Flow-start: Faster and Less Overshoot
with Paced Chirps

Joakim Misund, Simula
Bob Briscoe, Independent
Mar 2018

Problem: originally LAS/ECN-specific
Solution: delay-based

* Original problem
- DCTCP's ECN marking prob. higher! than Classic drop
- A flow pushing into existing traffic exits slow start earlier

* Solution
- TCP Prague intended for public Internet

- Unlike DCTCP, cannot assume ECN support at bottleneck
* even if new flow experiences ECN marking
 as available capacity increases, could reveal a non-ECN b'neck

— Must use delay-sensing, with ECN only to improve precision

' Deliberate: 2 marks per RTT in steady state L4S: Low Latency Low Loss

Scalable throughput
(control scales to any rate) ECN: Explicit Congestion Notification

Problem:

DCTCP slow start

* Throughput convergence

o awful

* Queuing Impact
» excellent

Throughput Mbps

Queue size (us)

200 -

150 -

=

00

50 -

200 -
150 -
100 -

50 -

20 22 24 26

1. flow

2. flow
10 12 14
32 34

Seconds since experiment start

3000 -
4000

3000 -
2000 -
1000 -

0

5000 -
4000 -
3000 -
2000

1000 -

0- ' ' i
20.00 20.25 20.50 20.75 21.00

0.00 0.25 0.50 0.75 1.00

1. flow
2. flow

3. flow!
4, fluw;

16

36

3. flow|
4, flow;

10.00 10.25 10.50 10.75 11.00

30.00 30.25 30.50 30.75 31.00 31.25
Seconds since experiment start

200 - < 1. flow 3. flow|

Solution: o Ealiow “alrow
Paced Chirping

ﬂ 50 -
]
= 0- .
45 0 2 4 6 10 12 14 16
E- 200 -
o
g 150
* Throughput convergence A
« excellent o
0- 1 1 1 [1
20 22 24 26 30 32 34 36
° " Seconds since experiment start
QueUIng ImpaCt 5000 - - [1. flow 3. ﬂﬂW
° exce”ent 2000 2. flow 4. flow
3000
2000 -
¢ Implemented “~ 1000 -
=3
° kernel mOdL”e and) "H‘ . 0.00 0.25 D.IEO [].I?'S 1.'IDD 10.00 10.25 10:50 1{1:75 11:(]0
modified the API to pacing 5000-
In linux kernel 3 4000-
. . 3 o
» still only one outstanding 0 RSN
timer per connection 2000
1000 -
* But not tested to extremes o- ol " et i W W
20.00 20.25 20.50 20.75 21.00 30.00 30.25 30.50 30.75 31.00 31.2

Seconds since experiment start

oNoNoN
. (T @© @©
16-packet chirp 2282
A h (1/3 g
pprOaC (Geometry = 2 I
@ 60
2 o
o 40 L]
g 30 a
o u
X 20 g =
qv] [[| m ®
Q 10] | | u
S 0
= 0 2 4 6 8 10
Time [ms]

* Packet chirps
 continually pulse queue by a few packets, then relax

« Samples available (and max) capacity

» available: rate where ACKs spread from sent pattern
(after filtering noise within chirp)

 max: ACK rate of last 2 packets

* Maximizes ratio of capacity-information-rate to harm (queue delay)
* run each (per chirp) meaasurement through EWMA

12

Using chirps to measure available capacity

Per-packet rate leaving sender

I, S .

3.5 4 \4.5 5

Throughput [Mbps]
O=2NWAUOO
s VR

W

Time [s]

Resulting per-packet rate arriving at receiver

Throughput [Mbps]
O=NWkOd®

3 3.5 4 4.5 5
Time [s]

* This example measures constant available capacity
* Code to interpret chirps filters noise to measure varying available capacity

Approach (2/3) paced chirps

0 1 time [RTT]
1 [4] [4]
2 [[8]
3 | % 1 O T
| 16 | (16
round

* Avg rate of each chirp depends on EWMA of available
capacity measured in previous rounds

* Noisy, but increasingly frequent measurements
* Queue delay solely depends on chirp geometry

* Notice, chirp length reduces
* as available capacity measured in last round increases

Approach (3/3) adaptive gain

1 time [RTT]

0
1 [4] [4]
2 [[8 1]
3 | 16 | _{ exponent =2]
v:l [16 | [16 | j#\exponent:Z.SI
round

* Growth in #chirps per RTT depends on a gain variable
* vary gain dependent on stability of available capacity samples

* Push-in a little harder than available capacity grows:

 other flows yield

* activity-triggered link scheduler expands per-user capacity

* When shift from paced chirps to ACK clocking?

* when chirps fill the round trip

e or...? (to be determined, perhaps using ECN for extra precision?)

Approach (3/3) adaptive gain

1 time [RTT]

0
1 [4] [4]
2 [[8 1]
3 | 16 | _{ exponent =2]
v:l [16 | [16 | j#\exponent:Z.SI
round

* Growth in #chirps per RTT depends on a gain variable
* vary gain dependent on stability of available capacity samples

* Push-in a little harder than available capacity grows:

 other flows yield

* activity-triggered link scheduler expands per-user capacity

* When shift from paced chirps to ACK clocking?

* when chirps fill the round trip

e or...? (to be determined, perhaps using ECN for extra precision?)

Caveats

* Delayed ACKs & ACK thinning

e we need rcvr to suppress delayed ACKs during SS

* Linux rcvr quickacks during SS - detected heuristically
— but our modified start-up phase confuses its heuristics

* sender could request quickacks with a 1-bit option
— Could put arrival times in ACKs (as in QUIC)

* Bursty MACs and schedulers

Our initial experiments are with simple Ethernet

Shared upstream links (LTE, DOCISIS, GPON) all time-slotted
Averaging within chirps designed to cope, but may need tweaking
EWMA designed to cope with numerous noisy measurements

Closing the loop

* Paced chirps: not just for slow-start
 for whenever the closed loop signal is lost

* With Scalable CC, e.g. TCP Prague, DCTCP, etc.
* after 1 round trip without marks
* start paced chirps to rapidly find new operating point

\ ‘Cubic 800 Mb/s
= o v=1/500
= Yo ¥
3- CTCP any rate
= Crihi I = v=2 J
Cubic 100 Mb/s -
v= 17250 j// ~
 —— — ' //7 20ms round trips
250 500 /50" 1,000 1,250 1,500 1 750 2 OOO
* Takes a lot longer with an unscalable CC v number of congestion

signals per round trip

* e.g. 500-1000 round trips for Cubic at 800Mb/s

Why two phases?

1) Start-up:
* paced chirping

2) Steady state:

* regular congestion avoidance, preferably scalable
(e.g. DCTCP, TCP Prague, Relentless, Scalable TCP)

* Benefit of not chirping in steady state

 using ACK clock reduces timer burden on servers
(large majority of packets are sent in steady state)

 cuts out noise
(each chirp is a signal for the sender, but noise for other flows)

Further Work Needed

* Research
* Termination condition — when to stop pushing in
Improving noise filtering & precision of chirps
- esp. for bursty MACs: LTE/5G, DOCSIS, GPON
Exploiting ECN if available
Initial avg. gap for a wide range of possible networks

Evaluation over much wider range of conditions & iterate design
- much lower/higher BDP, hi as well as lo stat. mux. bottlenecks, etc.

* Engineering
* handling loss, reordering during slow start
* TFO when RTT estimate Is stale in the first RTT
 mimic QUIC's ACKS listing arrival times in other protocols

Summary

* TCP slow-start is mimicked in most transport
protocols

e an open loop phase characterized by arbitrary numbers
* Paced chirping
* closes the open loop — frequent startup information

e gueue delay solely depends on geometry of each chirp,
not pace of chirps

* maximizes ratio: (capacity-information-rate / harm)

* |nitial research
* much more testing and development to do

Flow-start: Faster and Less Overshoot
with Paced Chirps

Q&A

and
Spare Slides

Measuring Available Capacity using Chirps

* Find inter-packet gap where path delay starts to persistently
Increase

1) Record each inter-packet path delay increase

Aqn — 4y =4

where g =ts,., — ts,,,; ts are timestamps; and » is the packet number
2) ldeally one-way delay: timestamp each packet:

* when sent (not when scheduled to send)

* when received
— in practice use when ACK rec'd (round trip delay)

3) Filter out noise. Simple example filter:
* only count an increasing trend of more than L packets

- " (Ag,
to count as an increasegq> max;_, (Aq;)

e default: L=5, F=1.5

Linux Pacing Framework

struct tep_sock

pacing _rate_list

used_pacing _rate list

I-‘_-1

pacing_timer - - ol I

|
: schedules

g

1.

tcp_write_:n:mit

-

2. Put used rate .tﬁ

tcp.intemal _I:ral:ing

i tcp_transmit_skb |

i tcppacing check

v 1. Use rate if avail. lif 1. retums false

modifications in red

Linux kernel
Structure to set up per-packet rates

tcp_internal pacing

_- 1. Check if available rate
. 2. Use rate, put time and snd_nxt

I 3. Move entry to used-list - ---___
tcp_sock.-* ...
. P ’ ~ N .
. k. . / s\
pacing_rate_lis .
[EE==mEmEmEmemy== ~
L E— TR > >y
1 ~ ~
't rate~_ >~ rate rate rate
o) -] ol -
- 1< 3~
: seq AR seq >~ seq seq
r========= ': < ~
, timestamp ! timestamp *~ | timestamp timestamp
I ~ ~
used_pacing rate list |~._ So So)
yl N N L4
N ~ N L) ~ 4 . ’
rate It~ rate pe_ rate Pt
seq seq . seq [
timestamp timestamp [~._ [timestamp
\Al ~

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

