Re-ECN: Adding Accountability for Causing Congestion to TCP/IP draft-briscoe-tsvwg-re-ecn-tcp

Bob Briscoe, BT & UCL Arnaud Jacquet, Alessandro Salvatori & Martin Koyabe, BT IETF-66 tsvwg Jul 2006

updated draft 02

- Re-ECN: Adding Accountability for Causing Congestion to TCP/IP
 - updated draft: <u>draft-briscoe-tsvwg-re-ecn-tcp-02.txt</u>
 - ultimate intent: standards track
 - **immediate intent:** re-ECN worth using last reserved bit in IP v4?
 - intended to split off apps section into draft-briscoe-tsvwg-re-ecn-apps, but didn't
 - intent of previous draft 01 (IETF-66 Dallas Mar 06):
 - hold ECN nonce (<u>RFC3540</u>) at experimental
 - get you excited enough to read it, and break it
- events since previous draft 01
 - since Mar 06, you've broken it (again)
 - off-list: Salvatori (co-author), Bauer, Handley, Greenhalgh, Babiarz
 - we've fixed it (changes to policing algorithms, not protocol)
 - you wanted to see IPv6 protocol encoding
 - included in updated draft to assess necessity of IPv4 header change
 - revisions to draft (after recap slides)

recap doc roadmap

Re-ECN: Adding Accountability for Causing Congestion to TCP/IP <u>draft-briscoe-tsvwg-re-ecn-tcp-02</u> *intent* §3: overview in TCP/IP §4: in TCP & other transports §5: in IP

§6: accountability apps *inform'I*

re-ECN recap: solution statement (§1)

allows some networks to police congestion control at network layer

conservative networks

• might want to throttle if unresponsive to congestion (VoIP, video, DDoS)

middle ground

- might want to cap congestion caused per user (e.g. 24x7 heavy p2p sources, DDoS)
- evolution of hi-speed/different congestion control

liberal networks

- open access, no restrictions
- many believe Internet is broken
 - not IETF role to pre-judge which is right answer to these socio-economic issues
 - Internet needs all these answers balance to be determined by natural selection
 - 'do-nothing' doesn't maintain liberal status quo, we just get more walls

• re-ECN goals

- just enough support for conservative policies without breaking 'net neutrality'
- allow evolution of new congestion control, even for flows from liberal \rightarrow conservative
- nets that allow their users to cause congestion in other nets can be held accountable

changes from draft 01 to 02

- listed (temporarily) at start of draft
 - added evolvability arguments against bottleneck policing (§6.1.2)
 - added (non-)issues with tunnels (§5.6),
 IPSec encryption and layered congestion notification (§5.7)
 - added IPv6 re-ECN protocol encoding (§5.2)
 - added reasoning for earlier change from 3 to 4 codepoints (§B)
 - new attacks and modified algorithm defences (§6.1.6 & §6.1.7)
 - minor editorial changes throughout
- HTML coloured diffs via
 - <<u>www.cs.ucl.ac.uk/staff/B.Briscoe/pubs.html#retcp</u>>

bottleneck policing harmful to evolvability ...and bypass-able anyway

- bottleneck policers: active research area since 1999
 - detect misbehaving flows causing 'unfair' share of congestion
 - located at each potentially congested routers
 - what right have these policers to assume a specific congestion response for a flow?
 - if they could police accurately, new congestion control evolution would require per-flow authorisation from all policers on the path (cf. IntServ)
 - malicious sources can bypass them by splitting flow IDs
 - even splitting flow across multiple intermediate hosts (or src address spoofing)
- re-ECN policing
 - polices congestion caused by all sources behind a physical interface, irrespective of addressing
 - within that, can also choose to police per-flow, per flow setup, per-destination etc.
 - evolution of new behaviours by bilateral agreement with first ingress, if at all
 - dropper uses flow IDs, but no advantage to split IDs S_1 N_A N_B OOOOR R_1

(non-)issues with layering & tunnels

- general non-issue
 - **RE** flag shouldn't change once set by sender (or proxy)
 - policers merely read **RE** to compare with **CE** introduced so far
 - OK as long as **CE** represents congestion since same origin that set **RE**
- IP in IP tunnels
 - OK if tunnel entry copies RE and CE to outer header
 - but full functionality RFC3168 ECN tunnel resets CE in outer header
 - no reason given in RFC3168 arbitrary decision?
- IP payload encryption (e.g. IPSec ESP)
 - non-issue re-ECN designed to work only in network layer header
 - flow-ID obfuscation also non-issue re-ECN only uses flow ID uniqueness, if at all
- layer 2 congestion notification (ATM, Frame, ... MPLS, 802.3ar)
 - non-issue given IP layer should accumulate **CE** from each 'L2 network' into ECN
- considering guideline I-D on layered congestion notification

IPv6 re-ECN protocol encoding

• IPv6 hop-by-hop options header extension

- action if unrecognized (AIU) = 00 'skip and continue'
- changeable (C) flag = 1 'may change en route'
 - even tho RE flag shouldn't change en route (AH would just tell attackers which packets not to attack)
- seems wasteful for 1 bit, but we plan:
 - future hi-speed congestion control I-D using multi-bit congestion field
 - other congestion-related fields possible
 - e.g. to distinguish wireless loss and per-packet vs per-bit congestion

attacks on re-ECN & fixes

- recap: why two codepoints worth 0?
 - when no congestion send neutral (0)
 - packet marked 'cancelled' if network happens to mark a packet (-1) which the sender used to re-echo congestion (+1); +1 1 = 0
 - in draft 00, congestion marking of +1 packet turned it to -1 not 0, but networks could cheat by focusing marking on +1 (see §B)
- but now can't attacker just send cancelled packets?
 - immune from congestion marking
 - simple fix: policer counts cancelled with +1 towards *path* congestion
 - should have specified this anyway, as both represent path congestion
 - also check proportion of cancelled to +1 packets same as -1 to neutral
- set of attacks using persistently negative dummy traffic flows
 - see next presentation for border policing fix
- one remaining known vulnerability if attacker can spoof another flow ID
 - known since early on plan to focus effort on fixing this next

summary

- optional 'net neutral' policing of causes of congestion
 - liberal networks can choose not to police, but still accountable
- simple architectural fix
 - generic accountability hook per datagram
 - requires one bit in IPv4 header

- or IPv6 hop-by-hop option more wasteful but plan to use space
- bottleneck policing considered harmful (& ineffective)
- fixed re-ECN vulnerabilities while keeping simplicity
- changing IPv4 header isn't a task taken on lightly
 - now it's matured, we plan to discuss in network area too

Re-ECN: Adding Accountability for Causing Congestion to TCP/IP

draft-briscoe-tsvwg-re-ecn-tcp-02

Emulating Border Flow Policing using Re-ECN on Bulk Data

draft-briscoe-tsvwg-re-ecn-border-cheat

Bob Briscoe, BT & UCL IETF-66 tsvwg Jul 2006

simple solution to a hard problem?

- Emulating Border Flow Policing using Re-ECN on Bulk Data
 - updated draft: <u>draft-briscoe-tsvwg-re-ecn-border-cheat-01</u>
 - ultimate intent: informational
 - **exec summary:** claim we can now scale flow reservations to any size internetwork *and* prevent cheating

problem statement

- policing flow admission control
 - a network cannot trust its neighbours not to act selfishly
 - if it asks them to deny admission to a flow
 - it has to check the neighbour actually has blocked the data

N_C

(CL)

why should I block flows?

congested

- if it accepts a reservation
 - it has to check for itself.
 that the data rate fits within the reservation
- traditional solution
 - flow rate policing at borders
 - session border controllers too complex if they also have to rate police flows
- can pre-congestion-based admission control span the Internet?
 - without per-flow processing at borders?

solution rationale

- <0.01% packet marking at typical load
 - addition of any flow makes little difference to marking
- penalties to ingress of each flow appear proportionate to its bit rate
 - emulates border flow rate policing
- as load approaches capacity
 - penalties become unbearably high (~1000x typical)
 - insensitive to exact configuration of admission threshold
 - emulates border admission control
- neither is a perfect emulation
 - but should lead to the desired behaviour
 - fail-safes if networks behave irrationally (e.g. config errors) see draft

note well: not standardising contracts

- want to avoid protocols that depend on particular business models
 - only standardise the re-ECN protocol
 - then networks can choose to use the metric in various ways
- border penalties could be tiered thresholds, directly proportionate usage charge, etc.
 - networks can choose other, broadly similar arrangements
 - or choose not to use metric, and to do per-flow processing instead
- outside Diffserv region, networks can use whatever flow-based business model they choose, as now

why should ingress re-echo honestly?

 if N_D detects persistent negative balance between RE and CE, triggers sanctions

dummy traffic attacks on re-ECN

- sanctions against persistently negative flows may not discourage dummy traffic
- various attacks ([Salvatori, Bauer] see draft), eg.
 - a network sends negative dummy traffic with just enough TTL to cross border [Salvatori]
 - offsets penalties from other positive traffic
- fix is to estimate contribution from negative flows crossing border by sampling
 - inflate penalties accordingly removes attack motivations
 - see draft for details and example algorithm in appendix

summary

- claim we can now scale flow reservations to any size internetwork and prevent cheating
 - without per-flow processing in Internet-wide Diffserv region
 - just bulk passive counting of packet marking over, say, a month
 - sufficient emulation of per-flow policing
- see draft for
 - results of security analysis, considering collusions etc.
 - incremental deployment story
 - protocol details (aggregate & flow bootstrap, etc)
 - border metering algorithms, etc
- comments solicited, now or on list

Emulating Border Flow Policing using Re-ECN on Bulk Data

draft-briscoe-tsvwg-re-ecn-border-cheating-01

path congestion typically at both edges

- congestion risk highest in access nets
 - cost economics of fan-out
- but small risk in cores/backbones
 - failures, anomalous demand

you MUST do this you may not do this

- logically consistent statements
- build-time compliance
 - usual standards compliance language (§2)
- run-time compliance
 - incentives, penalties (§6 throttling, dropping, charging)
- hook in datagram service for incentive mechanisms
 - they can make run-time compliance advantageous to all

extended ECN codepoints: summary

extra semantics backward compatible with previous ECN codepoint semantics

ECN code- point	ECN [<u>RFC3168]</u> codepoint	RE flag	Extended ECN codepoint	re-ECN meaning	`worth'
00	not-ECT	0	Not-RECT	Not re-ECN capable transport	
		1	FNE	Feedback not established	+1
01	ECT(1)	0	Re-Echo	Re-echo congestion event	+1
		1	RECT	Re-ECN capable transport	0
10	ECT(0)	0		'Legacy' ECN use	
		1	CU	Currently unused	
11	CE	0	CE(0)	Congestion experienced with Re-Echo	////0/
		1	CE(-1)	Congestion experienced	-1

flow bootstrap

- feedback not established (FNE) codepoint; RE=1, ECN=00
 - sent when don't know which way to set RE flag, due to lack of feedback
 - 'worth' +1, so builds up credit when sent at flow start
- after idle >1sec next packet MUST be green
 - enables deterministic flow state mgmt (policers, droppers, firewalls, servers)
- green packets are ECN-capable
 - routers MAY ECN mark, rather than drop
 - strong condition on deployment (see draft)

- green also serves as state setup bit [Clark, Handley & Greenhalgh]
 - protocol-independent identification of flow state set-up
 - for servers, firewalls, tag switching, etc
 - don't create state if not set
 - may drop packet if not set but matching state not found
 - firewalls can permit protocol evolution without knowing semantics
 - some validation of encrypted traffic, independent of transport
 - can limit outgoing rate of state setup
- considering I-D [Handley & Greenhalgh]
 - state-setup codepoint independent of, but compatible with, re-ECN
- green is 'soft-state set-up codepoint' (idempotent), to be precise

previous re-ECN protocol (IP layer)

ECN code- point	standard designation
00	not-ECT
10	ECT(0)
01	ECT(1)
11	CE

 sender re-inserts congestion feedback into forward data: "re-feedback"
 on every Echo-CE from transport (e.g. TCP)
 sender sets ECT(0)
 else sets ECT(1)

• Feedback-Established (FE) flag

IPv4 control flags					
FE	DF	MF			

accountability for congestion other applications

- congestion-history-based policer (congestion cap)
 - throttles causes of past heavy congestion (zombies, 24x7 p2p)
- DDoS mitigation
- QoS & DCCP profile flexibility
 - ingress can unilaterally allow different rate responses to congestion
- load sharing, traffic engineering
 - multipath routers can compare downstream congestion
- bulk metric for inter-domain SLAs or charges
 - bulk volume of ECT(0) less bulk volume of CE
 - upstream networks that do nothing about policing, DoS, zombies etc will break SLA or get charged more

congestion competition – inter-domain routing

- if congestion → profit for a network, why not fake it?
 - upstream networks will route round more highly congested paths
 - N_A can see relative costs of paths to R_1 thru $N_B \& N_C$
- the issue of monopoly paths
 - incentivise new provision

