

Flow-start: Faster and Less Overshoot
with Paced Chirps

Joakim Misund, Simula
Bob Briscoe, Independent

Mar 2018

Problem: originally L4S/ECN-specific
Solution: delay-based
● Original problem

– DCTCP's ECN marking prob. higher1 than Classic drop
– A flow pushing into existing traffic exits slow start earlier

● Solution
– TCP Prague intended for public Internet
– Unlike DCTCP, cannot assume ECN support at bottleneck

● even if new flow experiences ECN marking
● as available capacity increases, could reveal a non-ECN b'neck

– Must use delay-sensing, with ECN only to improve precision

L4S: Low Latency Low Loss
Scalable throughput

ECN: Explicit Congestion Notification

L4S: Low Latency Low Loss
Scalable throughput

ECN: Explicit Congestion Notification

1 Deliberate: 2 marks per RTT in steady state

(control scales to any rate)

Problem:
DCTCP slow start

● Throughput convergence
● awful

● Queuing Impact
● excellent

Solution:
Paced Chirping

● Throughput convergence
● excellent

● Queuing Impact
● excellent

● Implemented
● kernel module and

modified the API to pacing
in linux kernel

● still only one outstanding
timer per connection

● But not tested to extremes

0 2 4 6 8 10 12
0

10

20

30

40

50

60

16-packet chirp

Geometry = 2

Time [ms]

In
te

r-
p

a
ck

e
t r

a
te

 [M
b

/s
]

Approach (1/3)

● Packet chirps
● continually pulse queue by a few packets, then relax

● Samples available (and max) capacity
● available: rate where ACKs spread from sent pattern

(after filtering noise within chirp)
● max: ACK rate of last 2 packets

● Maximizes ratio of capacity-information-rate to harm (queue delay)
● run each (per chirp) meaasurement through EWMA

1*
m

in
G

ap
2*

m
in

G
ap

3*
m

in
G

ap

Using chirps to measure available capacity

Resulting per-packet rate arriving at receiverResulting per-packet rate arriving at receiver

Per-packet rate leaving sender

● This example measures constant available capacity
● Code to interpret chirps filters noise to measure varying available capacity

Approach (2/3): paced chirps

● Avg rate of each chirp depends on EWMA of available
capacity measured in previous rounds

● Noisy, but increasingly frequent measurements
● Queue delay solely depends on chirp geometry
● Notice, chirp length reduces

● as available capacity measured in last round increases

time [RTT]
1

round

2

3

4

1

4

1/20

4

8 8

16 16

16 16 16 16

0 2 4 6 8 10 12
0

10

20

30

40

50

60

Approach (3/3): adaptive gain

● Growth in #chirps per RTT depends on a gain variable
● vary gain dependent on stability of available capacity samples

● Push-in a little harder than available capacity grows:
● other flows yield
● activity-triggered link scheduler expands per-user capacity

● When shift from paced chirps to ACK clocking?
● when chirps fill the round trip
● or …? (to be determined, perhaps using ECN for extra precision?)

time [RTT]
1

round

2

3

4

1

4

1/20

4

8 8

16 16

16

exponent = 2

exponent = 2.516 16 16 16

Still, queue delay solely depends on chirp geometry, not gain

Approach (3/3): adaptive gain

● Growth in #chirps per RTT depends on a gain variable
● vary gain dependent on stability of available capacity samples

● Push-in a little harder than available capacity grows:
● other flows yield
● activity-triggered link scheduler expands per-user capacity

● When shift from paced chirps to ACK clocking?
● when chirps fill the round trip
● or …? (to be determined, perhaps using ECN for extra precision?)

time [RTT]
1

round

2

3

4

1

4

1/20

4

8 8

16 16

16

exponent = 2

exponent = 2.516 16 16 16

Still, queue delay solely depends on chirp geometry, not gain

Caveats

● Delayed ACKs & ACK thinning
● we need rcvr to suppress delayed ACKs during SS
● Linux rcvr quickacks during SS - detected heuristically

– but our modified start-up phase confuses its heuristics
● sender could request quickacks with a 1-bit option

– Could put arrival times in ACKs (as in QUIC)

● Bursty MACs and schedulers
● Our initial experiments are with simple Ethernet
● Shared upstream links (LTE, DOCISIS, GPON) all time-slotted
● Averaging within chirps designed to cope, but may need tweaking
● EWMA designed to cope with numerous noisy measurements

Closing the loop
● Paced chirps: not just for slow-start

● for whenever the closed loop signal is lost

● With Scalable CC, e.g. TCP Prague, DCTCP, etc.
● after 1 round trip without marks
● start paced chirps to rapidly find new operating point

● Takes a lot longer with an unscalable CC
● e.g. 500-1000 round trips for Cubic at 800Mb/s

v : number of congestion
signals per round trip

v : number of congestion
signals per round trip

W
,

w
in

do
w

20ms round trips

1,000250 500 750 1,250 1,500 1,750 2,000

Cubic 100 Mb/s
v=1/250

Cubic 800 Mb/s
v= 1/500

DCTCP any rate:
v = 2

DCTCP any rate
v = 2

Why two phases?

1) Start-up:
● paced chirping

2) Steady state:
● regular congestion avoidance, preferably scalable

(e.g. DCTCP, TCP Prague, Relentless, Scalable TCP)

● Benefit of not chirping in steady state
● using ACK clock reduces timer burden on servers

(large majority of packets are sent in steady state)
● cuts out noise

(each chirp is a signal for the sender, but noise for other flows)

Further Work Needed

● Research
● Termination condition – when to stop pushing in
● Improving noise filtering & precision of chirps

– esp. for bursty MACs: LTE/5G, DOCSIS, GPON

● Exploiting ECN if available
● Initial avg. gap for a wide range of possible networks
● Evaluation over much wider range of conditions & iterate design

– much lower/higher BDP, hi as well as lo stat. mux. bottlenecks, etc.

● Engineering
● handling loss, reordering during slow start
● TFO when RTT estimate is stale in the first RTT
● mimic QUIC's ACKS listing arrival times in other protocols

Summary

● TCP slow-start is mimicked in most transport
protocols

● an open loop phase characterized by arbitrary numbers

● Paced chirping
● closes the open loop – frequent startup information
● queue delay solely depends on geometry of each chirp,

not pace of chirps
● maximizes ratio: (capacity-information-rate / harm)

● Initial research
● much more testing and development to do

Flow-start: Faster and Less Overshoot
with Paced Chirps

Q&A
and

Spare Slides

Measuring Available Capacity using Chirps
● Find inter-packet gap where path delay starts to persistently

increase

1) Record each inter-packet path delay increase
Δqn = qn – qn-1

where q = tsrcv – tssnd; ts are timestamps; and n is the packet number

2) Ideally one-way delay: timestamp each packet:
● when sent (not when scheduled to send)
● when received

– in practice use when ACK rec'd (round trip delay)

3) Filter out noise. Simple example filter:
● only count an increasing trend of more than L packets

to count as an increase,

● default: L=5, F=1.5

Δq>
max i=1

n
(Δqi)

F

Linux Pacing Framework

modifications in red

Linux kernel
Structure to set up per-packet rates

rate
seq

timestamp

rate
seq

timestamp

rate
seq

timestamp

rate
seq

timestamp

pacing rate list

rate
seq

timestamp

used pacing rate list

rate
seq

timestamp

tcp sock

tcp internal pacing
1. Check if available rate
2. Use rate, put time and snd nxt
3. Move entry to used-list

rate
seq

timestamp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

