
Universität Stuttgart

Institute of Communication Networks

and Computer Engineering (IKR)

Prof. Dr.-Ing. Andreas Kirstädter

Chirping for

Congestion Control -

Implementation Feasibility

PFLDNeT 2010, Lancaster

Mirja Kühlewind <mirja.kuehlewind@ikr.uni-stuttgart.de>

Bob Briscoe <bob.briscoe@BT.com>

2© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Overview

• Motivation

• Chirping as a Building Block for Congestion Control

• A Chirping Implementation in the Linux Kernel

• Preliminary Results

• Conclusion and Outlook

3© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Motivation

Scaling Problem

1. Original TCP acquires new bandwidth too slowly

2. State-of-the-art approaches overshoot instead

3. Overshoot causes a lot unnecessary congestion

→ Chirping can provide fast feedback information for appropriate congestion control!

→ But is an implementation of chirping in an real OS feasible?

outmoded

TCP approach

state of the art

‘scalable’ TCP

time

bit-rate

1

2

newly available capacity

e.g. another flow has ended3

4© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping

Principle

Chirp: A group of several packets with decreasing inter-packet gaps and increasing rate

– Proposed by pathChirp bandwidth estimation tool [1]

• Bandwidth estimation based on self-induced congestion

• Feedback for monitoring of one-way delay

[1] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell. "pathChirp: Efficient Available Bandwidth Estimation for Network Paths".

Passive and Active Measurement Workshop 2003

5© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping

A Building Block for Congestion Control

Chirping for Congestion Control: Continuous transmission of data packets as chirps

– proposed by RAPID congestion control [2]

• Average rate ravg should equal intended sending rate of congestion control

• Actual per-packet rates are lower and higher than ravg

→ Probing for a wide range of possible sending rates but still limited impact of probing on

other flows

[2] V. Konda and J. Kaur. "RAPID: Shrinking the Congestion-Control Timescale". In IEEE INFOCOM 2009

6© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping

Preliminary Results

Per-Packet rate of one chirping connection on 1Mbit/s bottleneck link

 0

 1

 2

 3

 4

 5

 6

 0.5 1 1.5 2 2.5 3

p
e
r-

p
a
c
k
e
t
ra

te
 [
M

b
p
s
] Chirping at sender-side

start-up phase chirp

 0

 1

 2

 3

 4

 5

 6

 0.5 1 1.5 2 2.5 3

p
e
r-

p
a
c
k
e
t
ra

te
 [
M

b
p
s
]

Time [s]

Chirping at receiver-side

chirp

7© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping

Bandwidth Estimation based on relative One-way Delay

Bandwidth estimation: Monitoring of the relative queuing delays

• Growth in queuing delay between packets: �qn = qn - qn-1

→ Increasing values at the end of reveals available capacity (self-induced congestion)

 140

 160

 180

 200

 220

 240

 260

 280

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

o
n

e
-w

a
y
 d

e
la

y
 [

m
s
]

packet number

estimated rate

initial delay

introduced by
previous chirp excursion

mostly
self-induced congestion

8© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Overview

1. Feedback for one-way delay measurement:

– Protocol extensions needed

– Different solutions for deployment proposed

2. Rate estimation:

Algorithm to evaluate the feedback information of one chirp based on pathChirp [1]

3. Rate adaption:

– Congestion control algorithm evolves the average sending rate of the next chirp (using the

available capacity estimated by a previous chirp)

– CWND should also be updated to a value that allows the intended number of packets to be

sent in one RTT

4. Inter-packet gap calculation:

– Determined by the chosen average sending rate

– Own algorithm in order to simplify kernel implementation to integer arithmetic

[1] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell. "pathChirp: Efficient Available Bandwidth Estimation for Network Paths".

Passive and Active Measurement Workshop 2003

9© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Sender-side Delay Measurement based on TCP Timestamps

One-way delay measurement based on TCP Timestamp Option

+-------+-------+---------------------+---------------------+

|Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|

+-------+-------+---------------------+---------------------+

 1 1 4 4

→ Option header includes echoed timestamp of data packet and ACK timestamp

Challenges

• TCP Timestamp Option does not ensure certain resolution

• Feedback needs to be assigned to one specific packet in a chirp (delayed ACKs?)

• Additional processing delay in the network stack

Proposed Solutions

• Negotiation about the TCP receiver behaviour

• Chirp ID attached to packet header instead of state at sender

• Hardware time-stamping at send-out of data packet and ACK to improve accuracy

• Improved accuracy by use of the actual sending time gaps

10© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Implementation Structure

→ Extended congestion control kernel module interface and TCP timer for send-out timing

11© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Implementation Details

→ Extended congestion control kernel module interface and TCP timer for send-out timing

12© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Implementation Details

→ Extended congestion control kernel module interface and TCP timer for send-out timing

13© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Implementation Details

→ Extended congestion control kernel module interface and TCP timer for send-out timing

14© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Open Issues

• Timer-based sent-up does not use ACK-clocking

→ Addition interupt processing burden

→ Could be solved by the use of hardware timers in future

• Timer resolution has to be high enough to serve high-speed links (hrtimers in the Linux

kernel provide nanosecond resolution)

Futher improvements

• Fully based on inter-packet time gaps instead of rate

• N should be an the integer power of 2

→ Initiallly hard-coded to N = 32 (=25)

• Algorithm for Inter-packet gap Calculation

– Harmonic progression of rates by linear decrease of inter-packet gaps:

gapi = gapi-1 - gapstep with gapstep = (2 ∗ gapavg) / N

→ Implementation with integer arithmetic

15© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Preliminary Results

RAPID Congestion Control

For convergence to equalized rate:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

RAPID
TCP

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Q
u

e
u

e
 l
e

n
g

th

Time [s]

16© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Preliminary Results

RAPID Congestion Control

For convergence to equalized rate:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

RAPID
TCP

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Q
u

e
u

e
 l
e

n
g

th

Time [s]

RAPID flow starts

Queue peaks because of self-induced congestion

17© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Preliminary Results

RAPID Congestion Control

For convergence to equalized rate:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

RAPID
TCP

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Q
u

e
u

e
 l
e

n
g

th

Time [s]

TCP flow starts

Slow-Start overshoot leads to loss

18© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Preliminary Results

RAPID Congestion Control

For convergence to equalized rate:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

RAPID
TCP

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Q
u

e
u

e
 l
e

n
g

th

Time [s]

Loss events caused by

TCP sawtooth pattern

Share of capacity changes

with every loss event...?

19© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Preliminary Results

RAPID Congestion Control

For convergence to equalized rate:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

RAPID
TCP

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Q
u

e
u

e
 l
e

n
g

th

Time [s]

Recovery time depending on

converenge factor tau and

chirp length N

20© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Preliminary Results

Next Steps

Design of a robust congestion control based on chirping

• Adaption of chirping parameters to prevailing conditions

• Converenge in capacity sharing also when competing with other protocols

– RAPID is scavenger protocol: Not designed to take capacity share from loss-based

protocols

• Fast feedback chirping information only in addition to other network state information

Future Work

• Impact of short term probing delays on the queue burstiness

• Influence of a large aggregation of probing chirps on the base queue length

→ Reduced overshoot and respectively reduced maximum queue length

• Accuracy of measurement with a large aggregation of probing chirps

• Adaptation of the chirping parameters e.g. selection of chirp size N

→ Higher accuracy of chirping information

21© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Conclusion and Outlook

• Implementation of chirping as a building block for congestion control in Linux

– Nanosecond resolution provided by kernel hrtimers is sufficient for today’s speed

– Protocol design for feedback needed for one-way delay measurements

• Structured the problem space in three independent sub-problems

rate estimation, rate adaption and adapting chirp parameters

• Identified challenges in implementation and deployability

– Timer-based implementation does not use ACK-clocking and CWND

– Negotiation about timestamp resolution and receiver behavior (delayed ACKs)

• Invented solutions to reduce implementation complexity and improve accuracy

– Inter-packet gap calculation with linear decrease of inter-packets gaps

– Hardware timestamping

– Use of actual sent-out timestamps (instead of pre-set inter-packet gaps)

→ Show feasibilty of chirping within a contineous data stream!

→ Use faster feedback to enable more scalable rate adaption with minimal overshoot!

→ Encourge others to build research on rate estimation, rate adaption and adaption of

chirping parameters!

22© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping for Congestion Control

Thank you for your attention!

Questions?

23© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Preliminary Results

RAPID Congestion Control

TCP cross traffic starts at 10s (20Mbit) on 1Mbit/s bottleneck link

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

RAPID
TCP

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

Q
u
e
u
e
 l
e
n
g
th

Time [s]

24© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Implementation Details

→ Extended congestion control kernel module interface and TCP timer for send-out timing

25© 2010 Universität Stuttgart • IKR M.Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Algorithm for Inter-packet gap Calculation

• Fully based on inter-packet time gaps instead of rate

• N should be an the integer power of 2

→ Initiallly hard-coded to N = 32 (=25)

• Harmonic progression of rates

→ Linear decrease of inter-packet gaps: gapi = gapi-1 - gapstep with gapstep = (2 ∗ gapavg) / N

• Implementation with integer arithmetic

gapi = gapstep ∗ (N - i + 1) = (2 ∗ gapavg) / N ∗ (N - i + 1) with i = 1...N-1; gap0 = gapavg

– Probing range:1/2 ravg to N/4 ravg

– Maximum rates of harmonic progression not used

→ Slightly lower average rate than the estimated one

