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The 'Prague L4S requirements’

« for scalable congestion ctrls over Internet

* Assuming only partial deployment of either FQ or Requirements
bualQ Coupled AQM isolation for L4S L4S-ECN Packet Identification: ECT(1)

e Jul 2015 Prague IETF,
ad hoc meeting of ~30 DCTCP folks Accurate ECN TCP feedback

- categorized as safety (mandatory) Reno-friendly on loss
or performance (optional)

* not just for TCP
* behaviour for any wire protocol (TCP, QUIC, RTP, etc)

* evolved into draft IETF conditions for setting _ __ _
ECT(1)inIP Detecting loss in units of time

Reno-friendly if Classic ECN bottleneck
Reduce RTT dependence
Scale down to fractional window

« draft-ietf-tsvwg-ecn-l4s-id Optimizations
ECN-capable TCP control packets
Faster flow start




Motivation — recap

* Ultra-low queuing delay for all Internet applications
— including capacity-seeking (TCP-like)

* Transition mechanisms
- network side (not this talk)
- dualQ coupled AQM
- per-flow queuing

The trick: scalable congestion control
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DualPi2 (DCTCP) —— FQ-CoDel (Cubic)
DualPi2 (Cubic) —— PIE (ECN-Cubic) —— “Ultra-low”
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Status against Prague L4S requirements (Jul'19)
Linux code: - none (simulated) research private research opened RFC _

Requirements base TCP DCTCP TCP Prague

L4S-ECN Packet Identification: ECT(1) _—

Accurate ECN TCP feedback sysctl option mandatory
Reno-friendly on loss _—
Reno-friendly if classic ECN bottleneck _
Reduce RTT dependence simulated

Scale down to fractional window thesis write-up thesis write-up  thesis write-up
Detecting loss in units of time _— mandatory?
Optimizations

ECN-capable TCP control packets module option off on default off - on later
Faster flow start in progress

Faster than additive increase in progress




Status against Prague L4S requirements (Nov'19)
Linux code: - none (simulated) research private research opened RFC _

Requirements base TCP DCTCP TCP Prague
L4S-ECN Packet Identification: ECT(1) _—
Accurate ECN TCP feedback sysctl option mandatory
Reno-friendly on loss _—
Reno-friendly if classic ECN bottleneck evaluat'n in progress
Reduce RTT dependence research code
Scale down to fractional window research code research code research code

Detecting loss in units of time _— mandatory?

Optimizations

ECN-capable TCP control packets module option off on default off - on later
Faster flow start in progress

Faster than additive increase in progress
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