Objective and approach

- **Objective**: Efficient resource control and service differentiation in 3G (WCDMA) networks

- **Approach**:
 - CDMA technology: resource constraints, user control variables that affect resource usage
 - Economic modeling: utility functions, congestion prices, social welfare maximization

 + Framework for efficient resource control & service differentiation in CDMA networks
Roadmap

- Objective: **Efficient** resource control and service differentiation in 3G (WCDMA) networks
- Motivation
- Wireless resource constraints in uplink & downlink
- Approach based on economic modeling
 - Optimization based congestion control
- Application & numerical investigations
 - Class-based (weighted) service differentiation
- Conclusions

Motivation

for problem:
- Limited ability to increase resources of wireless networks (can’t overprovision !)
- Increasing number of users accessing fixed networks through wireless

for approach:
- Successfully applied to fixed networks (IST M3I, Kelly, Gibbens et al, Key et al, Low et al, etc)
- Generalization of congestion control algorithms
- **Efficient/robust** resource utilization & decentralized
- Framework for seamless wired/wireless control
Congestion control and resource usage

- Closed-loop control loop
 - Demand (e.g. rate, class)
 - Feedback (e.g. losses, explicit, rate)

- Feedback depends on level of congestion and resource usage
- Shared resources in CDMA: radio spectrum (uplink) and base station power (downlink)
- End-system reaction to feedback modeled with utility functions

QoS & resource constraints in WCDMA

- QoS depends on two parameters, which can be different for different users
 - Transmission rate
 - Signal quality (Signal-to-Interference Ratio, SIR)
- Different resource constraints in uplink and downlink
 - Uplink constraint=total interference
 uplink resource usage=$r \cdot SIR$
 - Downlink constraint=base station power
 downlink resource usage=power
CDMA (Code Division Multiple Access)

- Wideband CDMA (WCDMA) most widely adopted 3G air interface
 - Based on Direct Sequence CDMA (DS-CDMA)
- Signals from different mobiles separated based on unique codes
- Transmission rate can change between frames

Transmission rate can change between frames

CDMA (Code Division Multiple Access)

- Wideband CDMA (WCDMA) most widely adopted 3G air interface
 - Based on Direct Sequence CDMA (DS-CDMA)
- Signals from different mobiles separated based on unique codes
- Transmission rate can change between frames

Transmission rate can change between frames

Resource usage in CDMA: Uplink

\[SIR_i = \frac{g_i p_i}{\sum_{j \neq i} g_j p_j + \eta} \]

- target bit energy to noise density ratio \(E_b/N_0 \) (determines bit error rate)
- spreading bandwidth
- receiving power

assuming perfect power control

uplink is interference-limited

\[\sum_i \frac{1}{r_i SIR_i} < 1 \]

resource constraint in uplink

\[\frac{1}{W/r_i SIR_i} + 1 \]

resource usage in uplink

approximations for large # of mobile users

\[\sum_i r_i SIR_i < W \]

\[r_i SIR_i \]
Congestion pricing for rate-adaptive traffic

- Traffic with fixed signal quality requirements
 - SIR determines target BER
- Adaptive to rate: $U(r)$
- Charges proportional to resource usage $r \cdot SIR$
- User objective is to maximize net utility

$$\text{maximize } \sum_{i} \left[U(r) - \lambda \cdot r \cdot SIR \right]$$

Special case: logarithmic utility

- Logarithmic utility: $U_i(r_i) = w_i \log r_i$
- Weight w_i represents willingness-to-pay per unit of time
 - $\frac{w_i}{r_i SIR_i} = \lambda$ same for all users
- Rate allocation proportional to weight
 - $r_i = \frac{1}{SIR_i} \sum_j w_j W$
- Weight can be associated with different classes

V. A. Siris, ICS-FORTH
Resource Usage in CDMA: Downlink

Downlink is power-limited

Resource constraint in downlink
\[\sum_i p_i < P \]

Resource usage in downlink
\[p_i \]

Special case: logarithmic utility

- Logarithmic utility: \[U_i(r_i) = w_i \log r_i \]
- Weight \(w_i \) represents willingness-to-pay per unit of time
 \[\frac{w_i}{P_i} = \lambda \]
 same for all users
- Power allocation proportional to weight
 \[p_i = \sum_j \frac{w_j}{P} \]
Application of model: two approaches

Two approaches:
- Allocation of power level
- Allocation of rate
- Users can adjust weight based on their utility

Direct application to power control

\[p_i = \frac{w_i}{\sum w_j} \rho P \]

- affects fast closed-loop power control
- results in varying signal quality
Application of model: two approaches

- **Direct application** to power control

 \[p_i = \frac{w_i}{\sum w_j} \rho P \]

 - affects fast closed-loop power control
 - results in varying signal quality

- **Estimate average power, then signal quality** γ

 \[\bar{p}_i = \frac{w_i}{\sum w_j} \rho P \quad r_i = \frac{W}{SIR_i \bar{I}_i} \frac{1}{\sum w_j} \rho P \]

 - affects load control functionality of RNC
 - power control not affected
 - weights can be associated with different classes

Case of elastic traffic

- Maximization over **two variables**: transmission rate \(r \) and signal quality \(SIR \)

- Utility for elastic traffic
 - average throughput: \(r \cdot P_s(SIR) \)
 - utility: \(U(r \cdot P_s(SIR)) \) pkt success rate
Case of elastic traffic

- Maximization over two variables: transmission rate \(r \) and signal quality \(SIR \)
- Utility for elastic traffic
 - average throughput: \(r \cdot P_s(SIR) \)
 - utility: \(U(r \cdot P_s(SIR)) \) pkt success rate
- Proposition: Optimal \(SIR^* \) is independent of price \(\lambda \) & utility, depends only on \(P_s(SIR) \)
 \[
P_s(SIR^*) = P_s'(SIR^*) \cdot SIR^*
\]
- Above allows decoupling of selection of \(SIR^* \) and \(r^* \)
 - selection of \(SIR^* \) done at CDMA layer
 - rate adaptation done at higher layer (e.g. transport)

In MOBICOM’02 paper

Numerical investigations

- Qualitative & quantitative
- Dependence of rate/power allocation and service differentiation on
 - uplink/downlink
 - mobile distance from base station
 - load
 - discrete rates
 - power control errors
 - SIR estimation errors
Rate allocation & distance

- **Uplink**: rate independent of mobile position
- **Downlink**: rate depends on mobile position

Convergence

- No errors
- Convergence in a few steps
Discrete rates

- No errors
- Convergence in a few steps
- Discrete rates

Effects of Power Control Errors

- Discrete rates
- PCE=1 dB
- Service differentiation achieved
Effects of SIR estimation errors

- Discrete rates
- SIRerr=1 dB
- Service differentiation achieved

Conclusions

- Application of economic modeling for
 - efficient and robust resource control,
 - service differentiation based on weights; different weights can be associated with different classes
 - taking into account wireless characteristics and resource constraints
- Related & ongoing work
 - Different forms of utility & multiple wireless hops
 - Hybrid code and time division multiplexing
 - Cell coverage (“cell breathing”)
 - Resource control in WLANs based on 802.11
 - Seamless congestion control in wireless/wired
Seamless congestion control in fixed/wireless networks

\[
\max_{r, SIR} \ U(r) - \lambda \cdot r \cdot SIR
\]

- ECN for common congestion signaling in wired and wireless network
Our other related publications

“Resource Control for Elastic Traffic in CDMA Networks”,
ACM MobiCom 2002, Atlanta, USA, 23-28 Sep. 2002

“Economic Models for Resource Control in Wireless Networks”,

“Congestion Sensitive Downlink Power Control in WCDMA”,

“Cell Coverage based on Social Welfare Maximization”,
IST Mobile Summit 2002, Thessaloniki, Greece, June 2002

M4I: Joint project with BT Research (BTexact), UK

www.ics.forth.gr/netlab/wireless.html