose to use a comgesti
responsive transport like TCP. In an unpublished/&y of

14 surveys' (2003-6) we found that TCP comprise®-73
94% of traffic. But some customers can run more TCP
sessions than others and for much more of the 8mé, is

a fallacy that prevalent use of TCP implies anyghébout

fair, equitable sharing of capacity. It implies yrhat a
voluntarydynamicresponse to congestion is still prevalent.

Name Metric Constraint Flexibility
vqunt_ary rate /customer peak rate /customer !
restraint free
Congestion -

- pricing /customer
pricing congestion
Congestion |/customer congestion rate-burst
policing /customer
vol. pricing pricing /customer
volume cap|(peak period) rate cap /customer

volume /customer
deep packel rate cap
inspection /customer /app type
(W)FQ Packet presence |(weighted) equal rate |constrained
/source /link share /source /link !
(W)FQ ;f.’”li"' butlow | itto- but/flow flink
n both &
bottleneck |rate share ' neither
i . rate cap /flow /link

flow policer |/flow /link

Table 1 — Spectrum of policing approaches

Congestion pricing involves deployment of ECN then
charging for the volume of packets marked ‘congasti
experienced'. It is structurally very similar t@tbongestion
policing scheme of this paper. Gibbens & Kelly veghto
allow applications to evolve without specific caagtts on
how they should respond to congestion, but withn a
overall economic incentive to cause no more commyest
than you would be prepared to pay for [7].

Congestion policingis the focus of this paper. We show it
can provide the same incentives as dynamic comgesti
pricing with the same clean engineering simplicBut we
want ISPs to be free in their choice of pricing miod
including flat fees. So we follow the advice of ko,
who gathered evidence across many market sectsroto
that, on short timescales, customers prefer ratgprof
supply to dynamic variation in price [11]. Congesti
pricing gives peopléoo muchfreedom — they worry they
will spend more than they have budgeted for.

Volume is used as the metric in the next three rows ef th
table. Unlike congestion, using volume doesn'tdpoe
particularly correct incentives, but it is currgntla
pragmatic alternative, given ECN is not widely ased
and the Internet architecture wasn't designed darotely
detecting losses in the network layer.

Counting only peak volume would better approximate
congestion. However, this still counts traffic on
uncongested paths as much as on congested pagbs ti#e
majority of traffic in a network is in the largeatrsfers, but
accounting for volume gives them no incentive takba

accounting for congestion makes the network appesy
fast for interactive traffic without affecting tr@mpletion
time of larger transfers. Whereas accounting foluwe
gives no incentive for traffic to re-arrange itsalbng the
time dimension of the resource pool.

Fair queuing (FQ) [10], which may be weighted\(FQ),
divides up a link's instantaneous rate into equal (
weighted) proportions, but only among those southas
are currently sending. So if there are 200 possbleces
but only 5 are active, they will get 1/5 of the aaipy. If
some of the active sources send a lot more thaersith
(W)FQ grows their own queue rather than encroacbimg
the shares of others. But, if more sources becartieea
(W)FQ reduces everyone's share — in our example it
guarantees each source 1/200 in the worst case.

Sources that are infrequently active share a linkhmmore
efficiently than high activity factor sources, b(W)FQ
gives no credit for a low activity factor. Prioraictivity
entitles you to no more than if you had been peenty
active. By not recognising the time dimension oé th
resource pool, (W)FQ doesn't encourage activitghitt in
time to avoid other activity, even though a lot of
applications can do this, either shifting by semond
(buffering) or by hours (e.g. into the night).

Of course, the original goal of FQ was to isolagerg from
each other. We are not implying this is never athwehile
goal. Our aim is merely to highlight that isolatibides
opportunities for valuable co-operation.

Two proposed approaches per flow granularity are
shown at the bottom of the table. Demetsal proposed
that fair queuing would be more appropriate pewftban
per source, as large sources (e.g. servers) deserve
greater share [5]. However, the authors recogrtisaidany
host could increase its link share without bounapgning
connections with multiple other endpoints.

Despite this well-known flaw, research proposalpatice
on a per-flow basis have continued [6, 12]. Theseflow
approaches constrain each flow too much and allsfltoo
little. They proscribe reasonable transport desighsre
flows use the flexibility of the resource pool wéhitioing
nothing at run-time to prevent the set of a custtsftows
overloading the resource pool [2].

4. POLICING CONGESTION

A system will encourage optimal behaviour if akk tbosts
each individual causes others to suffer are reftkbiack on
that individual. The challenge we set ourselves ido this
without unpredictable bills.

We set the constraint that the customer pays aritatthly
fee to its ISP. This funds a constant ratepf congestion

away during peaks in congestion, whereas accountingokens filling a bucket (Fig 2) — ISPs may givestumers

directly for congestion does. If a large transfavey short
flows the space to go faster they would finish meeHier,
freeing up capacity sooner for the long-runnindficaSo

the choice between different values wf Unlike with a
classic token bucket, only congestion marked packet
consume tokens. So tokens are not consumed basthe on

amount of traffic sent, but on the amount of cotigashe
traffic causes, which ensures the customer suffexrscost
of its behaviour on others.
generates flows=1..N, each of throughput(t) over a path

experiencing congestiop(t), the bucket empties at a rate
2 pi(t)-%(t), which we will call the congestion bit rate (a

classical token bucket would consume tokens at rate

2'%(1)). The depths of the bucket allows the customer to
cause bursts of congestion, allowing for fluctuasioin
network conditions, and in the customer's own needs

W'jﬂ

5 X X B
\? //
= -

Fig. 2. A congestion policer can be implemented simply as a
modified token bucket

congestion response @icp. As long ap<prcp, the policer
has no effect and the throughput is given by thé?TC

If the policed customer congestion response.ptprcp for long enough the policer

starts to limit throughput tg,gjiceq instead.

The effect is even more significant for the unrewsioe
flow. Its throughput remains constant whepcgr. But if
p>pcer for long enough, the policer makes the flow follow
the congestion response definedyyceq too.

Yrep

—_——— — e e

YcBr

Throughpu

Pcer Prep Congestion

Fig. 3. If set harshly, the congestion policer wodlimpose
default congestion responsgygiceq 0N single flows

More realistically, the allowance would be muchhagto

So long as the customer stays below its congestion allow multiple flows of customer traffic. In the egial case

allowance, the policer merely monitors the congestit
rate passively. But whenever the congestion bét eatpties
the bucket, the policer penalises the aggregateititors.
The penalty can take different forms: packets may b
delayed or dropped. Dropping traffic keeps the estign
bit rate within the allowance and gives customérs t
strongest incentive to control their congestion fte
themselves. The policer might transition smoothignf
passive monitoring to actively penalising traffidowever,
initial analysis suggests a smooth transition serme
purpose, though further research is required tdirconhis.

5. IMPACT OF THE POLICER
5.1 Impact on the flows of the policed customer

One of the key features of the congestion polisethat it
doesn’t enforce a specific response to congestiorflpw.
Each flow is free to use any congestion responsergpas
all flows together don't cause the overall congeshit rate
of the customer to exceed the allowance given.

To explain, let's first imagine a policer configdréo allow
only an unrealistically low congestion bit-rate.gFi3
illustrates the effect of such a policer on a nling-
running flow: either a TCP flow (congestion respaEnscp)
or a constant bit-rate flow (congestion responggs). If
congestion increases enough, and the flow runs lagta
enough rate for long enough, the sustained higlgestion
bit rate will empty the bucket. The policer will eth
override the congestion response of the flow st tha
congestion bit rate equals the allowan@eyficedP)=wW)
which gives the shape of the congestion responpesed
by the policer: YoolicedP)=W/p.

The TCP flow has its own congestion respogsesp) (for
brevity we assume constant segment size and RTihe
customer's allowance is low enough, it crossepttieer's

where all flows exhibited the same congestion respand
shared the same path, the scenario would be equoivalit
linearly scaled: a policer with 100 times highdowahnce
would start limiting 100 sustained TCP flows ovepath
with congestiorprcp.

More generally, given the policer treats all floimsbulk,
the congestion bit rate of each flow has the pakmd
affect the throughput of all others. In order te $@w this
encourages more elastic flows to compensate foss le
elastic flows, we must first quantify the crossaflo
interaction the policer introduces.

The unpoliced congestion bit rate generated bystéoouer

is v =2p;-yi(pi), wherey; is the congestion response of flow
i's data rate. The policer starts to intervene>if for long
enough. The penalty imposed to ensudoesn’t exceetv

is the same on all packets. Thus the policer iragdhe
congestion level for all flows by the same amotint

Throughpuf

Yi(p)

X; i
' unpoliced

policed

p; Congest'ion
Fig. 4. Effect of bulk policing on a responsive fiw

Fig. 4 shows how the throughput of a responsive fi®
reduced tog = y;(p; + #), based on its congestion response.
TCP flows in steady state have a congestion regpons
proportional to Hp. So, for small values of;, linear
approximation gives the flow's throughput as:

X = Yi(pi + 7)

~¥(E) + oyt) = yip)-(1-7/(2p))

Thep; in the denominator shows that the congestion eplic
has the greatest effect on flows on the least «iade
paths. Customers aiming to maximise their totadubghput
thus have the incentive to take charge of congesiimtrol
across all their flows (esp. those on the most estagl
paths), to make the most of their congestion alifmea

Throughpu“)
unpoliced

YeBRi <

x Vs ~.

~~ policed
\\

~
~

Congestion

Pi

Fig. 5. Effect of bulk policing on an unresponsivélow

Using the same analysis, Fig. 5 illustrates howpblkcer
forces unresponsive flows to respond to congestion,
reducing throughput fromycggr,to X = Ycgr,i:(1- 7). The
congestion bit rate of the flow is reduced from tamer
grey area to the smaller hatched area.

If a customer has a mix of elastic and CBR traffie
policer allows the customer to let its CBR flowsnan
unresponsive through heavy congestion. At the same

it causes packet drops that force elastic flows to
compensate. These extra drops should encouragetiewol

of host optimisation software that ensures elafitiovs
compensate in advance by reacting more strongly to
congestion, as the customer's overall traffic apghes the
policed allowance. Effectively, elastic transpatts't have

to be modified for the policer to make them selfrdce to
CBR flows, but if they do, the customer is bettffr o

5.2 Impact on cross traffic

Each customer’s traffic clearly benefits if the gestion
bit-rate of competing cross-traffic is limited. kel, every
other customer benefits when sources of heavy cbioge
are pressured to shift to less congested bottlenank if
they can be prevented from contributing excessive
congestion, across one or several parallel bottlene

6. DISCUSSION
6.1 Why per flow responsiveness is not enough

Imagine customer”A uses 98 shares of a bottleneck and
customerB uses 2. If the bottleneck loses half its capacity,
they can both halve their usage to prevent cormesti
However, A still has 49 times more tha® A might have
opened 98 TCPs whilB opened only 2. OA might keep 2
TCPs active 49 times more often.

Therefore prevalent per flow congestion responssen
certainly prevents congestion collapse. But it ifalkacy
that it also controls fair sharing of resources, particularly
given it ignores sharing over time.

However, our congestion policer shows the reverse
approach is fruitful. Ensuring fair shares of ewew's
overall congestion contributiodoesalso ensure per flow
congestion responsiveness — both voluntarily atichately

by enforced intervention (85).

6.2 Endpoint evolution driven by congestion policing

Policing a customers’ overall congestion is dedigne
make their own congestion control evolve benefigidlf

the policing is triggered by the customer's overall
behaviour, it doesn’t discriminate between flows. &y
valuable flows over uncongested paths will
unnecessarily throttled. Endpoint developers wélldriven
by demanding users to create software to maxintise t
value they get out of the network under such atcaims. It

is likely strategies will be found that minimise eus
intervention, so they can spread to the mass market

lW

be

foregroun

roun .
lv*lwkg .

background H

Fig. 6. A dual ‘shadow’ policer assists endpointdat
can distinguish foreground and background traffic

For instance, software that can discriminate betwee
foreground and background flows could benefit frasing
the dual “shadow” policer shown in Fig. 6. Foregrdu
traffic is unconstrained by this policer but itsxgestion bit
ratev* is monitored (as long as it remains within theralle
allowance). Meanwhile, background traffic is more
severely constrained by another congestion polagajnst
the surplus allowancs-v* unused by foreground traffic.

Currently some operators are using deep packegatism

to prioritise packets by their payload. The examgieve
shows that we actually only need a bulk constraint
congestion in the network to encourage application
discrimination to evolve where it is more approfgia on
endpoints.

6.3 Choice of Bucket Depth

The bucket depth gives the extent to which sporadic
customers can 'roll over' the congestion allowagamed
during idle periods. It also defines the maximumgsstion
burst a customer may cause over the network.

Congestion would be more predictably smooth if poere
were limited to smaller bucket depths, but this ldou
reduce flexibility to make urgent demands on thevoek.
Further research is planned to formalise this taftle

6.4 Policing upstream or downstream?

The same token bucket-based contract could be tesed
either police a customer's upstream (outgoinghdsg. 1,

or downstream (incoming) traffic - or both. Howevére
choice has profound architectural implications.

A strong argument can be made for policing upstream
traffic, so that it can be limited before it doag/alamage.
Also, at the network layer, the sender is ultimatel
responsible for sending excess traffic into thewneit.
Certainly the receiver may have originally requéstee
connection (and blame might be traced back furthzuj
that is all strictly above the scope of the pad&etvarding
layer that a policer protects. However, the polizerhave
described relies on counting congestion markingshi:
packets it handles, and at the ingress, they Hayet'
traversed any congestion. The re-ECN protocol aiich
forces the sender to mark expected congestiorpitiets,
is a proposed solution to this problem.

On the other hand, ECN already makes it straightiod
for the policer to count congestion informationiang in
downstream traffic. Discarding downstream traffimedn't
necessarily stop the sender continuing to causgestion,
but it does stop the receiver getting the datandst cases,
except deliberate malice, the receiver's feedbaup |
would have the desired effect of slowing the sernddhe
policed rate. However, any sender could run dowa th
receiver's token bucket with unsolicited traffio, golicing
downstream traffic would open a new DoS vulnergbili

We need to make it clear that, if network A depldlys
policer we have proposed at its customer's attachme
point, it doesn't only police congestion experiehda
network A. It is intended to count congestion eigrared

all along the path in other networks. Nonetheledsthe
start of incremental deployment, a network gainamfr
having policers deployed for both traffic directson

7. CONCLUSION

We lack principled ways for ISPs to prevent custeme
over-using a 'cloud' service like the Internet.4Sfen use
ad hoc techniques to isolate users from the adwedfsets
of others. But users' software then lacks adegsigteals
and incentives to shift traffic around the resoupcel - to
less congested links or times. As fast as advatices
resource pooling are being invented, these ovérigtige
ad hoc controls are undermining them.

We propose a general purpose traffic conditioniogtract
that is more appropriate for a cloud service thase rate
and volume-based alternatives. It can be implendebyea
simple token bucket at the customer's attachmeiit,po
which limits the customer's total contribution tongestion
anywhere in the resource pool.

Without imposing any particular behaviour on indval
flows, this policer encourages flows to move tosles

congested paths and to respond to congestion anotlie
path. If they don't, it protects the freedoms dfeps using
the resource pool by forcing a response acrosfioaibs.
But the imposed response will always be worse fthen
customer's own software taking charge of each $low'
separate response.

The proposed alternative of imposing a responseautn
flow certainly prevents congestion collapse butduldn’t
control resource sharing as claimed and it restrict
evolution of new transport behaviours.

We believe the architectural agenda should shifimfr
promoting per-flow controls to improving informatio
sufficiency in packet headers. We ask what infoiomat
would make packets sufficiently self-contained t held
accountable for the congestion they contributéte. have
shown that ECN may be sufficient, but open question
remain concerning whether resource accountabilitp a
requires prevailing loss to be revealed in paclestders,
and whether rest-of-path congestion is needed.

8. REFERENCES

[1] Anonymous. "A resource-pooling architecture tioe
Internet" Under submission, Jul 2008

[2] B.Briscoe. Flow Rate Fairness: Dismantling digten, ACM
CCR 37(2) 63--74 (Apr 2007).

[3] B. Briscoe, A. Jacquet, T. Moncaster and A SimRe-ECN:
Adding Accountability for Causing Congestion to TGP
IETF draft-briscoe-tsvwg-re-ecn-tcp-06. July 2008k in
progress)

[4] D. Clark, "The design philosophy of the DARP#térnet
protocols," Proc. ACM SIGCOMM'88, Aug’'88.

[5] A. Demers, S. Keshav, and S. Shenker, “Analsisid
simulation of a fair queueing algorithm,” in ACM 8posium
proc. on Communications architectures & protocb®89

[6] S. Floyd and K. Fall. Promoting the use of eéneknd
congestion control in the Internet. IEEE/ACM ToNjgh 99

[7] R.J. Gibbens and F.P. Kelly. Resource pricind the
evolution of congestion control. Automatica 35 (299

[8] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medaaad J.
Crowcroft, "XORs in the Air: Practical Wireless Matrk
Coding" Proc. ACM SIGCOMM'06, (September, 2006)

[9] C.N. Laws. Resource Pooling in Queueing Netwoskth
Dynamic Routing. Advances in Applied Probabilitegember
1992.

[10] J. Nagle "On packet switches with infinite rstge," IETF
RFC970. December 1985.

[11] A. M. Odlyzko, Parisvietro Pricing for the Internet, Proc.

ACM Conference on Electronic Commerce (EC'99), 1999

[12] R. Pan, L. Breslau, B. Prabhaker, and S. Séenk
"Approximate fairness through differential droppihdACM
CCR 33(2), April 2003.

[13] K. Ramakrishnan, S. Floyd, and D. Black, "edition of
Explicit Congestion Notification (ECN) to IP", RF&168,
Sept. 2001.

