
PI²: A Linearized AQM for both

Classic and Scalable TCP

Koen De Schepper

Ing-Jyh Tsang

Olga Bondarenko

Bob Briscoe

Use DCTCP on the Internet ?

 consistently low queuing delay

 full link utilization with very small queues

 very low loss

 more stable throughput between competing flows

 scalable with higher link rates

 available in Windows 10 and Linux 3.18

 not yet optimal (for high RTTs, …)

Can we use DCTCP on the Internet ?

Unfortunately (currently) not:

 starves the classic TCP-friendly flows

 keeps big tail drop queues full

 needs ECN, so high loss (or fallback to Reno)

 only used where everything can change at once

 gradual & safe migration strategy

Challenges

How to:

make DCTCP and TCP-Reno rate compatible

 this paper: PI² AQM

preserve low latency for DCTCP

 next papers: DualQ-PI² & TCP-Prague

 IETF: L4S BoF successful, drafts in tsvwg

AQM for multiple congestion controls

Drop / Mark

p2 = G(p')

p1 = F(p')

Classifier

AQM

p'

CC1

CC2

px

Ƭ

F, G adapt the probability to align the

steady state congestion window of both CCs

Equal congestion window

Classic: Reno

Cubic

DCTCP – step

DCTCP – slope
dc

dc
p

w
2

reno

reno
p

w
22.1

2

2

dco

dco
p

w

renocubic

renocubic
p

w

68.1

2

2

 dc

creno

p
p

on-off marking

AQM for DCTCP and Cubic

pcreno = (p’/2)²
pdctcp = p’

AQM

p'

DC

Cubic

Ƭ Drop

Mark

ECN

Classifier

Implemented as a Linux tc qdisc: https://github.com/olgabo/dualpi2

Evaluated on a real testbed

https://github.com/olgabo/dualpi2

AQMs for steady state test results

Drop / Mark

PIE
p

Ƭ

preno = (p’/2)²
pdctcp = p’

PI

p'

DCTCP

Cubic

Ƭ Drop

Mark

ECN

Classifier

PIE:

PI²:

Equal rate at different RTTs

Equal rate with

different flow nbrs

 Equal window for steady state

? Dynamic behavior

? Stability PI

PI-AQM recap

Every Tupdate interval do:

∆p = *(error) + *(queue change)

p = p + ∆p
TARGET

Ƭ0

error

queue change

Ƭt Ƭt-1

Choosing and

Larger and values give faster response

Stability analysis: stable if gain margin > 0

Gain margin evolves diagonally with p problem!

unstable

,

/2, /2

/8, /8

PIE solution: and tuning

Adapt (tune) and based on p

unstable

PIE solution: and tuning

Tune and based on previous p:

Works well. Tuning is required improvement ! Curing the symptoms

if (p<1%)

α t =α/8

β t =β/8

elsif (p<10%)

α t =α/2

β t =β/2

else

α t =α

β t =β

endif

Drop / Mark

PI
p

Ƭ

α β

Tuning

α t β t

PIE

PI² solution: remove the l

Reason diagonals is the in
reno

reno
p

w
22.1

Drop / Mark

PI

Ƭ

p = (p')²
p' p

 '

22.1

'

22.122.1

2 ppp
w makes Reno controllable

like a scalable CC

α β
PI²

PI² solution: remove the l

Stability models used for:

TCP Reno on PI:

TCP Reno on PI2:

unstable

Effect on not squaring PI for Reno

10 flows 30 flows 50 flows 30 flows 10 flows

high p:

less responsive

low p:

unstable

Link:

100Mbps

10ms

PI² similar to PIE for Reno

10 flows 30 flows 50 flows 30 flows 10 flows

Link:

10Mbps

100ms

PI(²) controls DCTCP

10 flows 30 flows 50 flows 30 flows 10 flows

Link:

100Mbps

10ms

Conclusions

PI² is simpler than PIE, performs not worse and supports

scalable CCs (without the square)

PI controls natively scalable CCs, use adaption function to

convert any CC to a scalable

Future work:

Single Q deployment is not recommended for low latency

 DualQ to preserve low latency

 TCP-Prague to improve DCTCP for Internet

Questions?

koen.de_schepper@nokia-bell-labs.com

https://github.com/olgabo/dualpi2

http://riteproject.eu/dctth

mailto:koen.de_schepper@nokia-bell-labs.com
https://github.com/olgabo/dualpi2
http://riteproject.eu/dctth

Backup

DCTCP recap

TCP (Reno)

Half the congestion window

Echo once per RTT

Smooth and delay a drop or mark to

allow bursts

DCTCP

On average half a packet per ECN mark

 React to level of congestion

Echo every mark / non-mark

 accurate ECN feedback

Don’t smooth or delay queue size

 immediate ECN marking

Response to congestion in sender

ECN feedback in receiver

ECN marking in network

DCTCP recap

5 50

q size [packets]

dctcp

reno

Queue size

distribution

40%

3%

Instant Q size

p

5 packets

Shallow

ECN Threshold

Reconfigured RED for DCTCP

Average Q size

p

RED for Reno

