L4S: Low Latency, Low Loss, Scalable Throughput Internet Service

TSVWG IETF98 Chicago

draft-briscoe-tsvwg-l4s-arch-01
draft-briscoe-tsvwg-ecn-l4s-id-02
draft-briscoe-tsvwg-aqm-dualq-coupled-00

March 30th, 2017

Bob Briscoe, Koen De Schepper, Marcelo Bagnulo, Olga Bondarenko, Inton Tsang
Drafts for L4S

TSVWG:
• L4S architecture (INF)
• L4S ID (EXP)
• DualQ (EXP)

TSVWG:
• ECN experimentation (STD)

ICCRG:
• TCP-Prague

TCPM:
• Accurate ECN (EXP)
• DCTCP (INF)
• Generalized ECN (INF)

QUIC, …:
• Accurate ECN
• Generalized ECN
Recap

Motivation:

- Support Low Latency Congestion Controls (DCTCP, TCP-Prague)
- Compatibility with Classic Congestion Controls to support deployability

Architecture and draft mapping:
Status L4S Architecture

Updated sections in draft:
• Deployment
• Policing

thanks to Karen Nielssen, Wes Eddy & David Black

No other open issues?
DualQ AQM Deployment

- per 'site' (home, office, campus or mobile device)
 - typically one access bottleneck in each direction
 - deploying DualQ at each end gives nearly all the benefit
 - downstream as leaf queues of pre-existing inter-site scheduling hierarchy

- similar topology for each access technology:
 - xDSL, cable, cellular, satellite

- mesh topology, e.g. data centre
 - ingress and egress bottleneck gives nearly all the benefit
 - e.g. all the outputs of the top-of-rack switch

- eventually deploy at internetwork bottlenecks, e.g.
 - inter-DC WAN links, Internet exchanges
L4S Deployment Sequences

Significant benefit realized at each deployment stage

<table>
<thead>
<tr>
<th>servers or proxies</th>
<th>access link</th>
<th>client</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DCTCP (existing)</td>
<td>DualQ AQM downstream</td>
<td>DCTCP (existing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>works downstream for controlled trials</td>
</tr>
<tr>
<td>2. TCP Prague</td>
<td></td>
<td>AccECN (already in progress – DCTCP/BBR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>works downstream</td>
</tr>
<tr>
<td>3.</td>
<td>DualQ AQM upstream</td>
<td>TCP Prague</td>
</tr>
<tr>
<td></td>
<td></td>
<td>works upstream & downstream</td>
</tr>
</tbody>
</table>

Where a stage involves 2 moves:
- The benefit after the 2nd move has to be worth the 1st mover’s investment risk
- new services or products, not just incremental performance improvement
When TCP Prague hits non-DualQ bottleneck?

- on drop, DCTCP already falls back to Reno for 1RTT
- but prevalent drop would degrade L4S
- main reasons for prevalent drop:
 - congestion loss (bursty traffic on shallow Q, long RTT)
 - transmission loss (high link rates)
 - policer loss
- 3 complementary approaches to address these (all research)
 1. include evolved BBR-like\(^1\) behaviour in TCP Prague if there's consensus on how to safely interop with drop based CC (RTT-Independence?)
 2. exploit RACK\(^2\)/link ARQ/L4S combination (research to appear)
 3. operator deploys L4S-ECN-enabled policers (see text in L4S-arch draft)

\(^1\) BBR: Bottleneck Bandwidth & RTT – see ICCRG talks
\(^2\) RACK: Recent ACKnowledgement – see TCPM
Draft is stable

Open issues:

- Ect(1) behavior for classic only single queue AQM
 - Default: Drop to avoid unnecessary Classic ECN detection
 - Optionally configurable: Also classic ECN marking
 - Optionally configurable: Also L4S ECN marking: $2 \times \sqrt{p}$ marking
Status DualQ

DualQ AQM was main focus up to now
• Classic and DCTCP window compatibility
• PI2 as the classic AQM
• Overload handling
• Large number of experiments: flow numbers, RTTs, dynamic flows, overload

DualQ concept proven for DCTCP
• Linux open source released
• Cleanup and Linux upstream submission ongoing
DualQ open issues

L4S-only AQM:
- DCTCP-like immediate step
- AQM with gradual p control

DualQ Coupling function:
- Classic TCP-fairness is well known: 1/sqrt(p) but future?
- Also coupling is determined by how DCTCP / TCP-Prague behaves
- RTT-independent related coupling
DualQ: minor open issues

• PI2 Classic AQM: all PIE heuristics have been assessed. Write-up will follow why each one is not relevant to PI2. Any heuristics that the PIE authors believe we should not have left out?

• PI2 API: Inter-dependency between parameters (e.g. coupling factor and ECN overload switch-over threshold and gain factors, etc)

• Experimentation to prove time-shift value for shifted-FIFO scheduler is optimal
Related recent TCP-Prague work

Internet-safety:
• 4.1: Fall back to Reno/Cubic congestion control on packet loss
• 4.2: Fall back to Reno/Cubic congestion control on classic ECN bottlenecks
• 4.3: Reduce RTT dependence
• 4.4: Scaling down the congestion window
• tcpm: Accurate ECN and negotiation draft-ietf-tcpm-accurate-ecn

Performance improvements:
• 5.1: Setting ECT in SYN, SYN/ACK and pure ACK packets
• 5.2: Faster than additive increase
• 5.3: Faster convergence to fairness

no impact work in progress, maybe impact
TCP-Prague discussion points

• Use TCP-Prague also in DC?
• Compatible with DCTCP?
• Interoperability/coexistence needed between DC and public Internet?
• Possible new congestion control features that L4S hosts are required to support
 – RACK-like support (why relevant? - writing up in progress)
 – others...?
 – any legacy features we could require to not be supported?
Next steps

L4S - DualQ concept proven and usable with DCTCP
• Independent evaluation will help improve the drafts
• Hands-on experience is required before designing HW. Many pitfalls exist (alternative designs might have unexpected impact)

L4S: opportunity for new(existing) improvements
• What other CC improvements can we bring to the Internet together with L4S - DualQ?
• Limited opportunity until tsvwg drafts go for last call

Please evaluate, review and comment
• From the authors perspective, the tsvwg drafts are in good shape
Milestones

ECN Experimentation:
• as early as poss - so experimental work can proceed

L4S arch (INF), L4S ID (EXP), DualQ (EXP)
• should go together
• probably Nov 2017 for earliest WGLC
• allows time for at least one working implementation of the TCP Prague requirements
• deadline to avoid TCP Prague work to spin out of control?

TCPM: Accurate ECN (EXP), DCTCP (INF), Generalized ECN (INF)
• Dependency?
Questions

koen.de_schepper@nokia.com