Re-ECN: Adding Accountability for Causing Congestion to TCP/IP

Bob Briscoe, BT & UCL Arnaud Jacquet, BT Alessandro Salvatori, BT CRN DoS w-g, Apr 2006

solution statement

- re-ECN allows networks to police congestion control at network layer
 - on short and long time-scales
- if attackers can disguise their traffic perfectly
 - · by evading any attempt to distinguish it from a flash crowd
 - re-ECN can ensure attackers cause no more damage than legit users
 - and persistent attackers (incl. zombies) become much less potent than legit users
- conservative networks that want to protect against attacks
 - can make their own users control congestion correctly
 - can make other networks feel the pain they allow their users to cause
 - using penalties (typically financial)
- liberal networks may choose to pay the penalties
 - rather than tightly control their own users (thus attracting the world's attackers)
 - re-ECN doesn't aim to control such attackers (it could, but not scalably)
 - just moves money from networks harbouring attackers to networks harbouring victims

status Apr 06

- personal draft in IETF Transport Area <u>draft-briscoe-tsvwg-re-ecn-tcp-01</u>
 - presented twice (Oct 05 & Mar 06)
 - draft-01 fixed vulnerability found in draft-00 protocol encoding
 - interest and positive encouragement (mainly off-list)
- considerable interest from other operators
 - including 'official' interest channelled through BT a/c mgmt
- net neutrality solution
 - can be used to prevent apps helping themselves to QoS (or account for its use)
 - VoIP, video, p2p file-sharing
 - but not because of what they are, just by their congestion behaviour
 - getting swept into debate around US congressional committee
- looking for partner(s) to take through standards
 - IETF first, later: 3GPP, ETSI TISPAN, etc
 - ideally endpoint OS vendor/policing box vendor, but hits other buttons too

stack positioning

Re-ECN: Adding Accountability for Causing Congestion to TCP/IP draft-briscoe-tsvwg-re-ecn-tcp-01

intent

specific link & tunnel (non-)issues

§3: overview in TCP/IP

§4: in TCP & others | stds

§5: in IP

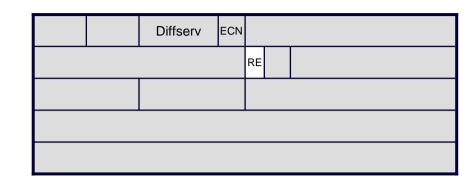
§6: accountability apps inform'

Emulating Border Flow Policing using Re-ECN on Bulk Data

<u>draft-briscoe-tsvwg-re-ecn-border-cheat-00</u> *intent: informational*

> RSVP Extensions for Admission Control over Diffserv using Pre-congestion Notification draft-lefaucheur-rsvp-ecn-00

adds congestion f/b to RSVP


intent stds

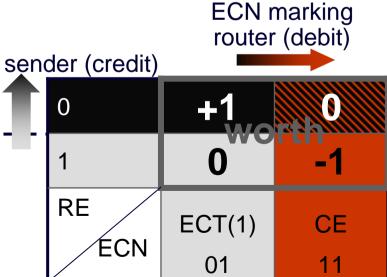
link

dynamic sluggish netwk accountability/control/policing border policing for admission control (e2e QoS, DDoS damping, cong'n ctrl policing) QoS signalling **TCP DCCP** speed UDP host cc (RSVP/NSLP) CC re-FCN in IP netwk

re-ECN

- proposed change to IP header
 - · re-ECN Extension (RE) flag
 - using last unused bit in IP header

once flow established


else

- sender re-inserts ECN feedback into forward data ("re-ECN") as follows
 - re-ECN sender usually sends grey packets

grey

- on transport layer (e.g. TCP) feedback
 of every red packet
 (network layer congestion) sender
 sender sends black
- conceptually, 'worth' of packet as shown in matrix
- aim for zero balance of worth in flow

sends

RFC3168

extended ECN codepoints: summary

extra semantics backward compatible with previous ECN codepoint semantics

ECN code- point	ECN [RFC3168] codepoint	RE flag	Extended ECN codepoint	re-ECN meaning	`worth'
0.0	0	Not-RECT	Not re-ECN capable transport		
00	not-ECT	1	FNE	Feedback not established	+1
01 ECT(1)	0	Re-Echo	Re-echo congestion event	+1	
	1	RECT	Re-ECN capable transport	0	
10 ECT(0)	0		'Legacy' ECN use		
	1	CU	Currently unused		
11 (CE	0	CE(0)	Congestion experienced with Re-Echo	0///0
		1	CE(-1)	Congestion experienced	-1

flow bootstrap

- feedback not established (FNE) codepoint; RE=1, ECN=00
 - sent when don't know which way to set RE flag, due to lack of feedback
 - 'worth' +1, so builds up credit when sent at flow start
- after idle >1sec
 next packet MUST be green
 - enables deterministic flow state mgmt (policers, droppers, firewalls, servers)
- green packets are ECN-capable
 - routers MAY ECN mark, rather than drop
 - strong condition on deployment (see draft)

- green also serves as state setup bit [Clark, Handley & Greenhalgh]
 - protocol-independent identification of flow state set-up
 - for servers, firewalls, tag switching, etc
 - don't create state if not set
 - may drop packet if not set but matching state not found
 - firewalls can permit protocol evolution without knowing semantics
 - some validation of encrypted traffic, independent of transport
 - can limit outgoing rate of state setup
- considering I-D [Handley & Greenhalgh]
 - state-setup codepoint independent of, but compatible with, re-ECN
- green is 'soft-state set-up codepoint' (idempotent), to be precise

brief romp through re-ECN draft (65pp)

- re-ECN in TCP fully spec'd (§4)
- network layer (§5)
 - OPTIONAL router forwarding changes → next slide
 - control and management section added
- accountability/policing applications (§6)
 - incentive framework
 - example ingress policers & egress dropper, pseudo-code TBA
 - DDoS mitigation explained
 - enables simpler ways to do e2e QoS, traffic eng, inter-domain SLAs
- incremental deployment (§7) → next slide but one
- architectural rationale (§8)
- security considerations (§10) → next slide but two

incremental deployment (§7: 5½pp)

- brings together reasoning for wire protocol choices
 - during deployment period networks can throttle down goodput for legacy hosts
 - can't attack by using legacy behaviours
- deployment scenarios & incentives
 - everyone who needs to act, must have strong incentive to act
 - and incentives must arise in the order of required deployment
- main messages
 - first step to break ECN deployment deadlock
 - edge-edge PCN for end-to-end controlled load (CL) QoS
 - **next step:** greed and fear motivators
 - help TCP (naively friendly) against greedy (streaming) apps
 - probably vertically integrated (conservative) operators first
 - 3GPP devices leak deployment to other networks by roaming
 - unilateral deployment per network ...

how to allow *some* networks to police - NGN *and* Internet

conservative networks

• might want to throttle if unresponsive to congestion (VoIP, video, DDoS)

middle ground

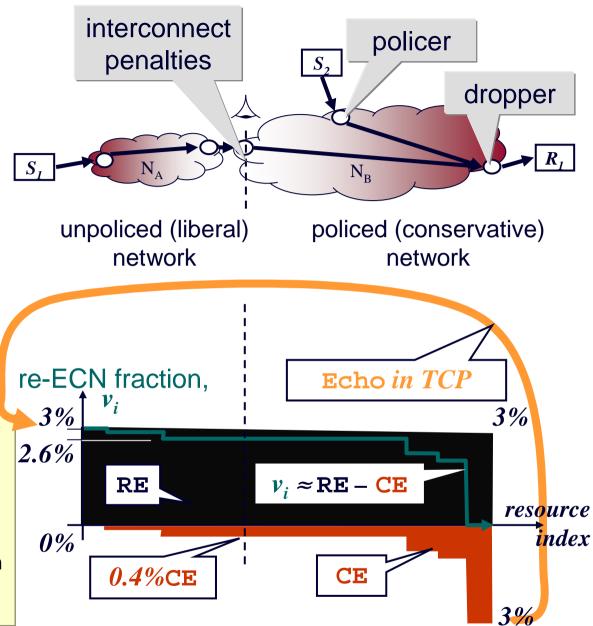
might want to cap congestion caused per user (e.g. 24x7 heavy sources)

liberal networks

- open access, no restrictions
- evolution of hi-speed/different congestion control,... new worms

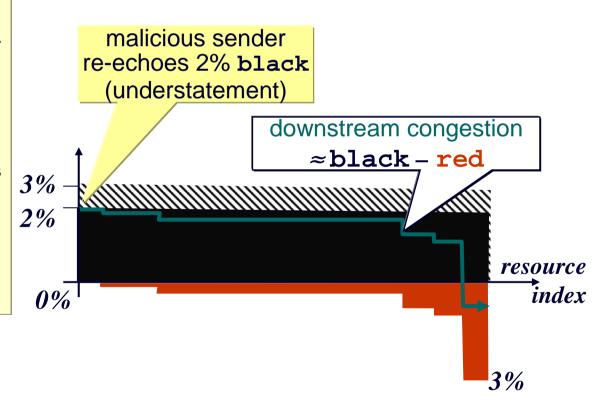
many believe Internet is broken

- not IETF role to pre-judge which is right answer to these socio-economic issues
- Internet needs all these answers balance to be determined by natural selection
- 'do-nothing' doesn't maintain liberal status quo, we just get more walls

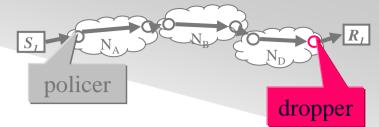

re-ECN goals

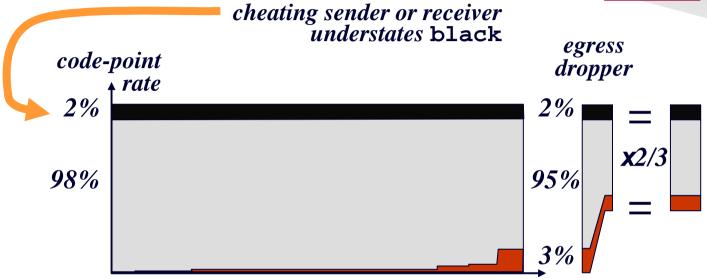
- just enough support for conservative policies without breaking 'net neutrality'
- manage evolution of new congestion control, even for liberal → conservative flows
- · nets that allow their users to cause congestion in other nets, can be held accountable

re-ECN partial deployment


0	+1	0
1	0	-1
RE	ECT(1)	CE
ECN	01	11

- on every congestion event from TCP, sender sends black, else sets grey
- at any point on path, diff betw fractions of black & red is downstream congestion
- routers unchanged

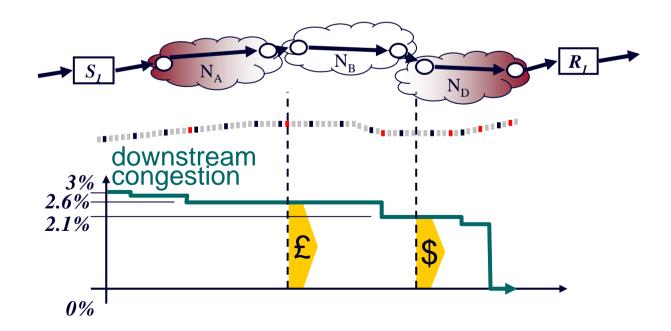



incentive | framework

- $\begin{array}{c} \text{interconnect} \\ \text{penalties} \\ \\ \text{policer} \\ \\ \hline S_I \\ \hline \end{array}$
- packets carry view of downstream path congestion to each router
- using path congestion declared by sender
 - can police rate response
 - or enforce congestion quotas
- won't sender or rcvr just understate congestion?
 - egress drops negative balance (next slide)

egress dropper (sketch)

- drop enough traffic to make fraction of red = black
 - understatement allows gain through policer, but dropper always fully cancels it out
 - goodput best if rcvr & sender honest about feedback & re-feedback
- understate congestion to attack routers?
 - given overloaded routers, honest senders will be sending nearly all black
 - overloaded routers preferentially drop grey and red (next slide)
- important principle: attack traffic does no harm until it congests a router
 - re-ECN drops attack at first congested router (no push-back, no new attack vector)


OPTIONAL router forwarding changes

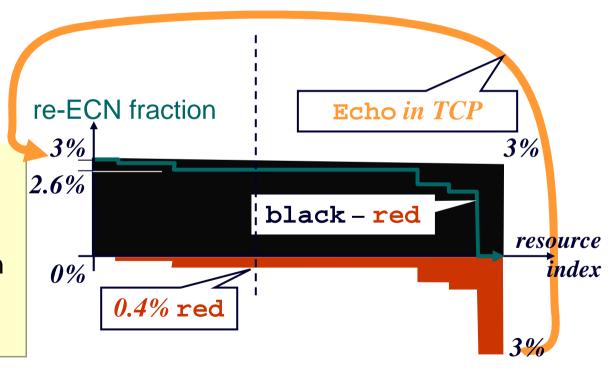
- preferential drop: improves robustness against DDoS
- green can be ECN marked rather than dropped (with caveat)

ECN code- point	ECN [RFC3168] codepoint	RE flag	Extended ECN codepoint	re-ECN meaning	`worth'	pref drop (1=drop 1st)
00 1 707	0	Not-RECT	Not re-ECN capable transport		1	
00	00 not-ECT	1	FNE	Feedback not established	+1	3
01 ECT(1)	0	Re-Echo	Re-echo congestion event	+1	3	
	1	RECT	Re-ECN capable transport	0	2	
10 ECT(0)	0		'Legacy' ECN use		1	
	1	CU	Currently unused		1	
11	CE	0	CE(0)	CE with Re-Echo	0	2
		1	CE(-1)	Congestion experienced	-1	2

inter-domain accountability for congestion

- metric for inter-domain SLAs or usage charges
 - N_B applies penalty to N_A in proportion to bulk volume of black less bulk volume of red over, say, a month
 - could be tiered penalties, directly proportionate usage charge, etc.
 - flows de-aggregate precisely to responsible networks

incentive framework


0	+1	0
1	0	-1
RE	ECT(1)	CE
ECN	01	11

 at any point on path, diff betw fractions of black & red is downstream congestion

routers unchanged

interconnect

re-ECN security considerations (§10) and incentive framework limitations (§6.3)

- egress dropper
 - robust against attack that plays-off against ingress policing
 - robust against state exhaustion attacks (by design of green)
 - write-up of state aggregation implementation TBA
 - believe new protocol allows dropper to be robust against dynamic attacks
- collateral damage attack still possible → next slide
- re-ECN deliberately designed not to rely on crypto

independence from identifiers

- controls congestion crossing any physical interface
 - user-network, network-network
 - congestion from network layer down to physical
 - not from a source address
- does have a dependency on source addresses
 - not to *identify* sources, merely to treat each flow separately
 - outstanding vulnerability
 - attacker spoofs another source's flow
 - deliberately brings down their joint average causing high drop

re-ECN summary

- neutralises attacks indistinguishable from flash crowd
 - or bankrupts (?) networks that harbour attackers
- simple architectural fix
 - generic accountability hook per datagram
 - requires one bit in IP header
 - can separate out feedback not est'd flag (≡ state set-up)
- driven by big greed buttons, not just fear (DoS)
 - enables 'net neutral' policing of causes of congestion
- fixed vulnerabilities so far by making it simpler
 - working on robustness to new attacks
- detailed incremental deployment story
 - liberal networks can choose not to police, but still accountable

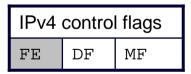
Re-ECN: Adding Accountability for Causing Congestion to TCP/IP

draft-briscoe-tsvwg-re-ecn-tcp-01.txt

Q&A

previous re-ECN protocol (IP layer)

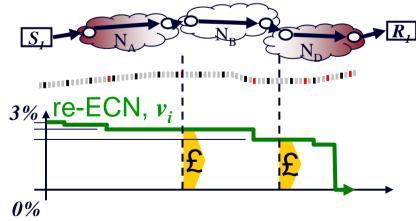
ECN code- point	standard designation
00	not-ECT
10	ECT(0)
01	ECT(1)
11	CE


 sender re-inserts congestion feedback into forward data: "re-feedback"

on every Echo-CE from transport (e.g. TCP)

sender sets ECT(0)

else sets ECT(1)


Feedback-Established (FE) flag

accountability for congestion

other applications

- congestion-history-based policer (congestion cap)
 - throttles causes of past heavy congestion (zombies, 24x7 p2p)
- DDoS mitigation
- QoS & DCCP profile flexibility
 - ingress can unilaterally allow different rate responses to congestion
- load sharing, traffic engineering
 - multipath routers can compare downstream congestion
- bulk metric for inter-domain SLAs or charges
 - bulk volume of ECT(0) less bulk volume of CE
 - upstream networks that do nothing about policing, DoS, zombies etc will break SLA or get charged more

congestion competition – inter-domain routing

- if congestion → profit for a network, why not fake it?
 - upstream networks will route round more highly congested paths
 - N_A can see relative costs of paths to R₁ thru N_B & N_C
- the issue of monopoly paths
 - incentivise new provision
- collusion issues require market regulation downfaked stream route congestion cost, Q_i resource routing sequence choice 23