
PI²: A Linearized AQM for both 

Classic and Scalable TCP

Koen De Schepper

Ing-Jyh Tsang

Olga Bondarenko

Bob Briscoe



Use DCTCP on the Internet ?

 consistently low queuing delay

 full link utilization with very small queues

 very low loss

 more stable throughput between competing flows

 scalable with higher link rates

 available in Windows 10 and Linux 3.18

 not yet optimal (for high RTTs, …)



Can we use DCTCP on the Internet ?

Unfortunately (currently) not:

 starves the classic TCP-friendly flows

 keeps big tail drop queues full

 needs ECN, so high loss (or fallback to Reno)

 only used where everything can change at once

 gradual & safe migration strategy



Challenges

How to:

make DCTCP and TCP-Reno rate compatible

 this paper: PI² AQM

preserve low latency for DCTCP

 next papers: DualQ-PI² & TCP-Prague

 IETF: L4S BoF successful, drafts in tsvwg



AQM for multiple congestion controls

Drop / Mark

p2 = G(p')

p1 = F(p')

Classifier

AQM

p'

CC1

CC2

px

Ƭ

F, G adapt the probability to align the

steady state congestion window of both CCs



Equal congestion window

Classic: Reno

Cubic

DCTCP – step

DCTCP – slope
dc

dc
p

w
2



reno

reno
p

w
22.1



2

2

dco

dco
p

w 

renocubic

renocubic
p

w


 
68.1

2

2








 dc

creno

p
p

on-off marking



AQM for DCTCP and Cubic

pcreno = (p’/2)²
pdctcp = p’

AQM

p'

DC

Cubic

Ƭ Drop

Mark

ECN

Classifier

Implemented as a Linux tc qdisc: https://github.com/olgabo/dualpi2

Evaluated on a real testbed

https://github.com/olgabo/dualpi2


AQMs for steady state test results

Drop / Mark

PIE
p

Ƭ

preno = (p’/2)²
pdctcp = p’

PI

p'

DCTCP

Cubic

Ƭ Drop

Mark

ECN

Classifier

PIE:

PI²:



Equal rate at different RTTs



Equal rate with

different flow nbrs



 Equal window for steady state

?    Dynamic behavior

?    Stability PI



PI-AQM recap

Every  Tupdate interval do:

∆p = *(error) + *(queue change)

p = p + ∆p 
TARGET 

Ƭ0

error

queue change

Ƭt Ƭt-1



Choosing  and 

Larger  and  values give faster response

Stability analysis: stable if gain margin > 0

Gain margin evolves diagonally with p   problem!

unstable

, 

/2, /2

/8, /8



PIE solution:  and  tuning

Adapt (tune)  and  based on p

unstable



PIE solution:  and  tuning

Tune  and  based on previous p:

Works well. Tuning is required improvement !   Curing the symptoms

if (p<1%)

α t =α/8

β t =β/8

elsif (p<10%)

α t =α/2

β t =β/2

else

α t =α

β t =β

endif

Drop / Mark

PI
p

Ƭ

α β

Tuning

α t β t

PIE



PI² solution: remove the       l

Reason diagonals is the           in
reno

reno
p

w
22.1



Drop / Mark

PI

Ƭ

p = (p')²
p' p

  '

22.1

'

22.122.1

2 ppp
w   makes Reno controllable 

like a scalable CC

α β
PI²



PI² solution: remove the       l

Stability models used for:

TCP Reno on PI:

TCP Reno on PI2:

unstable



Effect on not squaring PI for Reno

10 flows 30 flows 50 flows 30 flows 10 flows

high p: 

less responsive

low p: 

unstable

Link: 

100Mbps

10ms



PI² similar to PIE for Reno

10 flows 30 flows 50 flows 30 flows 10 flows

Link: 

10Mbps

100ms



PI(²) controls DCTCP

10 flows 30 flows 50 flows 30 flows 10 flows

Link: 

100Mbps

10ms



Conclusions

PI² is simpler than PIE, performs not worse and supports 

scalable CCs (without the square)

PI controls natively scalable CCs, use adaption function to 

convert any CC to a scalable

Future work:

Single Q deployment is not recommended for low latency

 DualQ to preserve low latency

 TCP-Prague to improve DCTCP for Internet



Questions?

koen.de_schepper@nokia-bell-labs.com

https://github.com/olgabo/dualpi2

http://riteproject.eu/dctth

mailto:koen.de_schepper@nokia-bell-labs.com
https://github.com/olgabo/dualpi2
http://riteproject.eu/dctth


Backup



DCTCP recap

TCP (Reno)

Half the congestion window

Echo once per RTT

Smooth and delay a drop or mark to 

allow bursts

DCTCP

On average half a packet per ECN mark

 React to level of congestion

Echo every mark / non-mark 

 accurate ECN feedback

Don’t smooth or delay queue size 

 immediate ECN marking



Response to congestion in sender

ECN feedback in receiver

ECN marking in network



DCTCP recap

5             50                         

q size [packets]

dctcp

reno

Queue size 

distribution

40%

3%

Instant Q size

p

5 packets

Shallow 

ECN Threshold

Reconfigured RED for DCTCP

Average Q size

p

RED for Reno


