nice traffic management without new protocols

Bob Briscoe Chief Researcher, BT Oct 2012

vertical stripes: this season's colour

- increasingly access no longer the bottleneck
 - PON, FTTP, FTTdp, FTTC
 - bottleneck moving deeper
 - becoming similar to campus LAN, data centre
- each customer's average access utilisation v low
 - 1-3% average during peak hour
 (some 100%, but rarely at the same time)
 - if provision bottleneck for the worst case load seen,
 it leaves a lot of leeway for much worse cases
- traditionally the bottleneck solves this with
 - (weighted) fair-queuing / round robin*
- about isolation from random bad performance
 - not about skimping on capacity

^{*} or policed per-customer b/w limits (for higher utilisation customers e.g. DC)

fair queuing: so 1990s

- enforces 1/N shares* so that's fine?
- No
 - when average N is so low
 - a few more long-running customers than planned can increase N significantly
 - thereby greatly decreasing everyone else's 1/N share
- the problem:
 - N depends heavily on presence of high util'n customers

3

- usually few, but when many, service seems crap
- large buffers make this much worse but not the only problem
- 1/N is 'fair' at each instant, but not over time

* as does WRR (and TCP sort-of)

ConEx: so y=2014 y = y(now) + 2

the ConEx rationale

- FQ + volume limits?
 - hi vol customer only a problem if with other hi vol cust's
- Lack of complete solution led to non-neutral solutions, then...
- Comcast fair-share

- limit highest volume customer(s) only if cable congested
- better, but penalises hi-vol even if transport yields [LEDBAT]
- research goal: we ain't seen nothing yet on the Internet ...if we designed the network for un-lame transports
- ConEx rationale is actually in two parts:
 - 1. rationale for using <u>congestion-volume</u> as a metric
 - 2. need a change to IP (ConEx) to see congestion-volume

bottleneck congestion policer: next season's colour

bottleneck congestion policer (BCP): features

- predictable quality for the many
 - keeps queue v short
 - by focusing discard on those who most push at the queue*
- tends to WRR if customer traffic becomes continuous
- app-neutral

- applicability
 - same as any per-customer limiter
 - state: per-customer configured allowance and usage-level
 - drop-in to: BRAS / MSE, RNC, OLT, DC access
 - few simultaneous customers (or many)
- where bottleneck location varies, still need to evolve to ConEx

relative to their allowance to do so

© British Telecommunications pl

6

- gets industry used to congestion-volume as the metric

nice traffic management without new protocols

Q&A discussion spare slide

measuring contribution to congestion

actually each bucket needs to be two buckets to limit bursts of congestion

