Low Latency Low Loss Scalable Throughput
(L4S)

TCP Prague Status pt1
draft-ietf-tsvwg-ecn-l4s-id

Bob Briscoe, Independent <ietf@bobbriscoe.net> &5
about the work of people too numerous to list

TSVWG, IETF-106, Nov 2019

The 'Prague L4S requirements’

« for scalable congestion ctrls over Internet

* Assuming only partial deployment of either FQ or Requirements
bualQ Coupled AQM isolation for L4S L4S-ECN Packet Identification: ECT(1)

e Jul 2015 Prague IETF,
ad hoc meeting of ~30 DCTCP folks Accurate ECN TCP feedback

- categorized as safety (mandatory) Reno-friendly on loss
or performance (optional)

* not just for TCP
* behaviour for any wire protocol (TCP, QUIC, RTP, etc)

* evolved into draft IETF conditions for setting _ __ _
ECT(1)inIP Detecting loss in units of time

Reno-friendly if Classic ECN bottleneck
Reduce RTT dependence
Scale down to fractional window

« draft-ietf-tsvwg-ecn-l4s-id Optimizations
ECN-capable TCP control packets
Faster flow start

Motivation — recap

* Ultra-low queuing delay for all Internet applications
— including capacity-seeking (TCP-like)

* Transition mechanisms
- network side (not this talk)
- dualQ coupled AQM
- per-flow queuing

The trick: scalable congestion control

(1) Today (typical) (2) Today (at best) (3) Unacceptable (4) L4S
Bottleneck Bloated drop-tail buffer ~AQM Shallower AQM Immediate AQM
Sender CC Classic Classic Classic Scalable (tiny saw-teeth)

buffer
occupangy

low queuing
delay

capacity shallower ffer
AQM target
A~ A 4 ~— — — 1
target Nl P I
\ \

full utilization;
msensitive to
target

[less buffer; ! 1
still enough
TCP for bursts
saw-teeth
seeking Gen less consistently
bu

link

utilization

no delay
but poor
utilization

time

DualPi2 (DCTCP) —— FQ-CoDel (Cubic)
DualPi2 (Cubic) —— PIE (ECN-Cubic) —— “Ultra-low”

FQ-CoDel (ECN-Cubic) PIE (Cubic)
sender's congestion Q delay’)

control isthe keyto | * ~1 ms
consistent low delay

50

90 » Consistently — for real-time apps
e 99 * median Q delay: 100-200us
?;) . 99%ile Q delay: 1-2ms
g 99.9 * ~10x lower delay than best 2" gen. AQM
R - at all percentiles
99.99 . Whef:nd Eznrzmermg each AQM
* long-running TCPs: 1 ECN 1 non-ECN
* web-like flows @ 300/s ECN, 300/s non-ECN
99 : 9 99 * exponential arrival process

0 5 1 O 20 30 40 50 60 70 80 . file sizes Pareto distr. a=0.9 1KB min 1MB max

120Mb/s 10ms base RTT

Queue delay [mS] * each pair of plots for one AQM is one experiment run

Status against Prague L4S requirements (Jul'19)
Linux code: - none (simulated) research private research opened RFC _

Requirements base TCP DCTCP TCP Prague

L4S-ECN Packet Identification: ECT(1) _—

Accurate ECN TCP feedback sysctl option mandatory
Reno-friendly on loss _—
Reno-friendly if classic ECN bottleneck _
Reduce RTT dependence simulated

Scale down to fractional window thesis write-up thesis write-up thesis write-up
Detecting loss in units of time _— mandatory?
Optimizations

ECN-capable TCP control packets module option off on default off - on later
Faster flow start in progress

Faster than additive increase in progress

Status against Prague L4S requirements (Nov'19)
Linux code: - none (simulated) research private research opened RFC _

Requirements base TCP DCTCP TCP Prague
L4S-ECN Packet Identification: ECT(1) _—
Accurate ECN TCP feedback sysctl option mandatory
Reno-friendly on loss _—
Reno-friendly if classic ECN bottleneck evaluat'n in progress
Reduce RTT dependence research code
Scale down to fractional window research code research code research code

Detecting loss in units of time _— mandatory?

Optimizations

ECN-capable TCP control packets module option off on default off - on later
Faster flow start in progress

Faster than additive increase in progress

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

