sorting out Internet resource sharing

Bob Briscoe Chief Researcher BT Group Apr 2008

known problem since early days

- how to share all the parts of a huge, multi-provider packet multiplexer between competing processes
- keeping one-way datagrams
- allowing for
 - self-interest & malice
 - of users and of providers
 - evolvability
 - of new rate dynamics from apps
 - of new business models
 - viability of supply chain
 - simplicity

- if we do nothing
 - the few are ruining it for the many
 - massive capacity needed to keep interactive apps viable
 - poor incentives to invest in capacity
 - operators are kludging it with DPI
 - solely today's apps frozen into net
 - complex, ugly feature interactions

Internet resource sharing **Problems**

Bob Briscoe

dismantling the religion of flow rate equality extra degree of freedom #1: activity factor

usage type	no. of users	activity factor	ave.simul flows /user	TCP bit rate /user	vol/day (16hr) /user	traffic intensity /user
attended	80	5%	=	417kbps	150MB	21kbps
unattended	20	100%	=	417kbps	3000MB	417kbps
				x1	x20	x20

dismantling the religion of flow rate equality degrees of freedom #1&2: activity factor & multiple flows

usage type	no. of users	activity factor	ave.simul flows /user	TCP bit rate /user	vol/day (16hr) /user	traffic intensity /user
attended	80	5%	2	20kbps	7.1MB	1kbps
unattended	20	100%	50	500kbps	3.6GB	500kbps
				x25	x500	x500

realistic numbers? there are elephants in the room

- number of TCP connections
 - Web1.1: **2**
 - BitTorrent: ~100 observed active
 - varies widely depending on
 - no. of torrents per user
 - maturity of swarm
 - config'd parameters

details suppressed:

- utilisation never 100%
 - but near enough during peak period
- on DSL, upstream constrains most p2p apps
 - other access (fixed & wireless) more symmetric

consequence #1 higher investment risk

consequence #2 trend towards bulk enforcement

- as access rates increase
 - attended apps leave access unused more of the time
 - anyone might as well fill the rest of their own access capacity
- fair queuing eliminates the multiple flow problem
 - but not the activity factor problem
 - and only for congestion where scalability not a problem (backhaul)
- operator choices:
 - a) either continue to provision sufficiently excessive shared capacity
 - b) or enforce tiered volume limits

consequence #3 networks making choices for users

- characterisation as two user communities over-simplistic
 - heavy users mix heavy and light usage
- two enforcement choices
 - a) bulk: network throttles all a heavy user's traffic indiscriminately
 - encourages the user to self-throttle least valued traffic
 - but many users have neither the software nor the expertise
 - b) selective: network *infers* what the user would do
 - using deep packet inspection (DPI) and/or addresses to identify apps
- even if DPI intentions honourable
 - confusable with attempts to discriminate against certain apps
 - user's priorities are task-specific, not app-specific
 - customers understandably get upset when ISP guesses wrongly

consequence #4 future congestion control work-rounds

- trying to satisfy demanding application requirements
 - constrained by staying not 'much' faster than TCP
 - resulting 'over-constrained' protocols not app-developer's first choice

hi-speed congestion control >> TCP rate AND hi-speed congestion control ≈ TCP rate

- fertile ground for proprietary solutions
 - no peer review of behaviour esp. under anomalous conditions
 - Joost
 - BitTorrent delivery network accelerator (DNA)
 - Mustang TCP
 - etc

distributed denial of service an extreme of the same problem

- multiple sources able to cause excessive congestion
- defend against what attackers could do
 - not just what they do now
- best time to attack: during a flash crowd
 - maximum impact when people most want a service
 - least effort to tip network into overload
 - intent is not the only difference
 - lack of response to congestion is generally abnormal
- a congestion control enforcement problem
 - at least as first line of defence

summary so far no coherent reasoning about resource sharing

• two resource sharing approaches fighting

the Internet way operators (& users)

degree of freedom	'flow rate equality'	'volume accounting'			
multiple flows	×	\checkmark			
activity factor	×	\checkmark			
congestion variation	\checkmark	×			
application control	\checkmark	×			

- leaving field open for 'hacked' solutions
 - deep packet inspection
 - even 'DoS attacks' by operators on customers (sending TCP resets)
 - self-interested hi-speed transports

Internet resource sharing a solution for unicast: re-feedback of ECN (re-ECN)

Bob Briscoe

there must be better solutions than fighting

- light usage can go much faster
- hardly affecting completion times of heavy usage

fairness at run-time, not design time

- protocol designer / IETF doesn't decide fairness
 - whatever protocols *designed* to do, they are being *used* unfairly
- protocol designer / IETF can't decide fairness
 - design-time bodies can't control run-time degrees of freedom
- protocol designer / IETF shouldn't decide fairness
 - shouldn't prejudge fair-use policy agreed between user & ISP
 - whether TCP, max-min, proportional or cost fairness

2-part solution

- 1. <u>transport layer</u> deliberately allow very unequal weighted sharing
 - e.g. socket API with weight parameter, w
 - meaning take w shares of a congested resource
- 2. <u>network layer</u> incentive to use the weights sparingly
 - heavy usage w << 1; light usage can set w >> 1
 - flipped round from what we see today (Web w=2, p2p w=50)
- this talk: how to create the network layer incentives
 - we've done #1 but it will be abused without #2

general idea

reveal congestion sender causes throughout rest of the Internet ...at its attachment point

\oslash

- * bottleneck policers: active research area since 1999
 - detect flows causing unequal share of congestion
 - located at each potentially congested router
 - fooled by splitting flow IDs (or src address spoofing)
 - why equal rights for each flow, when flow IDs can be created arbitrarily?
 - swarmcasting shows even each src-dest IP address pair is nothing special
 - takes no account of how active source is over time

✓ re-ECN

- reveals congestion caused by all sources behind a physical interface, irrespective of addressing
- no advantage to split IDs
- accumulates over time
- like counting volume, but 'congestion volume'

 N_D

coherent reasoning about resource sharing

degree of freedom	'flow rate equality'	'volume accounting'	re-ECN		
multiple flows	×	\checkmark	\checkmark		
activity factor	×	\checkmark	\checkmark		
congestion variation	\checkmark	×	\checkmark		
application control	✓	×	✓		

bit rate core of solution congestion harm (cost) metric ^[user1]

- bit rate weighted by each flow's congestion, over time $v \equiv \int p(t) x_i(t) dt$ congestion volume, summed over all a sender's flows
- result is easy to measure per flow or per user
 - volume of bytes discarded (or ECN marked)
- a precise instantaneous measure of harm, counted over time
 - a measure for fairness over any timescale
 - and a precise measure of harm during dynamics
- intuition: volume is bit rate over time

volume,

 $V \equiv \int x_i(t) dt$

summed over all a sender's flows

- network operators often count volume only over peak period
 - as if p(t)=1 during peak and p(t)=0 otherwise

loss (marking) fraction p(t)

 $x_1(t)$

 $x_2(t)$

user₂

congestion volume captures (un)fairness during dynamics $\boldsymbol{x_{l}}$ flow rate, x_i x_2 time, t congestion, p area: congestion volume, $v_i = \int p x_i dt$ congestion bit rate, $p x_i$ v_1 B

calibrating 'cost to other users'

- a monetary value can be put on 'what you unsuccessfully tried to get'
 - the marginal cost of upgrading network equipment
 - so it wouldn't have marked the volume it did
 - so your behaviour wouldn't have affected others
- competitive market matches...
 - the cost of congestion volume
 - with the cost of alleviating it
- congestion volume is not an extra cost
 - part of the flat charge we already pay
 - but we can't measure who to blame for what
 - if we could, we *might* see pricing like this...
- NOTE WELL
 - IETF provides the metric
 - industry does the business models

note: diagram is conceptual congestion volume would be accumulated over time

capital cost of equipment would be depreciated over time

access link	congestion volume allow'ce	charge		
100Mbps	50MB/month	€15/month		
100Mbps	100MB/month	€20/month		

addition of re-feedback - in brief

- *before:* congested nodes mark packets receiver feeds back marks to sender
- *after:* sender must pre-load expected congestion by re-inserting feedback
- if sender understates expected compared to actual congestion, network discards packets
- result: packets will carry prediction of downstream congestion
- policer can then limit congestion caused (or base penalties on it)

solution step #1: ECN make congestion visible to network layer

- packet drop rate is a measure of congestion
 - but how does network at receiver measure holes? how big? how many?
 - can't presume network operator allowed any deeper into packet than its own header
 - not in other networks' (or endpoints') interest to report dropped packets

- solution: Explicit Congestion Notification (ECN)
 - mark packets as congestion approaches to avoid drop
 - already standardised into IP (RFC3168 2001)
 - implemented by most router vendors very lightweight mechanism
 - but rarely turned on by operators (yet) mexican stand-off with OS vendors

measurable downstream congestion solution step #2

proposed re-ECN service model

- to encourage sender (or proxy) to indicate sufficient expected congestion...
- Internet won't try to deliver packet flows beyond the point where more congestion has been experienced than expected
 - if sender wants to communicate, has to reveal expected congestion
 - even if sender not trying to communicate (e.g. DoS) packets can be dropped rather than enqueued before they add to congestion

openness can be a tactic not a strategy

- edge congestion policer is the focus all network policy enforcement
 - **open:** per-user policing of bulk congestion volume
 - will allow much more freedom to innovate than current TCP-fairness constraint
 - new behaviours: e.g. very hi-speed, unresponsive, weighted, networked games
 - but all within overall responsibility envelope
 - **closed:** per-flow policing of specific application's congestion response
 - the place where service access is enforced, given IP packets needn't declare service
- Retailers choose
 - how tightly to control true network costs
 - each product's market position between open and closed
- Changing your mind
 - involves changing a policy
 - not new technology
- Wholesaler is agnostic
 - supports all positions
 - simultaneously

inter-domain accountability for congestion

- metric for inter-domain SLAs or usage charges
 - N_B applies penalty to N_A for bulk volume of congestion per month
 - could be tiered penalties, directly proportionate usage charge, etc.
 - penalties de-aggregate precisely back to responsible networks

congestion competition - inter-domain routing

- if congestion \rightarrow profit for a network, why not fake it?
 - upstream networks will route round more highly congested paths
 - N_A can see relative costs of paths to R_1 thru $N_B \& N_C$
- the issue of monopoly paths
 - incentivise new provision

solution summary list of problems solved

- sender & forwarder accountability for costs caused by traffic
 - without constraining pricing
- network accountability for insufficient capacity
- enforceable fairness
 - networks can be liberal
 - but conservative networks can protect their interests
 - different fairness regimes possible within groups of endpoints
- incremental deployment without changing forwarding
- first line of defence against DDoS
 - creates strong incentives to deploy DDoS defences
- differentiated bandwidth QoS 'just happens'
 - bandwidth & jitter guarantees using edge-edge gateways (see PCN)
- all by packets revealing rest-of-path congestion

Internet resource sharing QoS & DoS

Bob Briscoe

scalable admission control using pre-congestion notification (PCN) border anti-cheating solution

solution rationale

- <0.01% packet marking at typical load
 - addition of any flow makes little difference to marking
- penalties to ingress of each flow appear proportionate to its bit rate
 - emulates border flow rate policing
- as load approaches capacity
 - penalties become unbearably high (~1000x typical)
 - insensitive to exact configuration of admission threshold
 - emulates border admission control
- neither is a perfect emulation
 - but should lead to the desired behaviour
 - fail-safes if networks behave irrationally (e.g. config errors) see draft

per-user congestion policer

interactive short flows (e.g. Web, IM)

Internet resource sharing towards a solution for multicast

Bob Briscoe

multicast congestion cost causation?

1% congestion

%00

congestion

• strictly

- operator causes packet duplication service to exist and chooses link capacities
- receivers cause session to exist over link
- sender & background traffic cause the traffic rate that directly causes congestion
- easier to make receivers responsible for costs
 - but receivers not causing sending rate, only existence of *some* traffic
 - to remove cost, need all downstream receivers to leave, but each has little incentive given cost should be shared

multicast & congestion notification

antidote to arbitrary 'research' on fairness between unicast & multicast

Internet resource sharing **next steps**

Bob Briscoe

references

- [MacKieVarian95] MacKie-Mason, J. and H. Varian, "Pricing Congestible Network Resources," IEEE Journal on Selected Areas in Communications, Advances in the Fundamentals of Networking' 13(7)1141--1149, 1995 http://www.sims.berkeley.edu/~hal/Papers/pricing-congestible.pdf
- [Kelly98] Frank P. Kelly, Aman K. Maulloo, and David K. H. Tan. Rate control for communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3):237–252, 1998
- [Gibbens99] Richard J. Gibbens and Frank P. Kelly, Resource pricing and the evolution of congestion control, Automatica 35 (12) pp. 1969—1985, December 1999 (lighter version of [Kelly98])
- [Briscoe01] Bob Briscoe and Jon Crowcroft, "An Open ECN service in the IP layer" Internet Engineering Task Force Internet Draft (Expired) http://www.cs.ucl.ac.uk/staff/B.Briscoe/pubs.html#ECN-IP (February 2001)
- [Clark05] David D Clark, John Wroclawski, Karen Sollins and Bob Braden, "Tussle in Cyberspace: Defining Tomorrow's Internet," IEEE/ACM Transactions on Networking (ToN) 13(3) 462–475 (June 2005) <portal.acm.org/citation.cfm?id=1074049>
- [PCN] Phil Eardley (Ed), "Pre-Congestion Notification Architecture," IETF Internet Draft draft-ietf-pcnarchitecture-02.txt (Nov '07)
- [Siris] Future Wireless Network Architecture <<u>www.ics.forth.gr/netlab/wireless.html</u>>
- [M3I] Market Managed Multi-service Internet consortium <<u>www.m3i_project.org/</u>>

re-feedback & re-ECN project page <<u>www.cs.ucl.ac.uk/staff/B.Briscoe/projects/refb/</u>>

- [Briscoe05a] Bob Briscoe, Arnaud Jacquet, Carla Di-Cairano Gilfedder, Andrea Soppera and Martin Koyabe, "Policing Congestion Response in an Inter-Network Using Re-Feedback" In: Proc. ACM SIGCOMM'05, Computer Communication Review 35 (4) (September, 2005)
- [Briscoe05b] Commercial Models for IP Quality of Service Interconnect, Bob Briscoe & Steve Rudkin, in BTTJ Special Edition on IP Quality of Service, 23(2) (Apr 2005)
- [Briscoe06] Using Self-interest to Prevent Malice; Fixing the Denial of Service Flaw of the Internet, Bob Briscoe, The Workshop on the Economics of Securing the Information Infrastructure (Oct 2006)

[Briscoe07] Flow Rate Fairness: Dismantling a Religion, Bob Briscoe, ACM CCR 37(2) 63--74 (Apr 2007)

[Briscoe08] Re-ECN: Adding Accountability for Causing Congestion to TCP/IP, Bob Briscoe, Arnaud Jacquet, Toby Moncaster and Alan Smith, IETF Internet-Draft <draft-briscoe-tsvwg-re-ecn-tcp-05.txt> (Jan 2008)

Internet resource sharing

typical p2p file-sharing apps

• 105-114 active TCP connections altogether

	🛃 Azureu	5											
	File Transfe	ers Torren	t View Tools	Plugins I	Help								
			478	00) 🕢 🕨 🖬 🗙								
i r	My Torrents	100.09	% : Nigella Expres	s 501E0	100.0% : Atom	67,1% : Nigell	a Expr	ess S01E07 🖇	3				
	General Pe	eers Swar	rm Pieces Files	Info	Options Console Ge	o Map							
	IP	C	lient	T	Pieces		%	D 🐨	Up Speed	State	Encryption	Down	Up I 🛃
	78.86.8.10	Az	ureus 3.0.2.2	L		100	0.0%	14.5 kB/s	44 B/s	Fully established	RC4-160	6.87 MB	25.8 kB
	76.65.28.1	92 µT	orrent 1.7.5	R		100	0.0%	11.1 kB/s	20 B/s	Fully established	None	10.52 MB	14.6 kB
1 of 3 torrents show	n l	,199 Az 21 Az	ureus 3.0.3.4	-		100	1.0%	10,7 KB/S 18,8 kB/c	26 B/S 52 B/c	Fully established	RC4-160 PC4-160	7,24 MB	26.6 KB
		.114 Ma	ainline 6.0.0	R		100	0.0%	11.8 kB/s	15 B/s	Fully established	None	8,12 MB	12.1 kB
		17 μT	orrent 1.7.5	L		100	0%	13.5 kB/s	0 B/s	Fully established	RC4-160	7.16 MB	11.2 kB
 ~45 ICPs per torre 	ent	3 μТ	orrent 1.7.5	L		100	0.0%	6.8 kB/s	0 B/s	Fully established	RC4-160	5.58 MB	9.4 kB
		16 µT	orrent 1.7.5	R 🗖		100	0%	9.0 kB/s	15 B/s	Fully established	RC4-160	4.85 MB	8.6 kB
but		.126 μT	orrent 1.7.5	L		100	1.0%	9.6 kB/s	17 B/s	Fully established	RC4-160	8.43 MB	12.4 kB
		99 µT 22 µT	orrent 1.7.5	R		100	1.0%	12.1 kB/s	13 B/s	Fully established	RC4-160	5.30 MB	8.3 kB
		2Ζ μι ΣΕΘ υτ	orrent 1.7.5			100	1.0%	4 ELD/2	U B/S	Fully established	RC4-160	6.59 MB	10.5 KB
	66 214 134	-174 μT	orrent 1.6.0	N.		100	1.0%	8.0 kB/s	15 B/s	Fully established	RC4-160	4 91 MB	8.1 KB
	24.108.88.	117 uT	orrent 1.7.2	R		100	1.0%	12.0 kB/s	23 B/s	Fully established	None	8.91 MB	12.9 kB
	87.194.119	.77 μT	orrent 1.7.3	L		100	0.0%	7.7 kB/s	12 B/s	Fully established	RC4-160	5.43 MB	9.3 kB
	121.45.133	.231 µT	orrent 1.7.5	R		100	.0%	7.7 kB/s	12 B/s	Fully established	None	2.54 MB	5.1 kB
	220.245.21	7.58 KT	orrent 2.2	L		100	0.0%	5.8 kB/s	10 B/s	Fully established	RC4-160	5.15 MB	9.5 kB
	124.102.10	3.7 μT	orrent 1.7.5	R 🗖		100	0.0%	6.0 kB/s	13 B/s	Fully established	RC4-160	6.17 MB	10.0 kB
	121.45.153	.84 μT	orrent 1.7.5	L		100	0.0%	4.8 kB/s	13 B/s	Fully established	RC4-160	5,29 MB	9.2 kB
			nt 1.7.5	R		100	0.0%	4.9 kB/s	12 B/s	Fully established	RC4-160	2.08 MB	5.9 kB
environment			nt 1.6.1			100	1.0%	4.4 KB/S	13 B/S	Fully established	RC4-160	5.01 MB	8.9 KB
			of 1 7 5	R		100	0.0%	4.3 KD/S 4.8 kB/s	20 D/S 0 B/c	Fully established	PC4-160	1.20 MB	0.1 KD 7.6 kB
Azureus BitTorrer	nt an	n	ot 1.7.5			100	1.0%	4.7 kB/s	15 B/s	Fully established	RC4-160	3.13 MB	6.8 kB
	n up	٢	et 0.93	ī —		100	0.0%	3.8 kB/s	10 B/s	Fully established	RC4-160	2,85 MB	6.5 kB
ADSI + 448kh ung	strea	m	e 6.0.0	R		100	.0%	4.6 kB/s	10 B/s	Fully established	None	2.54 MB	5.3 kB
	Suca		nt 1.6.1	L		100	0.0%	3.2 kB/s	0 B/s	Fully established	RC4-160	5.89 MB	9.7 kB
OS: Windows XP	Pro	SP2	nt 1.7.4	L		100	0%	4.7 kB/s	12 B/s	Fully established	RC4-160	3.00 MB	6.7 kB
	110		nt 1.7.5	L		100	0.0%	3.4 kB/s	10 B/s	Fully established	RC4-160	2.02 MB	5.8 kB
	07.232.227	122 M2	areas 3.0.2.2	L		100	1.0%	3.8 kB/s	30 B/s	Fully established	RC4-160	2.05 MB	10.7 kB
	<	174				100	1 002	-1010-	0.07-	P. d	BCA 100	E DC MD	N 7120
	Diece Man	Concole											-
	Hece Map [CONSOIC											
	Both H	nave 📃 I	Peer has; You dor	it 🗾 Y	ou have; Peer doesn't	Neither has	Tr	ansferring 🔳	Next Rec	quest 📕 Availabilit	y Count		
	Azureus 3.0.2	2.2						۲	Ratio 🥥	NAT OK 👌 1,111,	144 users IPs: 0 - 0/0/	0 🤝 580.0 kB/:	s 🛆 [11K]* 2.2 kB,
	🐮 star	t) 🧃	🗿 Inbox - Micr.		Azureus	Firefox +	ØM	licrosoft O	1 😂 2 W	/indow 👻 💽 C	:\WINDO	< & = @ -	I = 39 , 09:21

capacity growth will prevent congestion?

fairness between fairnesses

- to isolate a subgroup who want their own fairness regime between them
 - must accept that network between them also carries flows to & from other users
- in life, local fairnesses interact through global trade
 - e.g. University assigns equal shares to each student
 - but whole Universities buy network capacity from the market
 - further examples: governments with social objectives, NATO etc
- cost fairness sufficient to support allocation on global market
 - then subgroups can reallocate the right to cause costs within their subgroup
 - around the edges (higher layer)
 - naturally supports current regime as one (big) subgroup
 - incremental deployment
- different fairness regimes will grow, shrink or die
 - determined by market, governments, regulators, society around the edges
 - all over congestion marking at the IP layer neck of the hourglass

Preligion politics legal commercial app transport network link physical

- drop enough traffic to make fraction of red = black
- goodput best if rcvr & sender honest about feedback & refeedback

incentive framework

re-feedback & routing support

• not done any analysis on this aspect

