
RITE – Reducing Internet Transport Latency

AQM: Questioning a
Fixed Delay Target

Bob Briscoe, BT*

Koen De Schepper, Bell Labs

IETF-93, Praha, July 2015

* now independent B. Briscoe and K. De Schepper, “Insights from Curvy RED”
BT Technical report TR-TUB8-2015-003 (Jul 2015)
<http://riteproject.eu/publications/>

The authors' contributions are part-funded by the European Community under its
Seventh Framework Programme through the Reducing Internet Transport Latency
(RITE) project (ICT-317700). The views expressed here are solely those of the authors.

Questioning a fixed delay target

CoDel and PIE aim for a fixed target delay

 The AQM community has been focusing on delay
• Don't forget loss

 In testing of PIE & fq_CoDel under high load
• they cause significantly higher loss to keep delay down
• loss, not queuing, becomes the dominant cause of delay

e.g. to maintain 5ms queuing delay
fq_CoDel uses 4.2% loss
to fit 20 Reno flows into 40MB/s

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

6 17 18 19 20

0%

5%
drop

duration
250s #flows

Insights from Curvy RED

What is Curvy RED?

 Like RED except
• Increasing back-pressure
• Initially hugs horiz axis
• Continuous curve
• Through origin

• Simple to implement

0%

1%

2%

3%

4%

5%

0 10 20 30 40
queue delay, dq [ms]

drop probability, p
Curvy RED^2

drop probability, p
Curvy RED^4

p=(dq

Dq
)
u

slope, D
q

Insights from Curvy RED

Curvy RED implementation



• Whole curve including discontinuity, simply:
if ((dq << S) > max(rand(),rand()) % for u=2
 drop(pkt)

• or in general:
if ((dq << S) > maxrand(U))

drop(pkt)

• maxrand() can be run out of band into buffered output

p=(dq

Dq
)
u

D
q
= 2S

maxrand(u) {
maxr=0
while (u-- > 0)
 maxr = max(maxr, rand())
return(maxr)

}

Insights from Curvy RED

Questioning a fixed delay target
 n flows; as n AQM push-back to make each flow smaller

• an AQM can make a TCP smaller either with higher drop or larger RTT delay
• PIE & CoDel fix delay (inherently infinite cUrviness) excessive drop→
• softer delay target requires less loss – apps survive at higher load

RTT = 20ms
, where X is capacity

0 0.5 1 1.5 2
0

10

20

30

40

50

0%

10%

20%

30%

40%

50%

dq, Reno & RED^1
dq, Reno & RED^2
dq, Reno & RED^4
dq, Reno & RED^8
dq, target (PIE/CoDel)
p, Reno & target Q
p, Reno & RED^8
p, Reno & RED^4
p, Reno & RED^2

Normalised Load, L

Q
u

eu
in

g
D

el
ay

, d
q

 [
m

s]

d
ro

p
 p

ro
b

ab
il

it
y,

 p

4 2 1 0.5 Mb/s per flow

L∝n/ X

Insight

TCP creates dilemmas that no AQM can escape
If proponents of particular AQMs claim otherwise, look at delay, utilisation AND loss

1. if you squeeze delay, TCP increases loss

• loss can become the dominant cause of delay

2. delay-utilisation tradeoff
(we already know this one)

• caused by TCP's large saw-teeth

• more smaller sawteeth excessive drop→

 TCP is the remaining problem

• ECN allows you to resolve both dilemmas

• combined with scalable TCPs (e.g. DCTCP)

0 10 20 30 40
0
5

10
15
20
25
30
35
40
45
50

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%

dq, Reno & RED^1
dq, Reno & RED^2
dq, Reno & RED^4
dq, Reno & RED^8
dq, target (PIE/CoDel)
p, Reno & target Q
p, Reno & RED^8
p, Reno & RED^4
p, Reno & RED^2
p, Reno & RED^1

Normalised Load L [ms]

Q
u

eu
in

g
D

el
ay

, d
q

 [
m

s]

d
ro

p
 p

ro
b

ab
il

it
y,

 p

RITE – Reducing Internet Transport Latency

AQM: Questioning a
Fixed Delay Target

Q&A
spare slides

0%

1%

2%

3%

4%

5%

0 10 20 30 40
queue delay, dq [ms]

drop probability, p
Curvy RED^2

drop probability, p
Curvy RED^4

Invariance with Scale

Scaling AQM Configuration
- the Usefulness of a Design Point

 in the UI/API to Curvy RED

• Slope Dq is not an intuitive config parameter

• Better: use a (dq
, p) pair

– a design point

• Represents upper end of preferred operating region

• from which the router can easily derive Dq
given cUrviness, u

slopes, D
q

Dq=
d q

*

(p*)1/u

1 10 100 1,000 10,000
0

100

200

300

flow rate [Mbps]
R

T
T

 [
m

s]

True Cubic

Reno mode

Insights from Curvy RED
Analysis approach

 assume equal flows
(1) n ≈ X/x

 TCP formula: flow rate dependence on queuing & drop

x = f(dR , p), dR = DR + dq

(2) x = f(dq , p)

 AQM formula: relation between queuing & drop

(3) p = f(dq)

 Plug (3) into (2) to get x as a function solely of p or of dq

 Plug (2) into (1) to get n as a function solely of p or of dq

p=(dq

Dq
)
u

n # simultaneous TCP flows

X link capacity

x mean TCP flow rate

DR harmonic mean base RTT delay

dq queuing delay

dR RTT delay

p drop probability

D
q

curvy RED slope

u cUrviness

s packet size

K constant Reno: 1.22
Cubic in Reno mode: 1.68

Curvy RED:

Cubic switch-over to Reno emulation

n flows
X

x

x=
K s

d R√ p
TCP Reno:

	WP4
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

