Using Self-interest to Prevent Malice Fixing the Denial of Service Flaw of the Internet

Bob Briscoe Chief Researcher, BT Group Oct 2006

Credits: Martin Koyabe, Carla Di Cariano-Gilfedder, Arnaud Jacquet

context & problem

defend against what attackers *could* do not what they do

need to win the last battle not just the next one

- infrastructure must serve v large population
 - · even during genuine flash crowds of demand
- most cost-effective attack: flood requests during flash crowd
 - when most people need/value a service most
 - when least effort needed to tip it over the edge
- assume virus-prone end systems won't go away
 - cell phones, TVs, MP3 players, game boxes, domestic control systems
- attackers can amass 100,000s into zombie botnets
 - can and do saturate even the biggest links in the Internet at will
- other approaches all try to detect attack traffic
 - then block future attempts from same source address
 - they need to stop attackers faking different source addresses for each packet
 - still problem with floods of single packets
 - with this mindset, researchers have defined success as
 - forcing an attacker to imitate a flash crowd

status

- one result of 3yrs research to fix Internet architecture
 - prime directive: don't unduly restrict Internet's ability to foster surprises
 - fixed Internet resource sharing DDoS fix a pleasant consequence
- plan to do whatever it takes to standardise into IP
 - 2005 full standards specs drafted
 - been progressing them through IETF
 - propose to use last undefined bit in IP packet header
 - we don't underestimate the task ahead
- huge effort trying to pervert protocol
 - two major flaws successfully fixed without additional complexity
- seeking wider collaboration
 - co-operative or adversarial

fix generic IP layer first

- will raise the bar (increasing attacks on higher layer vulnerabilities)
- treat DoS for what it is: extreme congestion an externality
- genuine sources should slow down in response to congestion
 - voluntary response inherent to current Internet design
 - persistently sending fast into high congestion is never genuine behaviour
 - don't need to judge good/bad. ISP can just force response to congestion
 - stability of Internet depends on congestion response anyway
- designers don't mandate congestion response, each ISP does
 - market decides
 - but relevant ISP liable for externality if it doesn't act
- focus on liabilities between networks
- enforce liability for congestion externality, but recursively

legend

network

congested link

approach

solution

currently N_A contracts with N_B to deliver packets but without information about N_B's quality (congestion)

S₁ has this information, so make it reveal it

information symmetry 're-feedback'

solution

black proposed for IP packet network (IP) header sufficient to deliver packet payload (including TCP) hidden from networks

- routers approaching congestion mark some packets red receiver feeds back to sender
 - already standardised & implemented
 - not generally turned on by operators
- sender re-inserts feedback by marking packets black
 - re-feedback requires standardisation

- flows get no further than their 'fare' pays for
- routers discard persistent negative balance

two different customers, same deal

Sigins

uiion

effect

DDoS attack strategy #1

interactive short flows (e.g. Web, IM)

will re-feedback prevent DDoS? ≡ will it be deployed widely *enough*?

deployment bootstrap incentives

- deployment closure incentives
 - doesn't have to finish the job itself
 - can create right incentives to deploy complementary solutions
- once fully deployed, winning the war
 - distinguishing genuine flash crowd from simultaneous attack

deployment bootstrap incentives

- deployment effectively involves architectural change
 - 1. (minor) change to sender's Internet stack
 - 2. network deploys edge/border incentive functions
- preventing gridlock between these actors requires strong incentives

deployment bootstrap incentives

bundling with itself

- re-feedback solves central cost control problem of ISPs
 - third party services competing with ISP pay below network cost
 - ISP has to compete while paying balance of competitor's costs
- hits very big fear and button and greed button
- but keeps moral high ground
 - net neutral and doesn't help lock-in or lock-out
- re-f/b as a solution to DDoS bundled with re-f/b as cost-control

alliance deployment strategy

- 3GPP alliance has most to lose from not deploying, followed by NGNs
- controls vertically integrated network and mobile terminal market

deployment by cross-infection

- nomadic, roaming devices
- ★ inverse bundling
 - can degrade a substitute product (legacy network service without re-feedback)
 - generally useful model for security products tend to restrict rather than enhance

novel deployment models wrt Ozment & Schechter

deployment closure incentives

- assume 1st mover (cellular industry?) has deployed
- 2nd movers (NGNs?) didn't because benefit lower than cost (if rational)
 - but first mover removed costs (risks of unknown, R&D recovered)
 - early adopters also change operational finances for non-adopters...
- money valve effect
 - · between adopters and non-adopters
 - re-feedback controls congestion costs for adopters
 - · peaks in incoming traffic demand drive money inward
 - outgoing traffic peaks only generate averaged money flow
 - costs of non-adopters depend on peak not average
 - stronger effect, the more variance in demand
 - DDoS is extreme variance in demand
 - like alternating current through a diode/valve
- chain reaction
 - adopters' incoming border charges focus on non-adopters
 - bots concentrate into smaller non-adopter space
 - money valve effect surrounds more of non-adopters' borders

winning the last battle (not just the next)

distinguishing flash crowds from attacks

- incentives not to be too greedy
 - a rate policer is effectively a revenue limiter
 - if policer allows DDoS attacks, customer has to buy bigger quota
 - why would operators try to distinguish the two?
- customers will switch to responsible operators
 - distinguishing true demand form zombies is in operator's interest
- fortunately society still civilised enough
 - huge white market revenue not worth risking
 - just to capture marginal gains from black market
 - strategic greed overcomes myopic greed

Self-interest can Prevent Malice

Q&A

incentive framework

