Pl2: A Linearized AQM for both
Classic and Scalable TCP

Koen De Schepper Olga Bondarenko

Ing-Jyh Tsang Bob Briscoe

NOKIA Bell Labs | . research laboratory |

© 60 60 6 6 O

Use DCTCP on the Internet ?

consistently low queuing delay

full link utilization with very small queues

very low loss

more stable throughput between competing flows
scalable with higher link rates

available in Windows 10 and Linux 3.18

not yet optimal (for high RTTs, ...)

Can we use DCTCP on the Internet ?

Unfortunately (currently) not:

® starves the classic TCP-friendly flows
® keeps big tail drop queues full
® needs ECN, so high loss (or fallback to Reno)

only used where everything can change at once

—> gradual & safe migration strategy

Challenges

How to:

make DCTCP and TCP-Reno rate compatible

preserve low latency for DCTCP

AQM for multiple congestion controls

P, = F(p)

@
P, = G(p’) @’<

AQM Py

Classifier
T
> > Drop/Mark —>

F, G adapt the probability to align the
steady state congestion window of both CCs

85—

Equal congestion window

: 1.22
Classic: Reno W0 =

L i

CUbIC Vchbic—reno = Lo8

\/ pcubic—reno

— 2

DCTCP — step I Wyeo = —
on-off marking — Paco

2
DCTCP — slope = . T T Y

p 2
_ dc
pcreno (2 j

AQM for DCTCP and Cubic

pdctcp = p’

p' Pcreno = (P/2)?

AQM

T > Drop

s ECN 5
] Classifier

DC
—> Mark

Implemented as a Linux tc qdisc: https://github.com/olgabo/dualpi2
Evaluated on a real testbed

https://github.com/olgabo/dualpi2

AQMSs for steady state test results

PIE

PIE: T

—_—> m > Drop/ Mark >

, Pdctep = p’
D Preno = (P/2)
Pl
Pl2;
> Drop
ECN —
Classifier

—3>1 Mark

Equal rate at different RTTs

PIE ECN-Cubic/Cubic ratio #
PIE DCTCP/Cubic ratio -
PI2 DCTCP/Cubic ratio .

— 100
o
=
— S @
v 10 ®* o ¢
=
= o
L
o I 8 & 8 & 9
&
0.1
M -
e

RTT[ms]

100

=

f—

Rate balance [ratio]

o

Equal rate with
different flow nbrs

PIE ECN-Cubic(A)/Cubic(B) ratio #
PIE DCTCP(A)/Cubic(B) ratio .
PI2 DCTCP(A)/Cubic(B) ratio o

S 0ot eeEEE SssssOeESE

Nr of flows for each cc (A-B)

v' Equal window for steady state

? Dynamic behavior

? Stability Pl

PI-AQM recap

Every T,,gae INterval do:

Ap = O*(error) + B*(queue change)

— TARGET
p=p+Ap T
T T e

I

|
queue change 4«

I

|

| |

|ﬁ
error

Choosing o and 3

Larger o and 3 values give faster response

Stability analysis: stable if gain margin > 0

30 [—————
|, B

—a/2, B/2 ; g : ;
H—0/8, /8] e B

N
o
i

—
o

o

Gain Margin [dB]
o

....unstable

R
o

0.0001 0.001 0.01 0.1 1 10 100
p [%]

Gain margin evolves diagonally with p = problem!

PIE solution: o and B tuning

Adapt (tune) o and 3 based on p

30 e
= tune=auto

~ “tune=1 5 ; -
TTUNe=1/2 | e
—tune=1/8

= M
o O

o

Gain Margin [dB]
o

N
o
T

___unstable

0.0001 0.001 0.01 0.1 1 10 100
P [%]

Tune o and 3 based on previous p:

PIE solution: o and B tuning

1if

(p<1%)
o =a/8

Bt:B/8

elsif (p<10%)

o =a/2

Bt:B/Z

else

o =Q

B¢=B

endif

>

Drop / Mark

Works well. Tuning is required improvement ! Curing the symptoms

PI2 solution: remove the ./

. . . 1.22
Reason diagonalsisthe ./ in W :T
"""" «p ipr
v ¥ '
p p
Pl p=(p)

> Drop/Mark —>

122 122 122
\F \/— o - makes Reno controllable

like a scalable CC

PI2 solution: remove the ./

Stability models used for:
dw(t) 1 W)W (t — R(t))
TCP Reno on PI: & " Ro O Re-Rp) PO

TCP Renoon PI2; dW() _ 1 WOW(E—=RO) , 0 oo
& RO T Ri-R@) (¢'(t = R(1)))

30

—reno pie
|== reno pi2
- -scal pi

na
o

—
o

o

Gain Margin [dB]
o

_..unstable _

N
o

0.1 1 10 100
P’ [%]

Queue delay [ms]

Effect on not squaring Pl for Reno

10 flows 30 flows 50 flows 30 flows 10 flows
pi2 —— Link:
P! j high p: 100Mbps
— less responsive 10ms
.IJ]' ‘Ilil. IJI A
| e unstable
[
7 2 > % <

Time [sec]

P12 similar to PIE for Reno

10 flows 30 flows 50 flows

30 flows

10 flows

|

pie
pi2

Time [sec]

Link:
10Mbps
100ms

Queue delay [ms]

30

25

20

15

10

P1(?) controls DCTCP

Time [sec]

10 flows 30 flows 50 flows 30 flows 10 flows
pi2
N N P | A 2 . § [1 i I
WMM[WMWMMWW
4 % 7 > % <5

Link:
100Mbps
10ms

Conclusions

P12 is simpler than PIE, performs not worse and supports
scalable CCs (without the square)

Pl controls natively scalable CCs, use adaption function to
convert any CC to a scalable

Future work:

Single Q deployment is not recommended for low latency
-—> DualQ to preserve low latency

- TCP-Prague to improve DCTCP for Internet

Questions?

koen.de schepper@nokia-bell-labs.com

https://github.com/olgabo/dualpi?
http://riteproject.eu/dctth

mailto:koen.de_schepper@nokia-bell-labs.com
https://github.com/olgabo/dualpi2
http://riteproject.eu/dctth

Backup

DCTCP recap

TCP (Reno) &> DCTCP

Response to congestion in sender

Half the congestion window On average half a packet per ECN mark
=>» React to level of congestion

ECN feedback in receiver

Echo once per RTT Echo every mark / non-mark
=» accurate ECN feedback

ECN marking in network

Smooth and delay a drop or mark to Don’t smooth or delay queue size
allow bursts =>» immediate ECN marking

DCTCP recap

RED for Reno

p A Queue size
distribution

40%

Average Q size

renQ ==
Reconfigured RED for DCTCP dctcp =
N
P Shallow
ECN Threshold 304
ITTIET I Iv T T I e oo veur e, UL LU LR
5 50
> g size [packets]

> packets Instant Q size

