L4S Issues Related to CE Ambiguity

• <u>#16</u>, #17, <u>#20, #21</u>, #22

Issue #16

L4S - Interaction w/ 3168-only ECN [FIFO] AQMs

- Should still remain open, but making good progress on 3168only AQM detection (see previous presentations)
- Prevalence moot if solution works; Solution moot if no prevalence
- Detailed solution design posted Nov'19 timeframe. Implemented and being evaluated
- Working well distinguishing DualPI2 and CoDel
 - CoDel is our most stringent test, given Qdelay is lowest

Issue #21 CE codepoint semantics

- General concerns about CE ambiguity
- Two specific concerns have been raised
 - #16 L4S Interaction w/ 3168-only ECN [FIFO] AQMs
 - being actively addressed
 - #22 Deployment feasibility, including incremental (which is about a case where re-ordering can occur)
 - been addressed
 - No need for this generic placeholder issue as well?

Issue #20 Objection to ECT(1) codepoint usage

- "If ECT(1) is used for L4S ID, there should be a clear understanding of to what extent this precludes experimenting with SCE"
 - The question here should not be whether the L4S precludes SCE, but whether there's anything the community might want from SCE that it can't get from L4S
 - Any discussion of arrangements for parallel experiments depends on that

Issue #24—Evaluation & testing results

- Issue summary:
 - Questions about testing results and scenario's
 - Problems with availability of code to test and reproduce results
- Prague and DualPI2 code upgraded to latest kernel versions (full kernel tree available too)
- [1] Shows excerpt of the test suite run on the dualQ/TCP Prague:
 - Per packet measurement to witness actual tail latencies instead of using coarse-grained/smoothed estimates
 - Scenarios mixing:
 - Various bottleneck bandwidth (4-200M) and base RTTs (5-100ms)
 - Variable number of long-running flows, with Prague/Cubic/Reno/BBR(v2)
 - Dynamic load—from 10 to 500 web request per sec, downloading objects from 1kb to 1MB
 - Unresponsive UDP flow in either queue (overload experiments)
 - Mixed RTTs experiments
- [2] Tests reusing P. Heist's scenarios
- Proposal:
 - Close

[1] http://bobbriscoe.net/projects/latency/dctth_journal_draft20190726.pdf

[2] https://l4s.cablelabs.com/l4s-testing/README.html

- Experiment made over a bottleneck of 120Mbps
- Per packet measurements during 5 mins
- Mixture of two long running flows and 200 web request/s

Issue #28—DualQ suitability

- Issue summary:
 - Claim that "DualPI2 needs to make sure that RTT-based unfairness is removed"
- Questions:
 - Is the goal of an AQM to police/verify RTT fairness between flows? Have these requirements also been imposed on PIE, CoDel, RED, ...?
 - Shouldn't the end-systems address the issues their behavior creates?
 - Is the end-system principle not applicable here? (Good design is to prefer end-system functionality above network functionality)
 - Possible AQM solutions are undesirable
 - provide per packet RTT information (no headers available)
 - Set Classic PI2 target to 1ms also (Classic underutilization and high drop probability)
 - Increase coupling factor to compensate worse case RTT ratio (L4S gets lower throughput in all other cases)
- Proposal:
 - Not an issue of the AQM (additional policers will be added on if-needed basis)
 - Prague CC is updated with definable target RTT mapping function (code released soon)
 - RTT-independence solves many issues on the internet as smallest seen base RTTs and queue latencies become smaller and smaller

SCE-L4S Bakeoff Scenario 1 (SCE) Sender \rightarrow SCE middlebox 1q (bottleneck) \rightarrow SCE Receiver b:sce-s1-1 cc:cubic q:cake(50Mbit 1q) bw:50Mbit rtt:80ms

L4S flent tests (Scenario 1) Sender → L4S middlebox (bottleneck) → L4S Receiver b:l4s-s1-1 cc:cubic q:htb(50Mbit)+dualpi2 bw:50Mbit rtt:80ms

[2] <u>https://l4s.cableiaus.com/i+s-cesting/key_piols/uator-i+s-sit-i-cubic-Joivibic-ooms_val.ping</u>