TCP Prague: Resolving Tensions between Congestion Control Scaling Requirements

Supporting discussion paper:

https://riteproject.files.wordpress.com/2015/10/ccdi_tr.pdf

Bob Briscoe bobbriscoe.net Koen De Schepper NOKIA Bell Labs

Scaling congestion control dynamics

- whiskers: 1 standard deviation.
- %-age figures: resulting utilization of raw capacity
- 3G and 4G results captured over a production network [1]
- 5G Wide Area macro-cell results were simulated (next slide)
- Poor handling of dynamics by TCP's receive window was manually overridden in all cases (to focus on congestion control dynamics)
 - with autotuned rwnd and Cubic CC, 4G/LTE mean utilization was 43%

Why Such Poor Utilization?

- Right: video still of simulation to establish capacity dynamics
 - pedestrian mobility model
 - 3.5GHz macrocell (red) combined with 28GHz (blue) and 73 GHz (yellow) mmWave microcells
- Left: Goodput is for TCP Cubic over 20ms base RTT
 - each 10s grid line = 500 RTT
 - mean goodput: 1.2Gb/s; mean utilization: 19%

WiFi is no better

- 802.11ad
 - 60GHz 3Gb/s channel, static, office environment, occasional human blocking, Compound TCP
 - median goodput 280Mb/s, utilization 9.3%
 - near-perfect beam-forming improved utilization to 16% [2]

BDP = Bandwidth-Delay Product

Lesson from design of high-BDP TCP protocols

- keep the number of round trips between drops small
- equivalently, keep the number of drops per round trip large

v : number of congestion signals per round trip

v : number of congestion signals per round tripW: congestion windowp: dropping or marking probability

Req#1. Scalable Congestion Signalling

- congestion signalling is scalable if $v \ge v_0$ (1) where v_0 is a reasonable min
- v = (segments per RTT, W) * (probability each will be marked, p)
 v = Wp

substitute in scalability constraint (1)

 $W \ge v_0 / p \qquad (2)$

• can easily derive constraint on steady-state TCP equations from this...

General congestion control formula: $W \propto \frac{1}{n^B}$,

• To satisfy (2), $B \ge 1$

	В
Reno	1/2
Cubic	3⁄4
DCTCP (prob. AQM)	1
DCTCP (step AQM)	2

Approach to scaling the dynamics

- capacity decrease or other flows arrive: not the problem
- If capacity increases, or other flows depart, no information, except
 - ACK rate increases briefly while queue empties⁽¹⁾
 - the next mark never comes...
- If normally 500 RTTs between marks, it takes ~1000 RTTs to notice their absence
- If normally 2 marks per RTT, it takes 1 RTT to notice
- Then sender can start probing for capacity
 - (1) Goal: ultra-low standing queue; The closer to our goal, the less we will detect this

Req#2: Limited RTT-dependence

- We have lived with this. Why change?
- Bufferbloat has cushioned us from the impact of RTT-dependent CC E.g: base RTT ratio $R_1/R_2 = 200/2 = 100$
- Low queuing delay leads large RTT flows to starve

L.g. base K11 ratio $K_1/K_2 = 200/2 = 100$				
	Qdelay q	Total RTT imbal $(R_1+q)/(R_2+q)$	ance	
Drop tail	200 ms	<u>(200+200)</u> (2+200)	≈ 2	
PIE AQM	15 ms	<u>(200+15)</u> (2+15)	≈ 13	
L4S AQM	500 μs	<u>(200+0.5)</u> (2+0.5)	≈ 80	

Note: this is an anti-starvation requirement not a strong 'fairness' requirement

Tension between Reqs 1 & 2

- Scalable congestion signalling $pW \ge v_0$
- Limited RTT-dependence (pW/R const) $pW \propto R$

v : number of congestion signals per round tripW: congestion windowp: dopping or marking probabilityR: Total Round trip time

"Compromise 5" betw Reqs 1 & 2

• signals per RTT $pW = \frac{v_0}{lg(R_0/R+1)}$

scalable signalling AND $>>R_0$ RTT-independent $<<R_0$ not RTT-dependent

• flow rate

$$\frac{pW}{R} = \frac{v_0}{R \log(R_0/R+1)}$$

sorry for confusing you all: $p \approx 1/u$

Resolving Tensions between Congestion Control Scaling Requirements

6 scalability requirements (RTT, rate):

- 1. Scalable congestion signaling
- 2. Limited RTT-dependence
- 3. Unlimited responsiveness
- 4. Low relative queuing delay
- 5. Unsaturated signaling
- 6. Coexistence with Classic TCP

Link to paper:

<u>Resolving Tensions Between Congestion Control Scaling Requirements</u> <u>https://riteproject.files.wordpress.com/2015/10/ccdi_tr.pdf</u>

Link to experiment videos:

BBR with AQM: https://youtu.be/4eYfyKYe9nM

BBR with Cubic: https://youtu.be/akO1HN2ey48

All links available via https://riteproject.eu/dctth/

more info

- [1] K. Liu and J. Y. B. Lee, "On Improving TCP Performance over Mobile Data Networks," IEEE Transactions on Mobile Computing, 2016.
- [2] Sur, S., Zhang, X., Ramanathan, P. & Chandra, R., "BeamSpy: Enabling Robust 60 GHz Links Under Blockage," In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16) pp.193-206 (2016)