
1© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.

Bob Briscoe, Independent <ietf@bobbriscoe.net>
about the work of people too numerous to list

TSVWG, IETF-106, Nov 2019

Low Latency Low Loss Scalable Throughput
(L4S)
TCP Prague Status pt1
draft-ietf-tsvwg-ecn-l4s-id

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.2

Requirements

L4S-ECN Packet Identification: ECT(1)

Accurate ECN TCP feedback

Reno-friendly on loss

Reno-friendly if Classic ECN bottleneck

Reduce RTT dependence

Scale down to fractional window

Detecting loss in units of time

Optimizations

ECN-capable TCP control packets

Faster flow start

Faster than additive increase

● for scalable congestion ctrls over Internet
● Assuming only partial deployment of either FQ or

DualQ Coupled AQM isolation for L4S
● Jul 2015 Prague IETF,

ad hoc meeting of ~30 DCTCP folks
● categorized as safety (mandatory)

or performance (optional)

● not just for TCP
● behaviour for any wire protocol (TCP, QUIC, RTP, etc)

● evolved into draft IETF conditions for setting
ECT(1) in IP

● draft-ietf-tsvwg-ecn-l4s-id

The 'Prague L4S requirements'

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.3

Motivation – recap
● Ultra-low queuing delay for all Internet applications

– including capacity-seeking (TCP-like)

● Transition mechanisms
– network side (not this talk)
– dualQ coupled AQM
– per-flow queuing

The trick: scalable congestion control

AQM
target

full utilization;
insensitive to
target

consistently
low queuing
delay

li
nk

ut
il

iz
at

io
n

bu
ff

er
oc

cu
pa

nc
y

TCP
saw-teeth
seeking
capacity

time

(1) Today (typical) (2) Today (at best) (3) Unacceptable (4) L4S

Bottleneck Bloated drop-tail buffer AQM Shallower AQM Immediate AQM

Sender CC Classic Classic Classic Scalable (tiny saw-teeth)

shallower
target

even less
buffer

no delay
but poor
utilization

less buffer;
still enough
for bursts

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.4

“Ultra-low”
Q delay?

● ~ 1 ms
● Consistently – for real-time apps

● median Q delay: 100-200μs
● 99%ile Q delay: 1-2ms
● ~10x lower delay than best 2nd gen. AQM

● at all percentiles

● ...when hammering each AQM
● fixed Ethernet

● long-running TCPs: 1 ECN 1 non-ECN

● web-like flows @ 300/s ECN, 300/s non-ECN

● exponential arrival process

● file sizes Pareto distr. α=0.9 1KB min 1MB max

● 120Mb/s 10ms base RTT

● each pair of plots for one AQM is one experiment run

sender's congestion
control is the key to
consistent low delay

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.5

Status against Prague L4S requirements (Jul'19)

Requirements base TCP DCTCP TCP Prague

L4S-ECN Packet Identification: ECT(1) module option mandatory

Accurate ECN TCP feedback sysctl option ? mandatory

Reno-friendly on loss inherent inherent

Reno-friendly if classic ECN bottleneck open issue

Reduce RTT dependence simulated

Scale down to fractional window thesis write-up thesis write-up thesis write-up

Detecting loss in units of time default RACK default RACK mandatory?

Optimizations

ECN-capable TCP control packets module option off on default off→on later

Faster flow start in progress

Faster than additive increase in progress

Linux code: none none (simulated) research private research opened RFC mainline

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.6

Status against Prague L4S requirements (Nov'19)

Requirements base TCP DCTCP TCP Prague

L4S-ECN Packet Identification: ECT(1) module option mandatory

Accurate ECN TCP feedback sysctl option ? mandatory

Reno-friendly on loss inherent inherent

Reno-friendly if classic ECN bottleneck evaluat'n in progress

Reduce RTT dependence research code

Scale down to fractional window research code research code research code

Detecting loss in units of time default RACK default RACK mandatory?

Optimizations

ECN-capable TCP control packets module option off on default off→on later

Faster flow start in progress

Faster than additive increase in progress

Linux code: none none (simulated) research private research opened RFC mainline

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

