designing for tussle

case studies in control over control

JCL B

Bob Briscoe BT Networks Research Centre Jun 2004

role of communications research?

- pushing forward bounds of the possible
- help industry/society with comms technology choices
- to make an impact
- not just technical; also social, commercial
 - inseparable interwoven issues
 - ideal: multi-disciplinary expertise
 - sufficient: reasonable cross-discipline awareness
- otherwise will not make impact

communications control

• problem: evolvability vs. infrastructure viability & abuse

control assumptions: examples

- authentication: who checks id?
- denial of service attack or congestion?: who decides?
- resource sharing: who decides fairness criterion?
- peer to peer sharing/ad hoc: why share resources?
- end-point vs. middle control: purely technical?
- aim to explicitly state control assumptions

control assumptions in typical papers

- neutral
- unformed
- unconscious
- conscious unstated
- conscious stated

- \leftarrow not so common
- \leftarrow fine
- ← worst
- ← rarely succeeds
- ← fine
- control over control ← subject of this talk
 - decide control model at run-time, not design time
 - improve infrastructure evolvability and viability...

evolution of evolvability research

O end to end arguments [SaltzerReedClark84]

• protect generic investment, surrender control to foster innovation

end of e2e [ClarkBlumenthal00]

- ends not trusted to co-operate with whole
- middle needs investment incentive

Bend of (end of e2e) [Shenker, Kelly, Varian, Crowcroft, Anderson etc]

• game theoretic mechanism design

argument is the end [ClarkSollinsWroclawskiBraden02]

• design for tussle

comms infrastructure control a history of tussle

centralised (operator)	distributed (customer)	large
	* = with (dumb) central support	scale
legend predominant model today	feasible range (at large scale)	<u>feasibility</u>
predominant model today		
(ineffective)		1070
(inefficient)	retransmit control rate control*	1978 1988
	service creation	1988
configuration		2
address alloc		: ?
	authenticity/integrity	1994
	privacy	1994
session co	· · ·	1997
comms accounting	(intellg'nt centrl supt)	1997
differential quality	*	1997
admission control	*	1999
caching	(p2p)	1999
denial of service protection	*	2000
geographic location		2000
presence	(inefficient)	2000
unicast forwarding	(p2p) (inefficient) (p2p) (inefficient)	2001
multicast forwarding	(p2p) (inefficient)	2001 2001
access net routing	(p2p)	2001
service accounting access net provisioning (open spectrum)	(p2p) (theoretical)	2003
broadcast forwarding	(μ∠μ)	n/a
core routing		n/a
core provisioning		n/a
		.,

spectrum of control

• can also move control to intermediate points

case study: denial of service mitigation

0e2e: iTrace: ends: detection& trace; middle: previous hop

- 1:1M data packets trigger ICMP iTrace packet at each router
- message to dest address giving present & previous hop address
- dest under attack can trace back to earliest honest address on path
- push-back filters into network
- 2e problems
 - ends not trusted: spoof attack to install false filters
 - middle needs incentive to invest in iTrace upgrades

►**9**e2e fixed

- authenticate filter requests hop by hop
- design for tussle
 - move detection & trace to proxy one notch in from ends

case study: contractual mobility

access routing case study

case study: quality of service

materials & comp- equip network service content & appli- end process equip onents makers owners providers applics ances users

• e2e: TCP/IP: ends: congestion control; middle: forwarding

 transmission control protocol (TCP) [VanJacobsen88] explicit congestion notification (ECN) [Floyd94]

e2e problems

- ends not trusted: VoIP free-riding
 - middle needs investment incentive Intserv [BradenClarkShenker94], Diffserv [ClarkWroclawski97]

e2e fixed

• shadow pricing, proportional fairness [GibbensKelly99]

• **O**design for tussle

- guaranteed QoS synthesis [Karsten02]
- control over control [Briscoe02]

QoS context: cost realities

e2e design TCP: business model User 2 b/w (longer RTT, T₂)

User 1 bandwidth (shorter round trip time, T_1)

e2e problems greed breeds policing

- voice over IP
 - if experience congestion, send more
- integrated services
 - users reserve path resources (ReSerVation Protocol)
 - networks control admission then police traffic
- differentiated services
 - provision prioritised logical classes of service
 - traffic classified (Diffserv field in IP) and policed
 - congestion avoided for higher classes, usually
- middle takes control
 - can vertically integrate with media business

e2e gets fixed explicit congestion notification (ECN)

• without ECN: first sign of congestion is loss

- with ECN: mark packets randomly as congestion builds
- 2001: ECN standardised into IP & TCP
- extensible for marking before congestion onset (virtual queue)

design for tussle guaranteed QoS synthesis

packet re-feedback

control over control?

- control can migrate network service content & appli- end owners providers applics ances users
- sell different control models to different markets
 - DIY and "do it for you" customers

- can re-sell control package each time
- how to control where control is?
 - offering protocol response at a price 'switches on' its importance
- what controls where the control is?
 - market advantage, competition
 - regulation

research agenda implications

- pure technical research sometimes valid
- but often implicit commercial assumptions missed
- encourage articulation of commercial assumptions
- encourage multi-disciplinary research
 - at fundamental level, not just applications

questions?

control over control

further info

- Bob.Briscoe@bt.com
- [SaltzerReedClark84] Jerome H. Saltzer, David P. Reed, and David D. Clark, "End-to-end arguments in system design," ACM Transactions on Computer Systems, 2(4):277–288 (Nov 1984)
- [GibbensKelly99] Richard J. Gibbens and Frank P. Kelly. Resource pricing and the evolution of congestion control. Automatica, 35, URL: <u>http://www.statslab.cam.ac.uk/~frank/evol.html</u> (1999)
- [ClarkBlumenthal00] David Clark and Marjory Blumenthal, "Rethinking the design of the Internet: The end-to-end arguments vs. the brave new world," In Proc. Telecommunications Policy Research Conference (TPRC'00), URL: <u>http://www.tprc.org/abstracts00/rethinking.pdf</u> (Sep 2000)
- [BradenClarkShenkerWroclawski00] Bob Braden, David Clark, Scott Shenker and John Wroclawski, "Developing a Next-Generation Internet Architecture," DARPA White paper, URL: <u>http://www.isi.edu/newarch/DOCUMENTS/WhitePaper.pdf</u> (Jul 2000)
- [Briscoe02] Bob Briscoe, "M3I Architecture PtI: Principles" Deliverable 2 PtI, M3I Eu Vth Framework Project IST-1999-11429, URL: <u>http://www.m3i.org/results/m3idel02_1.pdf</u> (Feb 2002)
- [ClarkSollinsWroclawskiBraden02] David Clark, Karen Sollins, John Wroclawski and Robert Braden, "Tussle in Cyberspace: Defining Tomorrow's Internet," In: Proc. ACM SIGCOMM'02, Computer Communication Review 32 (4) URL: <u>http://www.acm.org/sigcomm/sigcomm2002/papers/tussle.pdf</u> (Aug 2002)

discussion

- design for tussle is subtle
 - takes years of hindsight to get right
 - too late for early market advantage?
 - open, free land grab gives some breathing space
 - can tendering process cope with subtlety?
- does designing for commoditisation bring it forward?
 - is having no plan B more risky?
- parallels in Microsoft product evolution?
 - BIOS, DOS, Win, COM, .NET, Office

spare slides

Bob Briscoe

seamless resource control

- traditional (optional):
 optimise ea subnet separately
 e.g. Diffserv (open-loop)
- © **new (required):** optimise all paths together

QoS synthesised by the ends (closed-loop)

Internet (not telco) industry approach

- creating *x*-like systems out of un-*x*-like parts
 - where x is some desirable attribute
- creating secure systems out of insecure parts
- creating reliable systems out of unreliable parts
- creating intelligent systems out of unintelligent parts
 - eg. intelligent session control without an intelligent network
- creating QoS control systems out of non-QoS controllable parts
- creating a telephony system out of best effort Internet parts
- ...
- creates low cost systems out of low cost parts
- but the approach puts all the smarts at the ends, which...
- creates profitable value chains out of unprofitable players...?
 broken

