
Policing Freedom
to Use the Internet Resource Pool

Arnaud Jacquet
BT

Bob Briscoe
BT and UCL

<firstname.lastname@BT.com>

Toby Moncaster
BT

ABSTRACT – Ideally, everyone should be free to use
as much of the Internet resource pool as they can take.
But, whenever too much load meets too little capacity,
everyone's freedoms collide. We show that attempts to
isolate users from each other have corrosive side-effects -
discouraging mutually beneficial ways of sharing the
resource pool and harming the Internet's evolvability. We
describe an unusual form of traffic policing which only
pushes back against those who use their freedom to limit
the freedom of others. This offers a vision of how much
better the Internet could be. But there are subtle aspects
missing from the current Internet architecture that
prevent this form of policing being deployed. This paper
aims to shift the research agenda onto those issues, and
away from earlier attempts to isolate users from each
other.

1. INTRODUCTION
Resource pooling allows separate resources to appear as
one larger resource, giving resilience and efficiency gains.
Recently it has been noted [1] that the history of
communications has seen advances in resource pooling
over more and more dimensions.
• Packet switching allows each link to act as a pool for

packets from many separate sessions instead of needing
one circuit per session.

• Packets can be time-shifted into a continuous time pool
by utilising a buffer at a link rather than using time slots.

• Multipath routing pools together separate links into one
network resource [9].

• Network coding pools multiple messages into fewer
messages over a pool of links [8].

• With swarming downloads (e.g. BitTorrent) each receiver
pools multiple peers sending the same data into one data
source; and it pools the network paths from these peers.

By design, the public Internet gives everyone the freedom
to use as large a share as they can take of any network
equipment in the world, as often as they want. It is the
classic pooled (or cloud) resource. This freedom has
fostered an amazing array of inventive new uses for
computers and communications.

Although pooling can make maximal use of available
resources, congestion still results if too much pooled load

 All authors are partly funded by Trilogy, a research project (ICT-

216372) supported by the European Community. The views
expressed here are those of the author(s) only.

meets too little pooled capacity. When any one customer's
freedom to use the pool starts to limit the freedom of others
we have no principled way to resolve the resulting
conflicts. As we shall see, the cause turns out to be a subtle
lack of architectural support.

In the eighties, over provisioning and voluntary restraint
allowed the problem of resource accountability to be last in
the list of requirements for the Internet architecture [4].
But, in today's primarily commercial deployment, lack of
architectural support for resolving conflicts over pooled
resources is fuelling an 'arms race'.

ISPs want to prevent a few customers hogging the whole
resource pool when it is congested. Otherwise everyone
assumes the ISP has grossly under-supplied capacity. So as
each new way is found to pool resources, new piecemeal
constraints are invented to 'unpool' usage into pieces that
ISPs know how to control (we survey the most influential
approaches in §3). This becomes a vicious cycle and it is
becoming increasingly hard to invent a new use for the
Internet that can also pick its way through the trail of
throttles and blocks resulting from this arms race.
Everyone's freedom to shift around what should be a
general purpose resource pool is gradually being stifled.

Everyone's usage should be able to range freely over all
dimensions of the resource pool and only be constrained
when they restrict the freedom of others. Any usage should
also be free not to yield to other usage, but the pressure to
yield should increase the more congestion it experiences,
and the longer this congestion persists. We are not saying
ISPs ought to provide such an unconstrained service, but
the architecture shouldn't prevent them doing so.

To this end, this paper uses a familiar conceptual device – a
token bucket – but in an unfamiliar way. It controls the
'congestion bit rate' of a customer, rather than their actual
bit rate. Readers will be familiar with token buckets that
discard packets that locally exceed the token rate and burst
size. Instead the proposed policer solely counts the subset
of packets that are congestion marked. Its token rate and
burst size then places an overall limit on how much
congestion packets traversing it can cause everywhere else
– when all taken together regardless of flows.

In the body of the paper we give an example where one
customer accesses multiple remote sites using multiple
flows, with all congestion-marked packets being counted by
the congestion policer. As congestion rises for a subset of
the flows, the policer makes it advantageous to have a

transport that shifts more traffic onto less congested paths
[1], which is feasible if all the remote sites are serving the
same data (e.g. using BitTorrent) or multiple paths are
being used to the same service. If however some flows can
only use those paths with rising congestion, the policer
gives them no choice but to reduce their rate.

Thus, as well as limiting the total cost (congestion) that one
customer can cause others, this simple bulk policer ensures
each flow exhibits a dynamic response to congestion, but
without policing each flow. Not all applications have to
respond quickly to congestion, as long as the overall
response is sufficient. If it isn't, the policer will eventually
force even inelastic flows to terminate.

Note that we are not proposing this policer as an essential
piece of the Internet architecture. It is a simple (albeit
effective) example of what ISPs ought to be able to do, but
currently cannot because the Internet architecture prevents
them. The aim is to use this policer to focus the research
agenda on the architectural changes needed to resolve
conflicts within the Internet resource 'cloud'.

Next we present the target architecture we believe is
required for congestion policing to be feasible. Then we
place our work in the context of other influential ways to
police network traffic. In §4 we introduce the details of the
policer itself. In §5, we describe how policing congestion in
bulk encourages individual flows to respond to congestion.
We defer discussion to §6, before concluding.

2. TARGET ARCHITECTURE
• We avoid locating any mechanism at network resources

themselves for resolving usage conflicts. Otherwise, each
resource would have to check how much each customer
was using every other resource in the pool;

• Instead, policing is located at the 'enforcement point'
where a customer attaches (Fig.1);

• To police congestion experienced elsewhere, we need
remote congestion to be visible in network layer headers;

• To do this we need every resource to randomly mark
packets as it approaches congestion (explicit congestion
notification or ECN [13]);

upstream
policer

upstream
policer

2 example
resources

customer
network

customer
network

customer

upstream
policer

Fig. 1 – A set of congestion policers protecting

all the entrances to a resource pool

• ECN reveals remote congestion to policers at the exits of
the resource pool. Policers at the entrances can see
remote congestion by making packet delivery conditional

on the sender also marking packets with the congestion it
expects on the rest of the path (re-ECN [3]).

• To be concrete, we assume policing at every entrance
(Fig 1), then §6.4. compares it with policing on exit..

• The literature [3] explains how to use congestion revealed
in packets for inter-domain traffic contracts;

• Only the overall traffic of each customer is policed;
• Making individual flows conform to a given congestion

response is a non-goal; it would prevent evolution of
perfectly reasonable new behaviours that shift the duty of
responding to congestion around the pool of usage;

• There is no need to identify or to trust remote endpoint
identifiers like source IP addresses and port numbers.
Even if virtual customers share the same physical
attachment, only locally assigned identifiers need to be
trusted (link-local IDs like L2TP or VPNs).

This architecture polices packets not flows. It can only do
this by adding information about remote congestion to
network layer headers, which makes each packet
sufficiently self-contained to be accountable. This is
feasible because congestion is a property of every bit in
each packet, unlike bit-rate which is meaningless below
flow granularity. Once packets are accountable, in turn
those who transfer them into (or out of) the resource pool
can be made accountable–locally at their attachment point.

This architecture currently only improves resource pooling
for ECN-capable packets. This places a new question on
the research agenda: To support resource accountability
should the network include some aspect of loss detection,
rather than leaving it solely to endpoint transports?

3. RELATED WORK
Table 1 displays some of the most influential approaches
for policing Internet resource usage, arranged along a
spectrum that characterises how flexible each approach is
to resource pooling. Each is further characterised by what
'Metric' it uses to judge excessive usage and what
'Constraint' it places on usage when the metric rises.

In terms of flexibility to pool resources, the critical feature
of each approach is the granularity at which it applies
metering and policing ('/customer', '/source', '/link', etc).
The term 'per customer' doesn’t mean 'per user' but 'per
locally attached contractual entity'. The customer
relationship need not be commercial. The term customer
includes customers with many users. 'Per link' means that
usage conflicts are resolved at each bottleneck link (not
necessarily all links, just those likely to congest). For
brevity, we will only discuss some rows of the table.

Voluntary restraint is exercised in the current Internet by
application developers who choose to use a congestion
responsive transport like TCP. In an unpublished 'survey of
14 surveys' (2003-6) we found that TCP comprises 73%-
94% of traffic. But some customers can run more TCP
sessions than others and for much more of the time, so it is
a fallacy that prevalent use of TCP implies anything about

fair, equitable sharing of capacity. It implies only that a
voluntary dynamic response to congestion is still prevalent.

Name Metric Constraint Flexibility

voluntary
restraint

rate /customer peak rate /customer

Congestion
pricing

pricing /customer

Congestion
policing

congestion
/customer congestion rate-burst

/customer

vol. pricing pricing /customer

volume cap rate cap /customer

deep packet
inspection

(peak period)
volume /customer

rate cap
/customer /app type

(W)FQ
Packet presence
/source /link

(weighted) equal rate
share /source /link

↑
free

constrained
↓

(W)FQ
-ditto- but /flow
/link

-ditto- but /flow /link

bottleneck
flow policer

rate share
/flow /link

rate cap /flow /link

both &
neither

Table 1 – Spectrum of policing approaches

Congestion pricing involves deployment of ECN then
charging for the volume of packets marked 'congestion
experienced'. It is structurally very similar to the congestion
policing scheme of this paper. Gibbens & Kelly wanted to
allow applications to evolve without specific constraints on
how they should respond to congestion, but within an
overall economic incentive to cause no more congestion
than you would be prepared to pay for [7].

Congestion policing is the focus of this paper. We show it
can provide the same incentives as dynamic congestion
pricing with the same clean engineering simplicity. But we
want ISPs to be free in their choice of pricing model,
including flat fees. So we follow the advice of Odlyzko,
who gathered evidence across many market sectors to show
that, on short timescales, customers prefer rationing of
supply to dynamic variation in price [11]. Congestion
pricing gives people too much freedom – they worry they
will spend more than they have budgeted for.

Volume is used as the metric in the next three rows of the
table. Unlike congestion, using volume doesn't produce
particularly correct incentives, but it is currently a
pragmatic alternative, given ECN is not widely deployed
and the Internet architecture wasn't designed for remotely
detecting losses in the network layer.
Counting only peak volume would better approximate
congestion. However, this still counts traffic on
uncongested paths as much as on congested paths. Also, the
majority of traffic in a network is in the large transfers, but
accounting for volume gives them no incentive to back
away during peaks in congestion, whereas accounting
directly for congestion does. If a large transfer gave short
flows the space to go faster they would finish much earlier,
freeing up capacity sooner for the long-running traffic. So

accounting for congestion makes the network appear very
fast for interactive traffic without affecting the completion
time of larger transfers. Whereas accounting for volume
gives no incentive for traffic to re-arrange itself along the
time dimension of the resource pool.

Fair queuing (FQ) [10], which may be weighted (WFQ),
divides up a link's instantaneous rate into equal (or
weighted) proportions, but only among those sources that
are currently sending. So if there are 200 possible sources
but only 5 are active, they will get 1/5 of the capacity. If
some of the active sources send a lot more than others,
(W)FQ grows their own queue rather than encroaching on
the shares of others. But, if more sources become active,
(W)FQ reduces everyone's share – in our example it
guarantees each source 1/200 in the worst case.
Sources that are infrequently active share a link much more
efficiently than high activity factor sources, but (W)FQ
gives no credit for a low activity factor. Prior inactivity
entitles you to no more than if you had been permanently
active. By not recognising the time dimension of the
resource pool, (W)FQ doesn't encourage activity to shift in
time to avoid other activity, even though a lot of
applications can do this, either shifting by seconds
(buffering) or by hours (e.g. into the night).
Of course, the original goal of FQ was to isolate users from
each other. We are not implying this is never a worthwhile
goal. Our aim is merely to highlight that isolation hides
opportunities for valuable co-operation.

Two proposed approaches at per flow granularity are
shown at the bottom of the table. Demers et al proposed
that fair queuing would be more appropriate per flow than
per source, as large sources (e.g. servers) deserved a
greater share [5]. However, the authors recognised that any
host could increase its link share without bound by opening
connections with multiple other endpoints.

Despite this well-known flaw, research proposals to police
on a per-flow basis have continued [6, 12]. These per-flow
approaches constrain each flow too much and all flows too
little. They proscribe reasonable transport designs where
flows use the flexibility of the resource pool while doing
nothing at run-time to prevent the set of a customer's flows
overloading the resource pool [2].

4. POLICING CONGESTION
A system will encourage optimal behaviour if all the costs
each individual causes others to suffer are reflected back on
that individual. The challenge we set ourselves is to do this
without unpredictable bills.

We set the constraint that the customer pays a flat monthly
fee to its ISP. This funds a constant rate, w, of congestion
tokens filling a bucket (Fig 2) – ISPs may give customers
the choice between different values of w. Unlike with a
classic token bucket, only congestion marked packets
consume tokens. So tokens are not consumed based on the

amount of traffic sent, but on the amount of congestion the
traffic causes, which ensures the customer suffers the cost
of its behaviour on others. If the policed customer
generates flows i=1..N, each of throughput xi(t) over a path
experiencing congestion pi(t), the bucket empties at a rate
∑ pi(t)·xi(t), which we will call the congestion bit rate (a
classical token bucket would consume tokens at rate
∑ xi(t)). The depth β of the bucket allows the customer to
cause bursts of congestion, allowing for fluctuations in
network conditions, and in the customer's own needs.

w

xi , piΣΣΣΣi xi · pi

ββββ

Fig. 2. A congestion policer can be implemented simply as a

modified token bucket

So long as the customer stays below its congestion
allowance, the policer merely monitors the congestion bit
rate passively. But whenever the congestion bit rate empties
the bucket, the policer penalises the aggregate it monitors.
The penalty can take different forms: packets may be
delayed or dropped. Dropping traffic keeps the congestion
bit rate within the allowance and gives customers the
strongest incentive to control their congestion bit rate
themselves. The policer might transition smoothly from
passive monitoring to actively penalising traffic. However,
initial analysis suggests a smooth transition serves no
purpose, though further research is required to confirm this.

5. IMPACT OF THE POLICER
5.1 Impact on the flows of the policed customer

One of the key features of the congestion policer is that it
doesn’t enforce a specific response to congestion per flow.
Each flow is free to use any congestion response so long as
all flows together don't cause the overall congestion bit rate
of the customer to exceed the allowance given.

To explain, let’s first imagine a policer configured to allow
only an unrealistically low congestion bit-rate. Fig. 3
illustrates the effect of such a policer on a single long-
running flow: either a TCP flow (congestion response: yTCP)
or a constant bit-rate flow (congestion response: yCBR). If
congestion increases enough, and the flow runs at a high
enough rate for long enough, the sustained high congestion
bit rate will empty the bucket. The policer will then
override the congestion response of the flow so that the
congestion bit rate equals the allowance (p.ypoliced(p)=w)
which gives the shape of the congestion response imposed
by the policer: ypoliced(p)=w/p.
The TCP flow has its own congestion response, yTCP(p) (for
brevity we assume constant segment size and RTT). If the
customer's allowance is low enough, it crosses the policer's

congestion response at pTCP. As long as p<pTCP, the policer
has no effect and the throughput is given by the TCP
congestion response. If p>pTCP for long enough the policer
starts to limit throughput to ypoliced instead.

The effect is even more significant for the unresponsive
flow. Its throughput remains constant while p<pCBR. But if
p>pCBR for long enough, the policer makes the flow follow
the congestion response defined by ypoliced too.

T
hr

o
ug

hp
ut

Congestion

yCBR

yTCP

pTCPpCBR

ypoliced

Fig. 3. If set harshly, the congestion policer would impose

default congestion response ypoliced on single flows

More realistically, the allowance would be much higher to
allow multiple flows of customer traffic. In the special case
where all flows exhibited the same congestion response and
shared the same path, the scenario would be equivalent but
linearly scaled: a policer with 100 times higher allowance
would start limiting 100 sustained TCP flows over a path
with congestion pTCP.

More generally, given the policer treats all flows in bulk,
the congestion bit rate of each flow has the potential to
affect the throughput of all others. In order to see how this
encourages more elastic flows to compensate for less
elastic flows, we must first quantify the cross-flow
interaction the policer introduces.

The unpoliced congestion bit rate generated by a customer
is v =Σpi·yi(pi), where yi is the congestion response of flow
i 's data rate. The policer starts to intervene if v>w for long
enough. The penalty imposed to ensure v doesn’t exceed w
is the same on all packets. Thus the policer increases the
congestion level for all flows by the same amount π.

Throughput

Congestionpi

xi

+ππππu

yi(pi)

policed

unpoliced

Fig. 4. Effect of bulk policing on a responsive flow

Fig. 4 shows how the throughput of a responsive flow is
reduced to xi = yi(pi + π), based on its congestion response.
TCP flows in steady state have a congestion response
proportional to 1/√p. So, for small values of π, linear
approximation gives the flow’s throughput as:

 xi = yi(pi + π)
 ~ yi(pi) + π·yi'(pi+ π) = yi(pi)·(1 - π/(2pi))

The pi in the denominator shows that the congestion policer
has the greatest effect on flows on the least congested
paths. Customers aiming to maximise their total throughput
thus have the incentive to take charge of congestion control
across all their flows (esp. those on the most congested
paths), to make the most of their congestion allowance.

Throughput

Congestionpi

xi

+ππππ

yCBR,i

policed

unpoliced

Fig. 5. Effect of bulk policing on an unresponsive flow

Using the same analysis, Fig. 5 illustrates how the policer
forces unresponsive flows to respond to congestion,
reducing throughput from yCBR,i to xi = yCBR,i ·(1- π). The
congestion bit rate of the flow is reduced from the larger
grey area to the smaller hatched area.

If a customer has a mix of elastic and CBR traffic the
policer allows the customer to let its CBR flows remain
unresponsive through heavy congestion. At the same time,
it causes packet drops that force elastic flows to
compensate. These extra drops should encourage evolution
of host optimisation software that ensures elastic flows
compensate in advance by reacting more strongly to
congestion, as the customer's overall traffic approaches the
policed allowance. Effectively, elastic transports don't have
to be modified for the policer to make them self-sacrifice to
CBR flows, but if they do, the customer is better off.

5.2 Impact on cross traffic

Each customer’s traffic clearly benefits if the congestion
bit-rate of competing cross-traffic is limited. Indeed, every
other customer benefits when sources of heavy congestion
are pressured to shift to less congested bottlenecks and if
they can be prevented from contributing excessive
congestion, across one or several parallel bottlenecks.

6. DISCUSSION
6.1 Why per flow responsiveness is not enough

Imagine customer A uses 98 shares of a bottleneck and
customer B uses 2. If the bottleneck loses half its capacity,
they can both halve their usage to prevent congestion.
However, A still has 49 times more than B. A might have
opened 98 TCPs while B opened only 2. Or A might keep 2
TCPs active 49 times more often.

Therefore prevalent per flow congestion responsiveness
certainly prevents congestion collapse. But it is a fallacy
that it also controls fair sharing of resources, particularly
given it ignores sharing over time.

However, our congestion policer shows the reverse
approach is fruitful. Ensuring fair shares of everyone's
overall congestion contribution does also ensure per flow
congestion responsiveness – both voluntarily and ultimately
by enforced intervention (§5).

6.2 Endpoint evolution driven by congestion policing

Policing a customers’ overall congestion is designed to
make their own congestion control evolve beneficially. If
the policing is triggered by the customer's overall
behaviour, it doesn’t discriminate between flows. So any
valuable flows over uncongested paths will be
unnecessarily throttled. Endpoint developers will be driven
by demanding users to create software to maximise the
value they get out of the network under such a constraint. It
is likely strategies will be found that minimise user
intervention, so they can spread to the mass market.

w

v*
w - v*

foreground

background

w

Fig. 6. A dual ‘shadow’ policer assists endpoints that
can distinguish foreground and background traffic

For instance, software that can discriminate between
foreground and background flows could benefit from using
the dual “shadow” policer shown in Fig. 6. Foreground
traffic is unconstrained by this policer but its congestion bit
rate v* is monitored (as long as it remains within the overall
allowance). Meanwhile, background traffic is more
severely constrained by another congestion policer, against
the surplus allowance w-v* unused by foreground traffic.

Currently some operators are using deep packet inspection
to prioritise packets by their payload. The example above
shows that we actually only need a bulk constraint on
congestion in the network to encourage application
discrimination to evolve where it is more appropriate – on
endpoints.

6.3 Choice of Bucket Depth
The bucket depth gives the extent to which sporadic
customers can 'roll over' the congestion allowance gained
during idle periods. It also defines the maximum congestion
burst a customer may cause over the network.

Congestion would be more predictably smooth if everyone
were limited to smaller bucket depths, but this would
reduce flexibility to make urgent demands on the network.
Further research is planned to formalise this trade-off.

6.4 Policing upstream or downstream?

The same token bucket-based contract could be used to
either police a customer's upstream (outgoing) as in Fig. 1,

or downstream (incoming) traffic - or both. However, the
choice has profound architectural implications.

A strong argument can be made for policing upstream
traffic, so that it can be limited before it does any damage.
Also, at the network layer, the sender is ultimately
responsible for sending excess traffic into the network.
Certainly the receiver may have originally requested the
connection (and blame might be traced back further), but
that is all strictly above the scope of the packet forwarding
layer that a policer protects. However, the policer we have
described relies on counting congestion markings in the
packets it handles, and at the ingress, they haven't yet
traversed any congestion. The re-ECN protocol [3], which
forces the sender to mark expected congestion into packets,
is a proposed solution to this problem.

On the other hand, ECN already makes it straightforward
for the policer to count congestion information arriving in
downstream traffic. Discarding downstream traffic doesn't
necessarily stop the sender continuing to cause congestion,
but it does stop the receiver getting the data. In most cases,
except deliberate malice, the receiver's feedback loop
would have the desired effect of slowing the sender to the
policed rate. However, any sender could run down the
receiver's token bucket with unsolicited traffic, so policing
downstream traffic would open a new DoS vulnerability.

We need to make it clear that, if network A deploys the
policer we have proposed at its customer's attachment
point, it doesn't only police congestion experienced in
network A. It is intended to count congestion experienced
all along the path in other networks. Nonetheless, at the
start of incremental deployment, a network gains from
having policers deployed for both traffic directions.

7. CONCLUSION
We lack principled ways for ISPs to prevent customers
over-using a 'cloud' service like the Internet. ISPs often use
ad hoc techniques to isolate users from the adverse effects
of others. But users' software then lacks adequate signals
and incentives to shift traffic around the resource pool - to
less congested links or times. As fast as advances in
resource pooling are being invented, these over-restrictive
ad hoc controls are undermining them.

We propose a general purpose traffic conditioning contract
that is more appropriate for a cloud service than these rate
and volume-based alternatives. It can be implemented by a
simple token bucket at the customer's attachment point,
which limits the customer's total contribution to congestion
anywhere in the resource pool.

Without imposing any particular behaviour on individual
flows, this policer encourages flows to move to less

congested paths and to respond to congestion on their own
path. If they don't, it protects the freedoms of others using
the resource pool by forcing a response across all flows.
But the imposed response will always be worse than the
customer's own software taking charge of each flow's
separate response.

The proposed alternative of imposing a response on each
flow certainly prevents congestion collapse but it wouldn’t
control resource sharing as claimed and it restricts
evolution of new transport behaviours.

We believe the architectural agenda should shift from
promoting per-flow controls to improving information
sufficiency in packet headers. We ask what information
would make packets sufficiently self-contained to be held
accountable for the congestion they contribute to. We have
shown that ECN may be sufficient, but open questions
remain concerning whether resource accountability also
requires prevailing loss to be revealed in packet headers,
and whether rest-of-path congestion is needed.

8. REFERENCES
[1] Anonymous. "A resource-pooling architecture for the

Internet" Under submission, Jul 2008
[2] B.Briscoe. Flow Rate Fairness: Dismantling a Religion, ACM

CCR 37(2) 63--74 (Apr 2007).
[3] B. Briscoe, A. Jacquet, T. Moncaster and A Smith. Re-ECN:

Adding Accountability for Causing Congestion to TCP/IP.
IETF draft-briscoe-tsvwg-re-ecn-tcp-06. July 2008 (work in
progress)

[4] D. Clark, "The design philosophy of the DARPA internet
protocols," Proc. ACM SIGCOMM'88, Aug’88.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and
simulation of a fair queueing algorithm,” in ACM Symposium
proc. on Communications architectures & protocols. 1989

[6] S. Floyd and K. Fall. Promoting the use of end-to-end
congestion control in the Internet. IEEE/ACM ToN, Aug. 99

[7] R.J. Gibbens and F.P. Kelly. Resource pricing and the
evolution of congestion control. Automatica 35 (1999)

[8] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard and J.
Crowcroft, "XORs in the Air: Practical Wireless Network
Coding" Proc. ACM SIGCOMM'06, (September, 2006)

[9] C.N. Laws. Resource Pooling in Queueing Networks with
Dynamic Routing. Advances in Applied Probability. September
1992.

[10] J. Nagle "On packet switches with infinite storage," IETF
RFC970. December 1985.

[11] A. M. Odlyzko, Paris Metro Pricing for the Internet, Proc.
ACM Conference on Electronic Commerce (EC'99), 1999
[12] R. Pan, L. Breslau, B. Prabhaker, and S. Shenker.

"Approximate fairness through differential dropping,". ACM
CCR 33(2), April 2003.

[13] K. Ramakrishnan, S. Floyd, and D. Black, "The Addition of
Explicit Congestion Notification (ECN) to IP", RFC 3168,
Sept. 2001.

