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Problem: originally LAS/ECN-specific
Solution: delay-based

* Original problem
- DCTCP's ECN marking prob. higher! than Classic drop
- A flow pushing into existing traffic exits slow start earlier

* Solution
- TCP Prague intended for public Internet

- Unlike DCTCP, cannot assume ECN support at bottleneck
* even if new flow experiences ECN marking
 as available capacity increases, could reveal a non-ECN b'neck

— Must use delay-sensing, with ECN only to improve precision

' Deliberate: 2 marks per RTT in steady state L4S: Low Latency Low Loss

Scalable throughput
(control scales to any rate) ECN: Explicit Congestion Notification




Problem:

DCTCP slow start
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* Packet chirps
 continually pulse queue by a few packets, then relax

« Samples available (and max) capacity

» available: rate where ACKs spread from sent pattern
(after filtering noise within chirp)

 max: ACK rate of last 2 packets

* Maximizes ratio of capacity-information-rate to harm (queue delay)
* run each (per chirp) meaasurement through EWMA
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Using chirps to measure available capacity
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* This example measures constant available capacity
* Code to interpret chirps filters noise to measure varying available capacity




Approach (2/3) paced chirps
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* Avg rate of each chirp depends on EWMA of available
capacity measured in previous rounds

* Noisy, but increasingly frequent measurements
* Queue delay solely depends on chirp geometry

* Notice, chirp length reduces
* as available capacity measured in last round increases



Approach (3/3) adaptive gain
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* Growth in #chirps per RTT depends on a gain variable
* vary gain dependent on stability of available capacity samples

* Push-in a little harder than available capacity grows:

 other flows yield

* activity-triggered link scheduler expands per-user capacity

* When shift from paced chirps to ACK clocking?

* when chirps fill the round trip

e or...? (to be determined, perhaps using ECN for extra precision?)
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Caveats

* Delayed ACKs & ACK thinning

e we need rcvr to suppress delayed ACKs during SS

* Linux rcvr quickacks during SS - detected heuristically
— but our modified start-up phase confuses its heuristics

* sender could request quickacks with a 1-bit option
— Could put arrival times in ACKs (as in QUIC)

* Bursty MACs and schedulers

Our initial experiments are with simple Ethernet

Shared upstream links (LTE, DOCISIS, GPON) all time-slotted
Averaging within chirps designed to cope, but may need tweaking
EWMA designed to cope with numerous noisy measurements



Closing the loop

* Paced chirps: not just for slow-start
 for whenever the closed loop signal is lost

* With Scalable CC, e.g. TCP Prague, DCTCP, etc.
* after 1 round trip without marks
* start paced chirps to rapidly find new operating point
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* Takes a lot longer with an unscalable CC v number of congestion

signals per round trip

* e.g. 500-1000 round trips for Cubic at 800Mb/s



Why two phases?

1) Start-up:
* paced chirping

2) Steady state:

* regular congestion avoidance, preferably scalable
(e.g. DCTCP, TCP Prague, Relentless, Scalable TCP)

* Benefit of not chirping in steady state

 using ACK clock reduces timer burden on servers
(large majority of packets are sent in steady state)

 cuts out noise
(each chirp is a signal for the sender, but noise for other flows)



Further Work Needed

* Research
* Termination condition — when to stop pushing in
Improving noise filtering & precision of chirps
- esp. for bursty MACs: LTE/5G, DOCSIS, GPON
Exploiting ECN if available
Initial avg. gap for a wide range of possible networks

Evaluation over much wider range of conditions & iterate design
- much lower/higher BDP, hi as well as lo stat. mux. bottlenecks, etc.

* Engineering
* handling loss, reordering during slow start
* TFO when RTT estimate Is stale in the first RTT
 mimic QUIC's ACKS listing arrival times in other protocols



Summary

* TCP slow-start is mimicked in most transport
protocols

e an open loop phase characterized by arbitrary numbers
* Paced chirping
* closes the open loop — frequent startup information

e gueue delay solely depends on geometry of each chirp,
not pace of chirps

* maximizes ratio: ( capacity-information-rate / harm)

* |nitial research
* much more testing and development to do
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Measuring Available Capacity using Chirps

* Find inter-packet gap where path delay starts to persistently
Increase

1) Record each inter-packet path delay increase

Aqn — 4y =4

where g =ts,., — ts,,,; ts are timestamps; and » is the packet number
2) ldeally one-way delay: timestamp each packet:

* when sent (not when scheduled to send)

* when received
— in practice use when ACK rec'd (round trip delay)

3) Filter out noise. Simple example filter:
* only count an increasing trend of more than L packets

- " (Ag,
to count as an increasegq> max;_, (Aq;)

e default: L=5, F=1.5




Linux Pacing Framework
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Linux kernel
Structure to set up per-packet rates

tcp_internal pacing
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