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Use DCTCP on the Internet ?

consistently low queuing delay

full link utilization with very small queues

very low loss

more stable throughput between competing flows
scalable with higher link rates

available in Windows 10 and Linux 3.18

not yet optimal (for high RTTs, ...)



Can we use DCTCP on the Internet ?

Unfortunately (currently) not:

® starves the classic TCP-friendly flows
® keeps big tail drop queues full
® needs ECN, so high loss (or fallback to Reno)

only used where everything can change at once

—> gradual & safe migration strategy



Challenges

How to:

make DCTCP and TCP-Reno rate compatible

preserve low latency for DCTCP



AQM for multiple congestion controls

P, = F(p)

@
P, = G(p’) @’<

AQM Py

Classifier
T
> > Drop/Mark —>

F, G adapt the probability to align the
steady state congestion window of both CCs

85—




Equal congestion window
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AQM for DCTCP and Cubic

pdctcp = p’

p' Pcreno = (P/2)?
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Implemented as a Linux tc qdisc: https://github.com/olgabo/dualpi2
Evaluated on a real testbed



https://github.com/olgabo/dualpi2

AQMSs for steady state test results
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Equal rate at different RTTs
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Equal rate with
different flow nbrs
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v' Equal window for steady state

? Dynamic behavior

?  Stability Pl



PI-AQM recap

Every T,,gae INterval do:

Ap = O*(error) + B*(queue change)
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Choosing o and 3

Larger o and 3 values give faster response

Stability analysis: stable if gain margin > 0
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Gain margin evolves diagonally with p = problem!



PIE solution: o and B tuning

Adapt (tune) o and 3 based on p
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Tune o and 3 based on previous p:

PIE solution: o and B tuning

1if

(p<1%)
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elsif (p<10%)
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Works well. Tuning is required improvement ! Curing the symptoms




PI2 solution: remove the ./
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PI2 solution: remove the ./

Stability models used for:
dw(t) 1 W)W (t — R(t))
TCP Reno on PI: & " Ro O Re-Rp) PO

TCP Renoon PI2; dW() _ 1 WOW(E—=RO) , 0 oo
& RO T Ri-R@) (¢'(t = R(1)))

30

—reno pie
|== reno pi2
- -scal pi

na
o

—
o

o

Gain Margin [dB]
o

_..unstable _

N
o

0.1 1 10 100
P’ [%]



Queue delay [ms]

Effect on not squaring Pl for Reno
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P12 similar to PIE for Reno
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Queue delay [ms]
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Conclusions

P12 is simpler than PIE, performs not worse and supports
scalable CCs (without the square)

Pl controls natively scalable CCs, use adaption function to
convert any CC to a scalable

Future work:

Single Q deployment is not recommended for low latency
-—> DualQ to preserve low latency

- TCP-Prague to improve DCTCP for Internet



Questions?

koen.de schepper@nokia-bell-labs.com

https://github.com/olgabo/dualpi?
http://riteproject.eu/dctth
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Backup



DCTCP recap

TCP (Reno) &> DCTCP

Response to congestion in sender

Half the congestion window On average half a packet per ECN mark
=>» React to level of congestion

ECN feedback in receiver

Echo once per RTT Echo every mark / non-mark
=» accurate ECN feedback

ECN marking in network

Smooth and delay a drop or mark to Don’t smooth or delay queue size
allow bursts =>» immediate ECN marking



DCTCP recap

RED for Reno
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