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Abstract

We implemented the DualPI2 AQM as a Linux qdisc and
present the details of DUALPI2 implementation, explaining
which problems it can solve.

Traditionally, classic loss-based congestion controls like
Cubic or Reno need a relatively large queue to utilize the net-
work efficiently and with reasonable loss levels. These large
queues introduce unnecessary delay. Like in Data Centers,
the problem can be partially solved by using scalable con-
gestion controls that can use shallow immediate ECN mark-
ing thresholds instead of loss as congestion signal. But then,
another problem is introduced - classic and scalable TCP
congestion controls are not able to coexist without classic
TCP starving itself. This starvation occurs due to the differ-
ence in how classic and scalable congestion controls respond
to congestion signals.We explain how DUALPI2 solves this
problem and can be used to mix Internet and Datacenter TCP
traffic both on the Internet and in Data Centers, without com-
promising on neither the ultra-low latency performance of
DCTCP, nor the Reno/Cubic throughput performance. Du-
alPI2 uses a scheduler with only 2 queues, coupled for fair-
ness, and a classifier that uses only IP header inspection, be-
ing transport protocol independent (supporting TCP, SCTP,
QUIC, ).

The largest benefit of our solution is the ability to deploy
congestion controls like DCTCP on the public Internet and
allow a mix of DCTCP and Internet congestion controls in
the Data Center. The standardization of the DualPI2 AQM
and the way the Low Latency, Low Loss and Scalable traffic
(L4S) is identified, are being finalized in the IETF.

1 Introduction

Low or near-zero latency bcecomes more and more impor-
tant for many, if not most applications. Almost any web or
interactive application, such as voice and video clients, re-
mote desktop, online gaming, finance apps, or similar would
sometimes suffer from even a relatively small increase in la-

tency, which would result in reduced performance and im-
paired user experience.

Latency is a complex problem that needs to be addressed
with respect to various aspects [4] and at different levels of
data delivery - both at end systems and in the network.

In this paper, we will focus on reducing the queuing delay
in the network, with certain requirements imposed on the end
systems. Even state-of-the art Active Queue Management
(AQM) [13, 7] are only able to reduce the latency to nearly
the same order as typical base round-trip time delay, being
constrained by bottlenecks with low flow multiplexing and
the necessity to buffer a round trip flight of data to prevent
underutilization.

The DualPI2 AQM presented in this paper achieves close
to zero qeueing delay for all applications, and not just a frac-
tion of the link’s traffic, as offered by a differentiated service
(Diffserv) class such as EF [5]. The service we introduce
accomodates not only applications that require low latency,
but also capacity-seeking applications that require both low
latency and high throughput. Also, it eliminates congestion
loss introduced by using drop as a signal. We call this service
L4S - Low Latency, Low Loss, Scalable throughput.

To benefit from L4S service, senders are required to use
‘Scalable’ congestion controls, as discussed in § 2. While
DCTCP is an example of a scalable congestion control, L4S
service is not intented for DCTCP in particular, but rather
for a rangle of such controls. Besides, DCTCP needs certain
safety and perforance adjustments before it can be used ef-
fectively in production, while a group of DCTCP developers
has informally agreed on ‘TCP Prague’ requirements to both
replace a confusing name and summarize the enhancements
that need to be introduced.

However, in this paper we use DCTCP ‘as is’, solely as an
example of a scalable control, and focus on network related
changes only.

Using scalable congestion control together with ‘Classic’
congestion control (also discussed in § 2) introduces the co-
existence problem. With state-of-the-art AQMs, the two con-
gestion controls, for example, Cubic and DCTCP, are not
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deployed together, because due to different response to con-
gestion signals, ‘Classic’ congestion control senders would
starve themselves. DualPI2 AQM solves this coexistence
problem by using two queues, which both isolate the two
types of traffic and use coupling to appear as a single re-
source pool for best utilization and emit congestion signals
at the rate necessary for each traffic type, explained in more
detail in § 3.

In § 4, we discuss the deployment cases and configura-
tion details, while a brief evaluation of DualPI2 performance,
compared to state-of-the-art AQMs is presented in § 5.

2 Motivation and Background

Scalable Congestion Control The AQM mechanism we
present guarantees low latency for L4S sources, while their
end systems are required to use a scalable congestion con-
troller. A congestion controller is defined as ‘Scalable’ if the
rate of the congestion signals per round trip scales together
with bandwidth-delay product (BDP or window) changes.

Classic version of TCP congestion controller, for example,
Cubic or Reno, does not satisfy that requirement. Although
Cubic does scale better than Reno, it’s still not fully scalable,
meaning that it’s recovery time after experiencing drops and
reducing the rate is too large.

On the other hand, DCTCP, being defined as scalable [3],
uses fixed recovery time (half a round trip), regardless of
the change in BDP. Even though the dynamic behaviour of
DCTCP is not scalable due to is unscalable window update
algorithm [10], these problems can be solved without further
changes in the network.

We require Scalable congestion control to be used by L4S
sources, because it both maintains rate control and keeps the
link utilized even if BDP changes.

ECN Explicit Congestion Notification We require L4S
sources to use ECN[14] mostly because ECN is purely a sig-
nal and does not introduce an impairment, while dropping
is both signal and an impairment in the form of packet loss.
If dropping would be used by sources that use scalable con-
trol, it would introduce a very large impairment, especially
at high load, due to more agressive control and the need for
stronger signal. Besides, ECN can be emitted immediately,
in contrast to drop, where drop-based AQMs hold back from
introducing loss in case it’s only a sub-RTT burst. Another
advantage of using ECN is no need to add smoothing delay,
which is needed with drop because without RTT knowledge
for each flow, the network has to smooth over worst-case
RTT. Scalable senders can smooth the network signals them-
selves, or skip the smoothing in slow start [2] .

Another huge benefit of ECN is the obvious latency bene-
fit of near-zero congestion loss, removing retransmission and
time-out delays, which is very important for short flows [15].

3 Solution design

The solution design will be decribed in three steps. First,
we will explain the overtall structure (§ 3.1). In the second
step, we will describe the details of each key aspect of the
solution:

• coexistence between L4S and Classic flows § 3.2

• isolation of L4S service from Classic § 3.3

• overload handling § 3.4

Finally, in the third step, we will describe the Linux qdisc
implementation in § 3.5.

3.1 Solution Structure

The main aspect of our solution structure is using two queues
for two types of traffic with opposing requirements for de-
lay. L4S traffic needs ultra-low latency, which cannot be
achieved with large queue, while Classic traffic does require
a queue of certain size to keep the link utilized. Obviously,
we can’t satisfy both requirements in a single queue.

To determine which queue each packet should be classi-
fied to, we check the 2-bit ECN field in packet IP header.
Both types of traffic can use ECN. Classic sources use ei-
ther ‘ECT(0)’ to indicate that they supported ECN or ‘Not-
ECT’ otherwise, and in both cases packets are classified into
Classic queue. L4S sources are required to use ‘ECT(1)’
with default configuration (‘l4s ecn‘ and ‘l4s dualq‘ param-
eters) to get their traffic classified into L4S queue. However,
‘ECT(1)’ is an experimental ECN codepoint and is being re-
defined for L4S. The current version of DCTCP still uses
‘ECT(0)’, therefore, we made it possible to configure our
AQM with DCTCP compatibility (‘dc ecn‘ and ‘dc dualq‘
parameters), where ‘ECT(0)’ packets are classified into L4S
queue, and only ‘ECT(0)’ packets go into the classic queue.

An L4S source using scalable congestion control reaches
very low latency by enabling the network to signal conges-
tion frequently, using ECN marking. However, such frequent
signaling would introduce a problem for a Classic source and
push it to starving itself. To solve this problem, we introduce
a coupling mechanism between the two queues, to ensure the
coexistence possibility for both traffic types. Such coexis-
tence is achieved by maintaning TCP-fairness - rough steady
state rate balance per RTT [9]. In our solution, we couple the
congestion signals of the two queues, introducing a stronger
signal in L4S queue, and weaker in the classic one, similarly
to the single-queue coupled AQM in [6].

Congestion signals are also used to solve the problem of
how often to schedule each queue. Our solution allows the
end systems of each traffic type to ‘schedule’ themselves,
based on the congestion signals frequency received from the
network. However, since L4S traffic controls its own delay
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Figure 1: Dual Queue Coupled AQM

very well, it gets priority in cases when there is a ‘disagree-
ment’. Still, this does not cause the Classic traffic to starve
itself, as the L4S priority only applies when the delay differ-
ence between the two queues does not exceed the threshhold.

The structure overview of the whole DualQ Coupled AQM
is shown in Figure 1. with the classifier and scheduler as the
first and last stages, and own native AQM for each queue in
the middle.

3.2 Coupled AQM for Window Balance
The goal of coupling the two queues is achieving window
fairness for Classic (C) and Scalable (L4S) congestion con-
trols, to make their coexistence possible. To reach this goal,
we need to determine the signal (marking or dropping) in-
tensity for each control that would maintain window balance
between them. First, we derive the formula to characterize
the steady state window W for each control as a function of
signal (loss or ECN-marking probability p). Second, like [6],
we set the windows for L4S and C to be equal and formulate
the relationship between the respective congestion signals.

For C, we use Reno, not because it’s commonly used but
as a worst case scanario, applying the simplified equation
from [11]. For L4S, we use DCTCP, but we do not apply
the step marking equation from DCTCP paper [1]; instead,
we use probabilistic marking DCTCP equation, as derived
in Appendix A of [6]. For balance between the windows
(Wreno = Wdc, we substitute the equation for each window
resulting in 1. Then we rearrange to derive the coupling re-
lationship in 2:√

3
2preno

=
2

pdc
(1) pC =

( pL

k

)2
, (2)

where coupling factor k = 2
√

2/3 = 1.64 for Reno. The
formula in (2 applies both for Reno and TCP Cubic in Reno
mode, except for TCP Cubic in Reno mode, the coupling
factor becomes k = 2/1.68 = 1.19. We round it up to k = 2
to avoid floating point division in the kernel, which proves to
be sufficient, as shown in the results of our experimets in § 5.

In the AQM, the coupling is implemented in two stages.
First, base probability p′ is calculated, which is then tran-

formed for each queue, according to the coupling relation:

• L4S: pL = k ∗ p′

• Classic: pC = (p′)2

3.3 Dual Queue for Low Latency
Each of the two queues needs its own native AQM, as in
many cases, one of the queues will be empty. The low queu-
ing delay in L4S queue is achieved with a small marking
threshold (T ), defined in time units with a floor of two pack-
ets.

When there is traffic in both queues, an L4S packet can be
marked either by its native AQM or by the coupled AQM if T
is exceeded. However, the coupling ensures that L4S traffic
reaches T only when being bursty or if there is not enough
traffic in the Classic queue.

We use a time-shifted FIFO scheduler [12] to decide be-
tween the head packets of the two queues, selecting the
packet that has waited in the queue longest, after subtract-
ing a constant timeshift to prioritize L4S packets. To pro-
tect Classic traffic from unresponsive L4S flow, we no longer
give L4S packets such priority if the extra delay of the lead-
ing Classic packet exceeds the timeshift.

3.4 Overload Handling
Since we use a priority scheduler, we need to make sure that
in overload conditions, we do not harm Classic traffic more
we would when using a single queue.

The AQM subtracts the unresponsive traffic from the total
capacity, allowing the responsive flows to share the remain-
ing capacity. This applies to both types of traffic - L4S and
Classic. Classic drop probability is used to handle the un-
responsive traffic after marking probability reaches the max-
imum. At the same time, responsive flows continue to get
ECN marking from the native AQM when the threshold is
reached, preserving low delay.

3.5 Linux qdisc Implementation

Algorithm 1 Enqueue for Dual Queue Coupled AQM
1: STAMP(pkt) . Attach arrival time to packet
2: if LQ.LEN() + CQ.LEN() >L then
3: DROP(pkt) . Drop packet if Q is full
4: else
5: if LSB(ECN(pkt))==0 then . Not ECT or ECT(0)
6: CQ.ENQUEUE(pkt) . Classic
7: else . ECT(1) or CE
8: LQ.ENQUEUE(pkt) . L4S

Algorithms 1 & 2 give a simplified summary of DualPI2
enqueue and dequeue implementations as pseudocode, omit-
ting overload and saturation logic for clarity. The full code
is available in a open-sourced Github repository.1 Packets
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Algorithm 2 Dequeue for Dual Queue Coupled AQM
1: while LQ.LEN() + CQ.LEN() >0 do
2: if LQ.TIME() + D ≥ CQ.TIME() then
3: LQ.DEQUEUE(pkt) . L4S
4: if (LQ.TIME()> T )∨ (pL > RAND()) then
5: MARK(pkt)
6: else
7: CQ.DEQUEUE(pkt) . Classic
8: if pC > RAND() then
9: if ECN(pkt)==0 then . Not ECT

10: DROP(pkt) . Squared drop
11: continue . Redo loop
12: else . ECT(0)
13: MARK(pkt) . Squared mark
14: RETURN(pkt) . return the packet, stop here

are time-stamped and classified in enqueue. On dequeue, the
time-shifted FIFO scheduler is implemented, which takes the
packet that waited the longest. If an L4S packet is sched-
uled, line 4 marks the packet when the L4S threshold is ex-
ceeded or when the packet is randomly decided to be marked
according to the probability pL. When a Classic packet is
scheduled, line 8 determines whether to signal congestion
with probability pC. Then line 9 checks if the Classic packet
supports ECN and if so, uses ECN, otherwise, the packet is
dropped.

The internal base signalling probability (p′) is output by
the core PI Algorithm (3) which only needs occasional exe-
cution [8].

Algorithm 3 PI core: Every Tupdate p is updated
1: curq = CQ.TIME()
2: p′ = p′+α ∗ (curq−TARGET )+β ∗ (curq− prevq)
3: pL = k ∗ p′

4: pC = (p′)2

5: prevq = curq

Probability calculation The first step is calculating the in-
ternal probability p′. This calculation is based on queue de-
lay in each queue - L4S and classic.

Then, we calculate delta, which includes a change of
queue delay comparing to the target delay, and a change
comparing to previous queing time. The integral gain factor
α is used to scale the change in queing time and restore any
persistent standing queue to the user specified target delay
(passed as target parameter), while proportional gain factor
β is used to scale the change in queuing time comparing to
previous measurement. Both changes are added to delta as
follows:

delta = (qdelay− target)∗α)+(qdelay−qdelay old))∗β

We add delta to base probability, and check for overflow
and underflow by comparing the probability to its previous
value. If delta > 0 and current probability is smaller than its
previous value, there was an overflow, so we set the current
value to a maximum. If delta is zero or negative, there was

an underflow, so we set the current value to zero.

As a next step, we check if switchover to drop is config-
ured, defined by l drop parameter. The l drop parameter
sets the maximum probability above which classic drop is
applied to all traffic in both queues. Since we use a cou-
pling factor between L4S and Classic queues, which we
refer to as k, we need to align maximum drop probability
100% L4S marking in case l drop is disabled (set to zero).
To do this, we set the probability value to MAX PROB/k,
where MAX PROB is maximum probability represented by
the largest 32 bit integer.

All the steps above are executed once in an interval of
time defined by tupdate parameter, meaning the probability
is updated every tupdate ms. For different queues, the prob-
ability is tranformed according to the coupling relationship
described in § 3.2.

This probability is used each time a packet is enqueued
or dequeued, depending on what is configured. At dequeue,
we peek at a packet from each queue and calculate the queue
delay for each of them respectively. If any of the queues is
empty, we dequeue a packet from the queue that is not empty
and do not apply any dropping or marking. If both queues
have packets, and biased L4S queue delay is greater or equal
than classic queue delay, we dequeue an L4S packet, and if
otherwise, we dequeue a classic queue packet. The biased
queue delay is calculated by adding time-shift to the L4S
queuing time: qdelaylb = tshi f t +qdelayl << tspeed
Time-shift is passed to the scheduler as tshi f t parameter in
time units, while tspeed represents L4S FIFO time speed in
bit shifts and is used to give a bias to L4S delay by scaling it.

4 Deployment

DualPI2 can be configured for different deployment scenar-
ios. The README document in the Github repository lists
the parameters that can be passed to the AQM to set the de-
sired configuration and their default values2. All parameters
are optional, and default values will be used is no parameters
are specified.

Some of the parameters are worth paying additinal atten-
tion to, since they might need to be changed, depending on
the deployment scenario. The first deployment scenario we
target is adding DualPI2 at a path bottleneck on the Internet.
In that case, using default parameters will classify ECT(1)
and CE packets into L4S queue, while the rest of the traffic,
ECT(0) and not ECT packets, will go through the Classic
queue. In this scenario, scalable congestion control is ex-
pected to use ECT(1), while classic control can use either
not ECT of ECT(0).

Another deployment scenario that can be relavant is Data
centers where it is not possible to change everything at the
same time, for example, in cases when there is no single sys-
tem administrator. In that case, DualPI2 would make incre-
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mental deployment possible, allowing scalable and classic
congestion controls to co-exist until full deployment is com-
pleted.

For cases when DCTCP is used, DualPI2 has to be config-
ured with ‘dc dualq‘ and ‘dc ecn‘ parameters, to enable L4S
service for all ECT packets. For scalable congestion con-
trols that only use ECT(1), default parameters (‘l4s dualq‘
and ‘l4s ecn‘) should be used. Scalable marking will then
only be applied to ECT(1) packets, while ECT(0) traffic will
get classic marking. Refer to section § 3.2 for explanation of
the difference between scalable and classic marking.

DualPI2 can also be deployed with a single queue instead
of two coupled queues, then it will behave like similar single
queue AQMs (PIE or similar). Such scenario is not our main
goal, but can be used at certain transitioning stages, when
only a single congestion control is used, although, the same
performance will be achieved when DualPI2 is configured
with two queues (only one of them will be used).

The ‘alpha‘ and ‘beta‘ parameters are based on the sta-
bility analysis (Appendix A of [6]) and are used to con-
vert changes in queueing delay into changes in mark or drop
probability. The default values are proven to be sufficient for
link speeds of up to 200 Mbit/sec and RTTs of up to 100ms,
but for different scenarios, further stability analysis is re-
quired to choose the right values. The ‘tupdate‘ parameter
represents probability calculation timer frequency, defining
how often this probability is updated; its value is propor-
tional to ‘alpha‘ and ‘beta‘, so ‘tupdate‘ is changed, ‘alpha‘
and ‘beta‘ should be adjusted accordingly, to ensure that the
change in frequency results in the same response with finer or
larger steps, instead of more (or less) aggressive congestion
signalling. The ‘k‘ parameter is a coupling factor with de-
fault value that is suitable for congestion controls mentioned
in § 3.2. Changing its value will result in smaller or larger
difference in signal intensity issued for each type of traffic.

The ‘l thresh‘ parameter defines queue size (in units of
time) at which the L4S packets get marked. It can be set in ei-
ther time units or packets by switching between ‘et packets‘
and ‘et time‘ parameters, but we recommend to use ‘et time‘
as it gives a more accurate estimation of the queue delay. The
default ‘l thresh‘ value (1 ms) is small to ensure low delay,
but it can be beneficial to increase it for bottlenecks with
smaller link speed, due to higher packet serialization times.
For instance, on a 4 Mbps link, the serialization time for a
single packet is 3ms (1ms on 12 Mbps link), and the default
‘l thresh‘ value of 1ms would result in all L4S packets being
marked. It is therefore recommended to set ‘l thresh‘ to an
equivalent of at least 2 packets serialization time (6ms for 4
Mbps link, 3ms for 12Mbps link).

The target queuing delay for the Classic queue is set using
‘target‘ parameter. . The ‘t shift‘ paramter represents sched-
uler bias in time units. As mentioned in § 3.2, we use time
shifted bias to prioritize L4S packets. The ‘t shift‘ time is
subtracted from the delay of an L4S packet during schedul-

ing, but if a Classic packet has larger delay than ‘t shift‘, L4S
packets are no longer given a priority. Therefore, changing
‘t shift‘ to a larger value would mean that larger delay is al-
lowed in Classic queue, so ‘t shift‘ should be proportional to
‘target‘. We recommend to set ‘t shift‘ to ‘target‘ ∗ 2. An-
other parameter that gives bias to L4S traffic is ‘t speed‘; its
value represents the number of bits we will use to left-shift
the L4S delay, as mentioned in § 3.5. This type of scaling is
disabled by default as ‘t shift‘ is initialized to zero, but using
a larger ‘t speed‘ value would require to re-evaluate ‘t shift‘
value, as ‘t speed‘ will increase the L4S delay bias exponen-
tially with every extra bit. For example, when default value
of ‘t shift‘ (40 ms) and ‘t speed‘ (0) are used and the delay
of a given L4S packet is 2ms, L4S delay will get additional
bias of 40ms. If we increase ‘t speed‘ to 3, left-shifting L4S
delay of 2ms by 3 will convert it to 16 ms, giving additional
14ms bias.

The Classic taildrop is limited to 100% probability di-
vided by ‘k‘ by enabling ‘c limit‘ parameter by default. This
can be changed by passing ‘l drop‘ paremeter, which repre-
sents maximum L4S probability where classic drop is ap-
plied to all traffic. Setting ‘l drop‘ disables ‘c limit‘ and
vice versa. By default, packets are dropped on dequeue, this
can be changed by switching between ‘drop enqueue‘ and
‘drop dequeue‘, which are rather self-descriptive. We rec-
ommend using ‘drop dequeue‘ as it provides faster response,
and we have observed better performance with drop on de-
queue.

The maximum number of packets that can be enqueued is
set in the ‘limit‘ parameter, but if a parent qdisc uses a larger
limit, it will override the value of this parameter.

5 Evaluation

Figure 2: Testbed configuration

To evaluate the performance of DualPI2, we have conducted
experiments in testbed consisting of a classical residential
service delivery network composed of Residential Gateway,
xDSL DSLAM (DSL Access Multiplexer), BNG (Broad-
band Network Gateway), Service Routers (SR) and appli-
cation servers, as shown in Figure 2.

The main attribute of our testbed is a setup that includes
two client and servers pairs, and AQM Server in the middle,
allowing to have two different sources of traffic and a bottle-
neck where AQM is installed.
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Figure 3: Heavy dynamic workload: 1 long flow and 300 short requests per second for each CC.
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We have conducted a series of experiments with differ-
ent scenarios, evaluating different aspects of AQM perfor-
mance, but for brevity, we present the results of the main
aspects of our evaluation, focusing on queue delay and
window balance, as those are the main goals of DualPI2.
Each experiment lasted 250 secs and was performed with
different TCP congestion controls enabled on each client-
server pair, repeated in different combinations of link speed
(4,12,40,120,200 Mbps) and RTT (5,10,20,50,100). We used
a single long-running flow and multiple short flows. To emu-
late short flows, we used an exponential arrival process with
an average of 10 requested items per second for the 4 Mbps
link capacity, scaled for the higher link speeds up to 500 re-
quests for the 200 Mbps links. Every client request opened a
new TCP connection, closed by the server after sending data
with a size according to a Pareto distribution with α = 0.9,
with a size between 1 KB and 1 MB. The client logged the
completion time and transfer size. Timing was started just
before opening the TCP socket, and stopped after the client
detected that the connection was closed by the server.

We performed the same set of experiments for 2 differ-
ent AQMs - DualPI2, PIE and FQ Codel, with two differ-
ent congestion control combinations - DCTCP + Cubic and
ECN-Cubic + Cubic.

Queue delay measurements were done in each AQM by
logging the sojourn time of the head of the queue at each de-
queue. Window balance was calculated by dividing the win-
dow size of scalable (or ECN capable) congestion control by
classic, where a value of 1 represents perfectly balanced win-
dow, while values greater than 1 indicate the ratio at which
scalable congestion control (in DCTCP + Cubic comparison)
exceeds the window of the classic control.

To better quantify the average and percentiles of the com-
pletion times, we used the Completion Efficiency represen-
tation, which was calculated by dividing actual completion
time by theoretical completion time, where theoretical com-
pletion time represented the best achievable efficiency. We
then binned the samples in log scale bins (base 3) and calcu-
lated the average, 1st and 99th percentiles. The green theo-
retical completion time is now at 1 (maximum efficiency).

As shown in Figure 3, DualPI2 achieves ultra-low queuing
delay for L4S traffic, which is not possible to achieve with
state-of-the-art AQMs, such as PIE and FQ CODEL. The
delay is slightly higher for lower link speeds, as we allow
a floor of 2 packets ECN marking threshold to avoid 100%
marking. Window balance for DualPI2 is also maintained
rather well, in contrast to PIE, where DCTCP has a clear
window advantage.

6 Conclusion

In this paper, we have shown that DualPI2 achieves both ul-
tra low latency and scalable for L4S traffic, without harming

Classic traffic, making the coexistnce of scalable and classic
congestion controls possible.
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Notes
1Open source at https://github.com/olgaalb/sch_dualpi2
2Documentation for DualPI2 at https://github.com/olgaalb/

sch_dualpi2/blob/master/README.md
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