we don't have to decide fairness ourselves <<u>draft-briscoe-tsvwg-relax-fairness-00.txt</u>>

intent: build consensus then Informational

Bob Briscoe Chief Researcher, BT Toby Moncaster & Lou Burness IETF-70 tsvarea Dec 2007





#### shifting IETF focus from fairness to accountability

|                     | design-time                                                              | run-time                                                                        |  |  |  |  |
|---------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| problem             | IETF doesn't, can't and shouldn't decide fairness                        |                                                                                 |  |  |  |  |
| solution<br>process | IETF's role: enable accountability for congestion                        | users, apps & operators<br>can (optionally) make<br>principled fairness choices |  |  |  |  |
|                     | IETF/IRTF can truly<br>meet dynamic app req's<br>and minimise congestion |                                                                                 |  |  |  |  |
|                     | best metric:<br>congestion volume                                        |                                                                                 |  |  |  |  |

this talk primarily about the technical problem

• fairness is run-time, IETF is design-time

### fair bottleneck bit-rate?

## two incompatible partial worldviews

| 'flow rate equality' | 'volume accounting' |
|----------------------|---------------------|
| per flow             | per user            |
| instantaneous        | over time           |

- IETF aware that fairness should be per user
  - per flow is reasonable approx'n if users open similar no's of flows



| usage type | no. of<br>users | activity<br>factor | ave.simul<br>flows /user | TCP bit rate<br>/user | vol/day<br>(16hr) /user | traffic<br>intensity /user |
|------------|-----------------|--------------------|--------------------------|-----------------------|-------------------------|----------------------------|
| attended   | 80              | 10%                | =                        | 357kbps               | 257MB                   | 35.7kbps                   |
| unattended | 20              | 100%               | =                        | 357kbps               | 2570MB                  | 357kbps                    |
|            |                 |                    |                          | x1                    | x10                     | x10                        |

#### realistic numbers? there are elephants in the room



- number of TCP connections
  - Web1.1: **2**
  - BitTorrent: ~100; see graph

details suppressed:

- users on spectrum of mixes of the two types
- utilisation never 100%
  - but near enough during peak period
- on DSL, upstream constrains most p2p apps
  - other access (fixed & wireless) more symmetric



| usage type | no. of<br>users | activity<br>factor | ave.simul<br>flows /user | TCP bit rate<br>/user | vol/day<br>(16hr) /user | traffic<br>intensity /user |
|------------|-----------------|--------------------|--------------------------|-----------------------|-------------------------|----------------------------|
| attended   | 80              | 10%                | 2                        | 10kbps                | 7.1MB                   | 1kbps                      |
| unattended | 20              | 100%               | 100                      | 500kbps               | 3.6GB                   | 500kbps                    |
|            |                 |                    |                          | x50                   | x500                    | x500                       |



## volume accounting isn't the answer either

- fairer if heavy users get less bottleneck flow rate than light users
  - but heavy & light only defined by volume during 'the peak period'
  - effectively treats congestion very vaguely as
    - 0 everywhere off-peak
    - 1 everywhere on-peak
  - blind to whether the same volume causes extreme congestion or none

| degree of freedom    | 'flow rate equality' | 'volume accounting' |  |  |  |
|----------------------|----------------------|---------------------|--|--|--|
| multiple flows       | ×                    | $\checkmark$        |  |  |  |
| activity factor      | ×                    | $\checkmark$        |  |  |  |
| congestion variation | $\checkmark$         | ×                   |  |  |  |

- message so far: 2 worldviews both claim same goal (fairness)
  - each strong over part of the problem space
  - but incompatible: one wants equal, the other wants unequal flow rates

## so what?

- fairness can't be such a problem, the Internet works
  - we all have enough most of the time, even if A has more than B
  - we like to think this is due to IETF protocols
  - next few slides cast doubt on this complacency

#### concrete consequence of unfairness #1 higher investment risk



## ...but we still see enough investment

- main reasons
  - subsidies (e.g. Far East)
    - light users get 'enough' if more investment than they pay for
  - weak competition (e.g. US)
    - operators still investing because customers will cover the costs
  - throttling heavy users at peak times (e.g. Europe)
    - overriding TCP's rate allocation

### concrete consequence of unfairness #2 trend towards bulk enforcement

- as access rates increase
  - attended apps leave access unused more of the time
  - anyone might as well fill the rest of their own access capacity
- operator choices:
  - a) either continue to provision sufficiently excessive shared capacity
  - b) or introduce tiered volume limits etc
- IETF needs to recognise & address the implications
  - bulk policing prevalent in best efforts architecture (cf. Diffserv)
  - e.g. should we distinguish a policer drop from a congestion drop?

### concrete consequence of unfairness #3 networks making choices for users

- networks hit a problem once they start throttling
  - they could throttle all a heavy user's traffic indiscriminately
    - encourages the user to self-throttle least valued traffic
    - but many users have neither the software nor the expertise
- many networks *infer* what the user would do
  - using deep packet inspection (DPI) to identify apps
- even if intentions honourable
  - confusable with attempts to discriminate against certain apps
  - user's priorities are task-specific, not app-specific
  - customers understandably get upset when ISP guesses wrongly
- IETF needs to recognise & address the underlying need here
  - feature creep into network slows innovation (e2e principle)
  - better ways to fit traffic within limits (e.g. user/app-controlled endpoint s/w)

# the problem

- IETF doesn't really decide fairness
  - whatever protocols *designed* to do, they are being *used* unfairly
- IETF can't really decide fairness
  - design-time body can't control run-time degrees of freedom
- IETF shouldn't decide fairness
  - shouldn't prejudge fair-use policy agreed between user & ISP
    - whether TCP, max-min, proportional or cost fairness

# what does the IETF need to do?

- average rates a run-time issue
  - introduce congestion accountability framework\*
  - give principled effective fairness control to users, apps & operators
  - offer an evolvable alternative to current kludges (DPI)
  - <u>coexist</u> with null enforcement
- transport dynamics the design-time issue
  - IETF/IRTF protocols can truly satisfy dynamic application requirements while minimising congestion
  - rather than not really meeting app reqs, by being over-constrained

<sup>\*</sup> TBA (Lou Burness +)

working towards BoF, not just about fairness, but also congestion collapse & DDoS re-ECN / re-feedback one proposed solution

## relaxing our transport design constraints

- currently we are trying to satisfy demanding app reqs
  - constrained by staying not 'much' more demanding than TCP
  - resulting protocols are 'over-constrained' and not app-developer's first choice
- once the big *average* rate fairness trade-offs move to run-time
- IETF/IRTF can judge which proposed transports better trade-off:
  - achieving the task effectively and
  - minimising unnecessary congestion to others during *dynamics*
- focus on the demanding dynamics questions:
  - when is a fast start fast enough? or too fast?

[Limited slow start, etc]

- how quickly should hi-speed transports allow in new flows?
- [HighSpeed TCP, FAST, etc]
- how smooth can a transport be before it's effectively unresponsive?

[TFRC, proprietary media players, etc]

• what's the minimum congestion response of an aggregate?

[PWE3, CAPWAP]

### proposed core of solution congestion harm metric

- partial insight from volume accounting
- but rather than only counting bytes during peak
  - count bit rate *weighted* by congestion, over time
  - result is easy to measure per flow or per user
    - volume of bytes discarded (or ECN marked)
- termed congestion volume



loss (marking) fraction p(t)

- a precise instantaneous measure of harm, counted over time
  - a measure for fairness over any timescale
  - and a precise measure of harm during dynamics

#### summary shift IETF focus from fairness to accountability

|                     | design-time                                                              | run-time                                                                        |  |  |  |  |
|---------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| problem             | IETF doesn't, can't and shouldn't decide fairness                        | users, apps & operators actually control fairness                               |  |  |  |  |
| solution<br>process | IETF's role: enable<br>accountability for<br>congestion                  | users, apps & operators<br>can (optionally) make<br>principled fairness choices |  |  |  |  |
|                     | IETF/IRTF can truly<br>meet dynamic app req's<br>and minimise congestion | IETF protocols become<br>first choice for demanding<br>apps 😳                   |  |  |  |  |
|                     | best metric:<br>congestion volume                                        |                                                                                 |  |  |  |  |

• problems will only get worse - driven by access rate increases

## we don't have to decide fairness ourselves <<u>draft-briscoe-tsvwg-relax-fairness-00.txt</u>>







### context

- 3. a protocol solution: re-ECN <<u>draft-briscoe-tsvwg-re-ecn-04.txt</u>>
  - on hold while build consensus on the problem & requirements
  - other solutions welcome
- 0. dismantling flow rate fairness <<u>draft-briscoe-tsvarea-fairness-02.pdf</u>>
  - too polemical for IETF consensus
  - let this draft die archived on my Web site and ACM CCR paper
- 1. the problem <<u>draft-briscoe-tsvwg-relax-fairness-00.txt</u>>
  - IETF doesn't decide fairness this talk
- 2. solution requirements <draft-burness-tsvwg-...>
  - TBA

not pushing technical solution(s) at steps 1 & 2

• aimed more towards a 'congestion accountability' BoF

# typical p2p file-sharing apps

• 105-114 active TCP connections altogether

| 🛃 Azı                                      | ireus             |                         |                |                   |                     |              |           |                     |                        |                |                     |
|--------------------------------------------|-------------------|-------------------------|----------------|-------------------|---------------------|--------------|-----------|---------------------|------------------------|----------------|---------------------|
| File Tr                                    | ansfers T         | orrent View Tools P     | lugins Help    |                   |                     |              |           |                     |                        |                |                     |
| <b>2</b>                                   | 3                 |                         | 000            |                   |                     |              |           |                     |                        |                |                     |
| My Torr                                    | ents 1            | 00.0% : Nigella Express | 501E0 100.0%   | : Atom 67.1% : N  | ligella Expre       | ess S01E07 🖇 | 3         |                     |                        |                |                     |
| Genera                                     | el Peers          | Swarm Pieces Files      | Info Options ( | Console Geo Map   |                     |              |           |                     |                        |                |                     |
| IP                                         |                   | Client                  | Т              | Pieces            | %                   | D 👻          | Up Speed  | State               | Encryption             | Down           | Up I 📩              |
| 78.86                                      | .8.10             | Azureus 3.0.2.2         | L              |                   | 100.0%              | 14.5 kB/s    | 44 B/s    | Fully established   | RC4-160                | 6.87 MB        | 25.8 kB             |
| 76.65                                      | .28.192           | µTorrent 1.7.5          | R              |                   | 100.0%              | 11.1 kB/s    | 20 B/s    | Fully established   | None                   | 10.52 MB       | 14.6 kB             |
| 1 of 2 torranta abour                      | .199              | Azureus 3.0.3.4         | L              |                   | 100.0%              | 10.7 kB/s    | 26 B/s    | Fully established   | RC4-160                | 7,24 MB        | 26.6 kB             |
| I OF STOTIETILS SHOWE                      | 21                | Azureus 3.0.2.2         |                |                   | 100.0%              | 18.8 kB/s    | 52 B/s    | Fully established   | RC4-160                | 18.91 MB       | 59.8 kB             |
|                                            | .114              | Mainline 6.0.0          | R              |                   | 100.0%              | 11.8 KB/s    | 15 B/s    | Fully established   | None<br>DC4 1/0        | 8.12 MB        | 12.1 KB             |
| <ul> <li>"15 TCPs per torrent</li> </ul>   | 1/                | uTorrent 1.7.5          |                |                   | 100.0%              | 13.5 KB/S    | U B/S     | Fully established   | RC4-160                | 7.16 MB        | 11.2 KB             |
|                                            | 16                | uTorreot 1 7 5          | 0              |                   | 100.0%              | 0.0 KD/S     | 15 B/c    | Fully established   | PC4-160                | 4 85 MB        | 9.4 KB              |
|                                            | 126               | uTorrept 1.7.5          |                |                   | 100.0%              | 9.6 kB/s     | 17 B/s    | Fully established   | RC4-160                | 8.43 MB        | 12.4 kB             |
| <ul> <li>but ~40/torrent active</li> </ul> | 99                | uTorrept 1.7.5          | R              |                   | 100.0%              | 12.1 kB/s    | 13 B/s    | Fully established   | RC4-160                | 5.30 MB        | 8.3 kB =            |
|                                            | 22                | uTorrent 1.7.5          | L              |                   | 100.0%              | 7.4 kB/s     | 0 B/s     | Fully established   | RC4-160                | 6.59 MB        | 10.5 kB             |
|                                            | 2.58              | µTorrent 1.7.5          | R              |                   | 100.0%              | 6.5 kB/s     | 0 B/s     | Fully established   | RC4-160                | 4.27 MB        | 8.1 kB              |
| 66.21                                      | 4.134.174         | uTorrent 1.6.0          | L              |                   | 100.0%              | 8.0 kB/s     | 15 B/s    | Fully established   | RC4-160                | 4.91 MB        | 8.9 kB              |
| 24.10                                      | 8.88.117          | µTorrent 1.7.2          | R              |                   | 100.0%              | 12.0 kB/s    | 23 B/s    | Fully established   | None                   | 8.91 MB        | 12.9 kB             |
| 87.19                                      | 4.119.77          | µTorrent 1.7.3          | L              |                   | 100.0%              | 7.7 kB/s     | 12 B/s    | Fully established   | RC4-160                | 5.43 MB        | 9.3 kB              |
| 121.4                                      | 5.133.231         | µTorrent 1.7.5          | R              |                   | 100.0%              | 7.7 kB/s     | 12 B/s    | Fully established   | None                   | 2.54 MB        | 5.1 kB              |
| 220.2                                      | 45.217.58         | KTorrent 2.2            | L              |                   | 100.0%              | 5.8 kB/s     | 10 B/s    | Fully established   | RC4-160                | 5.15 MB        | 9.5 kB              |
| 124.1                                      | 02.103.7          | µTorrent 1.7.5          | R              |                   | 100.0%              | 6.0 kB/s     | 13 B/s    | Fully established   | RC4-160                | 6.17 MB        | 10.0 kB             |
| 121.4                                      | 5.153.84          | µTorrent 1.7.5          | L              |                   | 100.0%              | 4.8 kB/s     | 13 B/s    | Fully established   | RC4-160                | 5.29 MB        | 9.2 kB              |
| Transcours.                                |                   | nt 1.7.5                | R              |                   | 100.0%              | 4.9 kB/s     | 12 B/s    | Fully established   | RC4-160                | 2.08 MB        | 5.9 kB 🚽            |
| environment                                |                   | nt 1.6.1                | L              |                   | 100.0%              | 4.4 kB/s     | 13 B/s    | Fully established   | RC4-160                | 5.01 MB        | 8.9 kB              |
| environment                                |                   | ıs 3.0.2.2              | R              |                   | 100.0%              | 4.3 kB/s     | 26 B/s    | Fully established   | None                   | 1.28 MB        | 6.1 kB              |
| Azuraua DitTarrant a                       |                   | nt 1.7.5                | L              |                   | 100.0%              | 4.8 kB/s     | 0 B/s     | Fully established   | RC4-160                | 3.79 MB        | 7.6 kB              |
| Azureus Dictorrenta                        | app               | nt 1.7.5                | L              |                   | 100.0%              | 4.7 kB/s     | 15 B/s    | Fully established   | RC4-160                | 3.13 MB        | 6.8 kB              |
|                                            | •••               | iet 0.93                | L              |                   | 100.0%              | 3.8 kB/s     | 10 B/s    | Fully established   | RC4-160                | 2.85 MB        | 6.5 kB              |
| ADSL+ 448kb upstre                         | eam               | e 6.0.0                 | R              |                   | 100.0%              | 4.6 kB/s     | 10 B/s    | Fully established   | None                   | 2.54 MB        | 5.3 kB              |
|                                            |                   | nt 1.6.1                | L              |                   | 100.0%              | 3.2 kB/s     | 0 B/s     | Fully established   | RC4-160                | 5.89 MB        | 9.7 kB              |
| OS: Windows XP Pr                          | n SF              | <b>7</b> nt 1.7.4       | L              |                   | 100.0%              | 4.7 kB/s     | 12 B/s    | Fully established   | RC4-160                | 3.00 MB        | 6.7 kB              |
|                                            | 0.01              | fnt 1.7.5               |                |                   | 100.0%              | 3.4 kB/s     | 10 B/s    | Fully established   | RC4-160                | 2.02 MB        | 5.8 kB              |
| 07.20                                      | L.LL7.1LL         | HzureUs 3.0.2.2         |                |                   | 100.0%              | 3.8 kB/s     | 30 B/s    | Fully established   | RC4-160                | 2.05 MB        | 10.7 kB             |
| <                                          |                   |                         | 11-1           |                   |                     |              | 11111     |                     |                        |                | 2                   |
| (Plane)                                    | . 1925            | 8                       |                |                   |                     |              |           |                     |                        |                |                     |
| Piece r                                    | Piece Map Lonsole |                         |                |                   |                     |              |           |                     |                        |                |                     |
|                                            | -                 |                         |                |                   |                     | -            |           |                     |                        |                |                     |
|                                            | soth have         | Peer has; You don't     | You have; Peer | doesn't Neither h | as <b>Inter</b> Tra | ansrerring   | Next Req  | uest 🛄 Availability | Count                  |                |                     |
| Azureus                                    | 3.0.2.2           |                         |                |                   |                     | ۲            | Ratio 🔘 N | VAT OK 👌 1,111,1•   | 14 users IPs: 0 - 0/0/ | 0 🤝 580.0 kB/: | s 🛆 [11K]* 2.2 kB/s |
| 21 🛛 🚮 🖓 s                                 | tart              | 🚺 Inbox - Micr          | Azureus        | 3 2 Firefox       | - @M                | icrosoft O   |           | ndow 👻 🕬 Ci         | WINDO EN               | < & = 0 ·      | l 🛥 🔞 🧐, 09:21      |

## access growth just gets filled



#### concrete consequence of unfairness #4 starvation during anomalies & emergencies

- fairness concerns become acute during stress
  - more traffic or less capacity than expected
- if fairness decided at run-time
  - common policy probably 'you get what you paid for'
- concern: unsavoury for emergencies
  - all flows should make some progress, not just the rich
- agree with concern, but current approach not right
  - video downloads get 50x rate of emergency messages?\*
- policy decisions for users, ISPs, regulators, not IETF
  - e.g. ISP might freeze paying to override congestion limits

<sup>\*</sup> Henchung earthquake, 26 Dec '06, see I-D

