Service Differentiation in
3rd Generation Mobile Networks

Vasilios A. Siris
Inst. of Computer Science, FORTH, Crete, Greece
vsiris@ics.forth.gr

Bob Briscoe, Dave Songhurst
BT Research, Ipswich, UK

QoflS 2002
Oct. 16-18, 2002, Zurich, Switzerland

Objective and approach
« Objective: Efficient resource control and service
differentiation in 3G (WCDMA) networks

« Approach:
\
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Roadmap

« Objective: Efficient resource control and service
differentiation in 3G (WCDMA) networks

« Motivation
« Wireless resource constraints in uplink & downlink

« Approach based on economic modeling
« Optimization based congestion control
« Application & numerical investigations
» Class-based (weighted) service differentiation

« Conclusions

Motivation

for problem:

« Limited ability to increase resources of wireless
networks (can’t overprovision !)

« Increasing number of users accessing fixed networks
through wireless

for approach:

« Successfully applied to fixed networks (IST M3l,
Kelly, Gibbens et al, Key et al, Low et al, etc)

« Generalization of congestion control algorithms
« Efficient/robust resource utilization & decentralized
o« Framework for seamless wired/wireless control
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Congestion control and resource usage

Closed-loop control loop

demand (e.g. rate, class)

G e

feedback (e.g. losses, explicit, rate)

Feedback depends on level of congestion
and resource usage

Shared resources in CDMA: radio spectrum
(uplink) and base station power (downlink)

End-system reaction to feedback modeled
with utility functions

QoS & resource constraints in WCDMA

« QoS depends on two parameters, which can
be different for different users
« Transmission rate
« Signal quality (Signal-to-Interference Ratio, SIR)
« Different resource constraints in uplink and
downlink
= Uplink constraint=total interference
uplink resource usage=r-SIR
« Downlink constraint=base station power
downlink resource usage=power
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CDMA (Code Division Multiple Access)

« Wideband CDMA (WCDMA) most widely
adopted 3G air interface
= Based on Direct Sequence CDMA (DS-CDMA)

« Signals from different mobiles separated based
on unique codes

« Transmission rate can change between frames

received
power

different codes

rate can be
different in
different frames
frequency

5 MHz %

10 msec time

Resource usage in CDMA: Uplink
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Congestion pricing for rate-adaptive traffic

. Traffic with fixed signal quality requirements
= SIR determines target BER

. Adaptive to rate: U(r)

« Charges proportional to resource usage r-SIR

« User objective is to maximize net utility

price per unit resource

resource usage
———

maximize U (r)— A-r-SIR

over r

Special case: logarithmic utility

Logarithmic utility: U, (r;)=w, logr,

Weight w, represents willingness-to-pay per unit
of time

same for all users
Wl r'd

r;SIR;

Rate allocation proportional to weight

1 w;
V= e W
" SIR, ij

J
Weight can be associated with different classes
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Resource Usage in CDMA: Downlink
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downlink is power-limited
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in downlink -

resource usage )2
in downlink

Special case: logarithmic utility

. Logarithmic utility: U,(r,)=w, logr,

« Weight w, represents willingness-to-pay per

unit of time
_same for all users
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Application of model: two approaches

demand: weight

G 7 e

allocation: power or rate

« Two approaches:
= Allocation of power level
= Allocation of rate

« Users can adjust weight based on their utility

Application of model: two approaches

« Direct application to power control
w

pizzle pP

=« affects fast closed-loop power control
= results in varying signal quality
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Application of model: two approaches

« Direct application to power control

w; P

pi =
2
« affects fast closed-loop power control
= results in varying signal quality
. Estimate average power, then signal quality »

w1 w;

1

B =~ pP P
i ;= ==
D ow, SIR, T, S w,

1

« affects load control functionality of RNC
= power control not affected
= weights can be associated with different classes

Case of elastic traffic

« Maximization over two variables: transmission rate r and
signal quality SIR
« Utility for elastic traffic
= average throughput: I”-PS(S]R)

= utility: U(r . PS(S]R)) pkt success rate
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Case of elastic traffic

Maximization over two variables: transmission rate » and
signal quality SIR

Utility for elastic traffic

= average throughput: 7 - PS(SIR)

= utility: U(r . PS (S]R)) pkt success rate
Proposition: Optimal SIR* is independent of price 1 &
utility, depends only on P (SIR)

P,(SIR*)=P,’ (SIR*)-SIR*

Above allows decoupling of selection of SIR* and r*
= selection of SIR* done at CDMA layer

= rate adaptation done at higher layer (e.g. transport)
In MOBICOM’02 paper

Numerical investigations

o Qualitative & quantitative

« Dependence of rate/power allocation and

service differentiation on

» uplink/downlink

= mobile distance from base station

= load

» discrete rates

= power control errors

= SIR estimation errors
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rate (khps)

Rate allocation & distance
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« Uplink: rate independent of mobile position
o Downlink: rate depends on mobile position

Convergence
« No errors
— . Convergence in a
few steps
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Discrete rates

- o« No errors
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Effects of SIR estimation errors

o Discrete rates
" =2 | « SIRerr=1dB
™ .

e Service
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_6 achieved
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Conclusions

« Application of economic modeling for
« efficient and robust resource control,

« service differentiation based on weights; different
weights can be associated with different classes

» taking into account wireless characteristics and
resource constraints
. Related & ongoing work
« Different forms of utility & multiple wireless hops
» Hybrid code and time division multiplexing
= Cell coverage (“cell breathing”)
= Resource control in WLANs based on 802.11
« Seamless congestion control in wireless/wired
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Seamless congestion control in
fixed/wireless networks
max U(-)—A-r-SIR

r,SIR -

i\/

A
i/

wireless network

Seamless congestion control in
fixed/wireless networks

max U()=A-r-SIR— p-r-P,(SIR)

i\/
LA (.

wireless network

fixed/wired network

« ECN for common congestion signaling in
wired and wireless network
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