
A path-aware rate policer: design and comparative evaluation

Arnaud Jacquet
BT Research

Alessandro Salvatori
BT Research

Bob Briscoe
BT Research, UCL

Abstract

In the current Internet, congestion control is voluntary
and not responding sufficiently to congestion is becom-
ing a growing problem. Rate policers in the literature are
based on the assumption of placement at a single bottle-
neck and a known minimum round trip time. We aim
to characterise the limitations of these policers in many
practical scenarios where we believe these assumptions
break down. We present the design of a policer based on
a novel feedback architecture that transcends these as-
sumptions. The new arrangement places our policer at
the interface with the sender. The sender is trapped into
sending packets through the policer that honestly declare
the congestion and round trip time of the whole down-
stream path. We compare the theoretical limits of these
different classes of policers.

1 Introduction

Control of Internet congestion is based on the TCP al-
gorithm in the sender’s operating system. Whether an
application developer uses it is a free choice, but the
large majority do, at least for data transfer applications.
However, TCP’s response to congestion is far too bursty
for interactive media applications. And even adaptive
codecs become unusable below a minimum rate.

There is strong social pressure for all applications
to respond voluntarily to congestion without going
faster than TCP would if it used the same path (TCP-
friendliness). But the co-operative consensus that has
kept Internet congestion control stable seems to be break-
ing down [6]. It seems that more than social pressure is
needed, as usage of unresponsive voice and video ser-
vices is increasing.

It is in a network operator’s interest to police the con-
gestion response of its users. Otherwise free-riders re-
duce available capacity for the honest remainder. But it
is hard for a network operator to police whether an ap-

plication is responding to congestion as TCP should, be-
cause of the distributed nature of the problem. A policer
is only effective if placed at the ingress, but congestion
is only visible at the egress.

Congestion is most pressing in residential and wireless
access networks, because the cost of alleviating conges-
tion is high when new infrastructure must be dispersed
widely. So where flows traverse a path with an access
network at either end (eg. peer to peer file-sharing or in-
teractive media), often both ends contribute to path con-
gestion.

The required congestion response should depend on
congestion accumulated all along the path. But conges-
tion at the egress is not easily visible to the ingress net-
work. And the ingress cannot rely on intercepting con-
gestion feedback, because applications trying to avoid
detection can encrypt it, lie about it, or just not send it.
TCP’s response should also depend on round trip time.
But, it is hard to inspect a mixed aggregate of packet
flows and establish the round trip time of each flow, es-
pecially if the application is encrypting transport layer
sequence numbers.

A growing literature addresses the rate policing prob-
lem, starting with Floyd and Fall [4] and Stabilized RED
(SRED [10]), then continuing with CHOKe [12], RED
with Preference Dropping (RED-PD [8]), Least Recently
Used RED (LRU-RED [13]), XCHOKe [3], and Approx.
Fair Dropping (AFD [11])). These approaches have be-
come increasingly sophisticated at minimising the state
required to detect cheating flows. They look for preva-
lence of flows in the discards from the RED active queue
management (AQM) algorithm [5], which is in common
use in commercial networks. But they all rely on the
common assumption that they are sited at a single bot-
tleneck and that they can use a heuristic estimate of the
minimum round trip time across all flows.

The aim of a policer is to apply a sanction, which it
must only do if it is sufficiently certain it has identified
a misbehaving flow. We will show that, unfortunately,

1

the assumptions of a single bottleneck and a minimum
round trip time mean that mild misbehaviour cannot be
detected with certainty in most practical environments
where these assumptions are invalid.

Commercial policers suach as the policers provided by
Sandvine [15] and Riverhead [14] ensure that no flow
exceeds a maximum rate, irrespective of the condition
of each path being used through the rest of the network.
Some of them can also use their knowledge of local con-
gestion on the equipment itself - in which case they relate
to the category of bottleneck-policers described above.

This paper attacks the rate policing problem from a
different starting point. We build on the re-feedback
framework [1], which incentivises senders to declare the
characteristics of the path they are using in the headers
of the packets they send into the network. We wish to es-
tablish whether a policer built on this framework would
be sufficiently accurate to be able to apply sanctions to
flows that would be able to ‘fly under the radar’ of po-
licers.

We take an analytical approach, as we are concerned
with comparing the limits of intrinsically different ap-
proaches:

1. path-specific policers,

2. bottleneck policers,

3. absolute throughput policers,

We first present the generic objective a throughput po-
licer should aim for in order to identifying misbehaving
flows that are too greedy for a given rate adaptation pol-
icy. We derive from that objective a simple design for
a path-specific throughput policer. We present analysis
and simulation results describing the performance of the
path-specific policer in comparison to other proposed ap-
proaches. Finally we present improved variants for the
design to improve the performance of the policer, and
extend the applicability of its mechanism.

2 Objectives and requirements

First required is a definition of what characterises a mis-
behaving flow. Then the objective of the policer can be
set. Finally we conclude this section by describing how
the relevant path characterisation information can be ob-
tained per packet with all necessary accuracy.

For the simplicity of the argument, we will first con-
sider the policing problem in stationary network condi-
tions by assuming that all packets of a flow follow the
same path, and experience a constant roundtrip time and
a constant congestion level on that path for the duration
of the flow. We will also consider that all flows are satu-
rated in payload data, so that TCP rate adaptation is the
limiting factor for their throughput.

2.1 Characteristics of misbehaving flows
Literature abounds on the characterisation of the long-
term throughput of a TCP connection complying with the
most common flavours of the congestion control mech-
anism. The most generic formula was introduced by
Mathis [9]. According to it, the path-specific expected
throughput (in packets per second) ν∗ for a flow can be
written:

ν∗ =
1

κT
√

m
(1)

where T is the roundtrip of the flow, m is the end-to-end
congestion level it experiences, and κ =

√
2/3

The general understanding for TCP-friendliness is that
a data flow is TCP-friendly if it achieves the same aver-
age long-term throughput as a TCP flow would in the
same network conditions. In that context, Mathis’ for-
mula has to be read: “the expectation of the long-term
throughput of a flow is in inverse proportion to the prod-
uct of its round-trip and the square root of the congestion
level it sees on its path”.

We can define a misbehaving flow as a flow that is
not TCP-friendly: a misbehaving flow achieved a long-
term throughput larger than TCP flow would in the same
networks. Its packet throughput ν is higher than the ex-
pected fair throughput ν∗ of a TCP flow in the same con-
ditions:

ν > ν∗ =
1

κT
√

m
(2)

What characterises a misbehaving flow is not its ab-
solute throughput, but rather its throughput relative to the
expected throughput of a compliant flow in the same path
conditions.

It is therefore this relative throughput a policer should
aim to monitor, which requires the knowledge, at the
policing node, of the characteristics of the flow’s end-to-
end path. We call thie relative throughput the greediness
α of the flow:

α =
ν

ν∗
= νκT

√
m (3)

In stationary network conditions, behaving TCP flows
are expected to exhibit a long-term greediness of
αTCP = 1. Conversely, misbehaving flows will exceed
their fair throughput and exhibit higher greediness, the
more they misbehave.

2.2 Objective of a path-specific policer
The problem with absolute-throughput policers is that
flows are policed according to their absolute throughput,
irrespectively of the conditions of the path they follow.

2

This situation is illustrated in figure 1 which out-
lines the difference between the objective of an absolute-
throughput policer (a) and a path-specific policer (b) by
showing the categorisation of TCP flows in four different
classes, depending on their operational point (x, T

√
m)

as observed by the policing node.
Depending on its throughput x and the network condi-

tions T
√

m it experiences, a flow belongs to one of four
fuzzy categories illustrated on the figure:

1. it has a high throughput while the network condi-
tions are not good (high roundtrip or high conges-
tion)

2. it has a reasonable throughput and the network con-
ditions are favourable (low roundtrip or low conges-
tion)

3. it has a reasonable throughput but the network con-
ditions are awful (high roundtrip or high conges-
tion)

4. it has a high throughput and the network conditions
are very favourable (low roundtrip or low conges-
tion)

(a): Classic policer
x

T·√m

(b): Path-specific policer

T·√m

x

traffic to be caught
traffic to be spared

expected TCP throughput

Objective of new policer

traffic policed as misbehaving

expected TCP throughput

TCP context

traffic wrongly spared
traffic wrongly caught

1 1

2 2
33

44

Figure 1: Comparison of the objective of a n absolute-
throughput policer (a) and a path-specific policer (b)

An absolute-throughput policer defines as misbehav-
ing flows which have a high throughput, and ignores path
conditions in assessing the compliance of suspect flows.
It will focus its sanction on categories -1- and -4- but will
let through flows in category -3-.

In the context of TCP rate adaptation, it makes sense to
sanction category -1- flows as they are not responsive to
unfavourable path conditions. However it doesn’t make
sense to penalise flows in category -4-. Although they
may have a high throughput, they only benefit from very
favourable path conditions. On the other hand, flows in
category -3- who may not have such a high throughput

are not responsive enough to very bad network condi-
tions, and should therefore be policed just as well as cat-
egory -1- flows.

This sets the objective for a path-specific policer to
identifying flows of categories -1- and -3- rather than cat-
egories -1- and -4-.

The distance between the TCP throughput equation
and the region defining misbehaving flows is necessary to
accommodate the dynamics of TCP rate adaptation. Al-
though in the long-term, the average throughput is most
likely to be close to the expected TCP throughput curve,
the throughput of a compliant TCP flow may on occa-
sions become significantly higher than the expected av-
erage, especially in periods when the network conditions
are not stationary.

We must also stress at this point that we are not pre-
scribing the use of policing mechanism to TCP flows. In-
stead we are considering a class of service being policed
against a given rate adaptation policy. This way, any flow
sending traffic to this class would be policed depending
on the path conditions only, irrespectively of the protocol
used, or declared, by the flow.

In particular this includes policing constant-bit rate
(CBR) traffic. Whether CBR traffic is acceptable in a
class of traffic monitored by a path-specific policer, will
depend on the conditions of the network. When there is
barely no congestion, a CBR flow, even a high-troughput
one, could be perfectly legitimate. On the other hand
when congestion increases too much, most CBR flows,
apart from the lower-throughput ones, will become ille-
gitimate.

Monitoring a class of traffic with a path-specific po-
licer, which is sensitive to the conditions of the network
will therefore give incentives for end-systems to sched-
ule high-throughput CBR session during the the troughs
of congestion rather than the peaks.

(a): Classic policer
α

T·√m

(b): Path-specific policer

T·√m

traffic to be caught
traffic to be spared

expected TCP throughput

Objective of new policer

traffic policed as misbehaving

expected TCP throughput

TCP context

traffic wrongly spared
traffic wrongly caught

2

3

α

1

2

3

4

1

4

Figure 2: Transposition of the objective in the greediness
domain

3

By having defined greediness, we can illustrate the
problem more clearly in figure 2. The discriminating fac-
tor between the absolute-troughput policer and the path-
specific policer is their greediness. As outline on the
right, the objective of the path-specific policer, as high-
lighted by the rectangle on the right, aligns with detecting
flows whose greediness is significantly higher than that
of TCP. On the other hand the objective of the absolute-
throughput policer, outlined by the triangle shows the
mismatch between the detection mechanism of the ab-
solute throughput policer and the definition of misbehav-
ing flows.

The objective of the policer is to identify whether the
flow is behaving (α ≤ αTCP) or misbehaving (α >
αTCP) and to segregate their subsequent treatment based
on that information.

That decision can be made by comparing the greed-
iness with a constant threshold α∗ that is valid for all
flows, whatever path conditions they experience.

In the context of control theory, this objective can be
interpreted as Binary Hypothesis Testing. The null hy-
pothesis H0 is that the flow is compliant, the alternate
hypothesis H1 is that it is misbehaving.

H0 : α ≤ αTCP

H1 : α > αTCP

We further describe the performance requirements for
the implementation of the policer by defining two perfor-
mance objectives that should be applicable in a dynamic
network environment:

A) for robustness: over an observation τ∗, the
probability that a compliant flow be detected
as misbehaving should remain smaller than εA

B) for responsiveness: over an observation τ∗,
the probability that a misbehaving flow of
greediness α∗ be undetected as misbehaving
should remain smaller than εB

In other words, if we call D(τ) the decision of the
policer for flow, we can rewrite the two objectives:

A) Pr[D(τ∗) = H1|α = αTCP] < εA

B) Pr[D(τ∗) = H0|α = α∗] < εB

These relations are central to defining the performance
of the policer presented in Section 4.1 on comparative
analysis.

2.3 Requirements on the information
framework

The objective of the policer is to detect flows of high-
greediness. This relies on being able to characterise the

greediness of each single flow, which requires the policer
to estimate the expected fair throughput of the flow, and
therefore to know the path conditions for each flow - that
is its roundtrip time, and the end-to-end congestion level
it experiences.

In current IP networks, very few nodes do possess
the necessary information to perform the policing. The
source and the destination of the flow are able to moni-
tor both the end-to-end congestion and the roundtrip. In
the network, only the last node on the path could have
a chance to monitor the end-to-end congestion, and no
router knows the the value of the roundtrip. However the
most useful location for a rate policer would be the first
node in the network, so that any excessively greedy flow
is constrained upfront.

In order to resolve this problem we need to use a sig-
nalling framework that provides the end-to-end informa-
tion near the source rather than near the destination. This
feature is achieved by the re-feedback framework [1]
where every sender has to state in every packet it sends
an estimate for the downstream metrics of the path to
the destination; this is effectively the end-to-end conges-
tion level and half the roundtrip. Intermediate nodes up-
date the stated values by removing their contribution. If
network conditions are stationary, at every node in the
network, this mechanism makes available the congestion
and the delay on the downstream path of the flows tra-
versing it.

downstream
congestion

Sender Receiver

path

Residual
discrepancy

End-to-end
congestion

Figure 3: Re-feedback framework - sources declare
their estimate of the end-to-end metric while forwarding
nodes remove their contribution from that value - this
ensures that the residual discrepancy at the end of the
path is one and provides an estimate of the metric for the
downstream path at every point along the path

At the first node along the path, downstream metrics
will coincide with the values stated by the source. At the
last node, if network conditions are stationary, the val-
ues of the fields will hit zero. The sender feeds back any
discrepancy so the source can tune the values to which
it sets the fields of the metrics, in order to track the dy-
namic evolution of the path conditions. Should there re-

4

main a systematic negative bias for a flow in particular,
the last hop router is entitled to suspect the source of ly-
ing about the path characterisation, and take prescriptive
action (e.g. dropping packets) on its traffic until the flow
declares truthful information again.

The punishment at the last hop must be heavy enough
to completely remove the marginal throughput gain a
policed source would get by declaring path conditions
more favourable than they actually are. This way, the
most profitable strategy for a punished sender is again
to declare truthfully the characteristics of its downstream
path. Briscoe et al. describe how truthfulness enforce-
ment can be achieved by ensuring that the average resid-
ual discrepancy of the re-feedback fields is null. In situ-
ations in which that is not the case, the information po-
licer will start sanctioning traffic with the most incompli-
ant residual discrepancy, until a null average is reached
again.

As the re-feedback incentive framework provides ade-
quate guarantees that path characterisation metrics stated
in packet headers are truthful, it is possible for the path-
specific throughput policer to rely on them to ensure that
data sources conform to the rate adaptation discipline
they have contracted to.

In the remainder of this document we will therefore
assume that robust estimates are available per packet for
the roundtrip of the flow and the end-to-end congestion
level it experience on its path.

3 Basic policer design

A complete policer examines each flow during a process
similar to a judicial process. Different step of the inves-
tigation have to be done in order:

1. Suspect identification

2. Suspect conviction

3. Differentiated sanction

4. Eventual redemption.

The process needs to provide guarantees both in terms
of robustness and responsiveness. While guilty elements
should be detected and sanctioned as quickly as possible,
there should also be strong guarantees that compliant ele-
ments would not be declared as misbehaving by mistake.

In all cases, the suspect identification is required. In
this paper we describe the implementation of a passive
policer for which the only step implemented is the iden-
tification of suspect flows. The extension to an active
policer is outlined in Section 4.2

We use a similar mechanism to a token-bucket policer
for the implementation of the path-specific policer, by
monitoring the cumulative discrepancy of the greediness,

rather than that of the throughput. The process is de-
scribed in Figure 4.

A classic token bucket ensures that a flow sends data at
the throughput it contracted, on average. This is achieved
by monitoring the cumulative discrepancy between the
throughput of the flow and the contracted throughput.
The finite depth of the bucket allows minimum burstiness
but limits the credit the source can get on its throughput.

The policing agent maintains a token-bucket per flow.
When a packet arrives, the token bucket corresponding to
the flow is updated if one exists - otherwise a new token
bucket is created.

The token bucket fills at a constant rate, proportional
to the maximum acceptable greediness αTCP .

Tokens are also consumed whenever a packet ar-
rives: the relevant path characterisation information is
extracted from the packet to compute the instantaneous
greediness of the flow, which determines the amount of
tokens to be consumed form the bucket: κTi

√
mi where

Ti and mi are the path characterisation metrics extracted
from packet i.

If at any point the bucket empties, the flow is added to
a suspect list.

So in summary, when a packet arrives, the token level
is adjusted, and the packet is categorised as misbehaving
depending on the resulting state of the bucket. If the up-
date and the test are done in sequence, the policer will
be stricter than if they are done in parallel (in which case
the decision is taken on the ground of older information),
however the last option may be preferred if the expres-
sion of the fair throughput (for instance a square root ex-
traction in TCP’s case) requires too many computational
resources.

Suspect
blacklist

Egress
buffer

(α*-α#).τ*

α# .dti

ν* =κ.Ti.√mi

Update token level

b>0?

bmax

b

0

Incoming
traffic

Ti, mi

Packet
(Ti, mi)

Packet
(Ti, mi)

Packet
(Ti, mi)

b

YES

NO

Figure 4: Implementation design of the basic path-
specific policer

The resulting token level is bi = b0 + (αTCP − αi)ti
where ti and αi are the duration and the greediness of the
flow to date.

5

Proof - Whenever a packet arrives, the token level is
adjusted so that

bi+1 = bi + αTCP dti − κTi
√

mi

where bi is the token level after packet i is processed, dti
is the lapse of time since the last processed packet for
that flow, Ti and mi are the path characterisation metrics
associated with the packet. It follows that

bi = b0 + αTCP ti −
∑ 1

ν∗i

We derive the value of the sum∑ 1
ν∗i

=
(

i

ti

) (
1
i

∑ 1
ν∗i

)
ti = νi

1
ν∗est(i)

ti = αiti

by defining 1
ν∗est(i)

=
P

1/ν∗i
i ,

The expression of the token level follows. - End of
proof

In the process, we have shown that the estimate of ex-
pected fair throughput performed by the token bucket is
the harmonic average of the instantaneous values derived
from the path characterisation metrics associated with in-
dividual packets.

Figure 5 shows the trend of the token level for different
types of flows with constant greediness. On average, a
compliant flow is expected to exhibit a stable token level.
An idle flow will see the token bucket fill up as they are
not consumed by the traffic of the flow. On the other
hand, greedy flows will tend to exhibit a decreasing token
level until the bucket is empty. The more greedy the flow,
the more quickly it will empty the bucket and be listed as
suspect.

time

Token level, b

Idle flow

Compliant flow

Misbehaving flow
Greediness

0

1

0

bo

Figure 5: Trend of the evolution of the token level with
time

4 Experiments

4.1 Comparative analysis

Policers can be classified in three classes:

1. absolute-throughput policers who categorise as mis-
behaving high-throughput flows

2. bottleneck policers, such as the penalty box ap-
proach [4] , who examine the drop history at
bottlenecks and categorise as misbehaving high-
throughput flows through those bottlenecks

3. path-specific policers, who categorise high-
greediness flows as misbehaving, therefore taking
into consideration the path conditions in order to
reach a verdict

Common objective - In order to compare the perfor-
mance of the three types of policers, we need to design
them in order to achieve the same objective. We therefore
chose the following design requirement: a misbehaving
flow of constant benchmark greediness α∗ should be de-
tected within a lapse of time τ∗.

Performance criteria - We also define three perfor-
mance criteria against which to compare the three policer
designs. These are in order of importance:

1. for robustness, there should be as little compliant
flows identified as misbehaving

2. for responsiveness, it should take as little time as
possible to detect misbehaving flows more greedy
than the benchmark

3. for responsiveness, it should take as little time as
possible to detect misbehaving flows less greedy
than the benchmark

Path-specific policer - For the path-specific policer,
the objective defines the bucket depth:

b0 = (α∗ − αTCP)τ∗

Then for any flow b0 = (α − αTCP)τ , which gives the
expression of the detection time:

τ = τ∗
α∗ − αTCP

α− αTCP
(4)

6

Penalty box policer - For the penalty box, misbehav-
ing flows are the flows that appear most in the drop his-
tory of congested routers. Therefore the objective defines
the ceiling value in the drop history:

hmax = (α∗κT ∗√mlocal)mlocalτ
∗

which requires to assume that there is a single bottleneck
and that flows will have a typical roundtrip T ∗.

Then for any flow, we have

hmax =
α

κT
√

m
mlocalτ

which gives the expression for the detection time:

τ = τ∗
α∗

α

T

T∗

√
m

mlocal
(5)

In this framework, a slow is policed not once but as
many times as there are congested routers on its path.
The penalty box policer on the most congested router
will detect the flow in the shortest time. Therefore the
outcome of all the penalty box on the path will be the
same (at least in first approximation) as if there was only
one congested node on the most: the most congested of
them all.

If we consider several flows with the same end-to-end
congestion, and Nb bottlenecks of equal magnitude, we
get in first approximation that m ≈ Nbmlocal, and hence:

τ = τ∗
T

T ∗

√
Nb (6)

Absolute throughput policer - For the absolute
throughput policer, misbehaving flows are those with the
highest throughput. Therefore the objective defines the
ceiling value in terms of absolute throughput:

νmax =
α∗

κT ∗
√

m∗
τ∗

which requires to assume that flows will have a typical
roundtrip T ∗ and experience a typical congestion level
m∗.

Then for any flow

νmax =
α

κT
√

m
τ

which gives the expression of the detection time:

τ = τ∗
α∗

α

T

T ∗

√
m

m∗ (7)

The performance of an absolute-throughput policer as-
suming a typical congestion level m∗ is therefore the

same as that of a penalty box experiencing the same level
of local congestion: m∗ = mlocal. Hence, we will not
detail further the performance of the volume policer.

Figure 6 shows the time it takes to classify as misbe-
having flows of three different types depending on their
greediness, for α∗ = 4 and T ∗ = 1s: a) typical-roundtrip
single-bottleneck flows, b) typical-roundtrip flows ex-
periencing the same end-to-end congestion level, but
through four bottlenecks of equal magnitude rather than
one, c) single-bottleneck flows with a roundtrip T ∗/4.

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

greediness

de
te

ct
io

n
tim

e

token bucket
benchmark
sveral bttlenecks
short RTT
ideal

Figure 6: Comparative performance of a penalty box and
a path-specific policer. When both are tuned to achieve
a given objective, the penalty box becomes too harsh on
flows with short roundtrips and too lax on flows crossing
multiple bottlenecks

The ideal performance of a throughput policer is re-
flected by the vertical line for greediness α = 1:

1. for robustness, it should take as long as possible to
classify a compliant flow (α < 1) as misbehaving,

2. for responsiveness, it should take as little time as
possible to detect a misbehaving flow (α > 1).

While the performance of the path-specific policer (plain
line) is the same for the three types of flows considered,
the penalty box will achieve different performance to dif-
ferent flows: it is quicker to classify a single-bottleneck,
short-round trip flow (squares) as misbehaving than a
single-bottleneck, average-round trip flow (dashes), and
even more so than a multiple-bottleneck, average-round
trip flow (circles).

The penalty box is harsher on short-roundtrip flows.
On the good side, misbehaving short-roundtrip flows will
be detected more quickly. However, this comes at a cost:
short-roundtrip compliant flows risk of being classified
as misbehaving much more quickly too, which is detri-
mental to the robustness objective.

7

On the other hand, flows crossing several bottleneck
get a preferential treatment to single-bottleneck flows ex-
periencing the same end-to-end congestion level.

Now let’s consider the performance of the path-
specific policer and the penalty box against the three per-
formance criteria.

- Criterion 1 - robustness - The path-specific policer
is completely robust for flows of constant greediness: no
compliant flow can be classified as misbehaving given
they will consume tokens less quickly then they are gen-
erated.

The penalty box on the other hand needs an ex-
tra mechanism to improve its robustness - although
multiple-bottleneck flows are not as exposed to the threat
of being wrongly classified as suspect flows. If the
penalty box is to be robust for typical roundtrip single
bottleneck flows, the penalty box need to flush the drop
history every T ∗/α∗ = 4s. Still, short-roundtrip single-
bottleneck flows will remain likely to be classified as
misbehaving, unless they are essentially idle.

In conclusion, the path-specific policer is more robust
than the penalty box.

- Criterion 2 - responsiveness for misbehaving flows
more greedy than the benchmark - When α > α∗,
the path-specific policer is fairly less responsive than the
penalty box for short-roundtrip flows, slightly more re-
sponsive for typical flows and significantly more respon-
sive for multiple-bottleneck flows.

Again, the path-specific policer performs overall better
than the penalty box.

- Criterion 3 - responsiveness for misbehaving flows
less greedy than the benchmark - When αTCP <
α < α∗, the path-specific policer becomes significantly
less responsive than the penalty box for short-roundtrip
flows, slightly less responsive for typical flows and re-
mains fairly more responsive for multiple-bottleneck
flows.

In this context, the penalty box performs overall better
than the path-specific policer.

- Overall evaluation - The path-specific policer per-
forms better in terms of robustness, and responsiveness
to very greedy flows, while it is not as responsive for flow
only slightly more greedy than would be fair.

Improving the robustness of the penalty box will be to
the detriment of its responsiveness.

For the path-specific policer, it is actually possible to
further increase the robustness and the responsiveness to
very misbehaving flows by increasing the filling rate of
tokens and shortening the bucket depth - see Section 5.2.

The counterpart is that slightly misbehaving flows will
most likely remain undetected.

4.2 Performance evaluation in non-
stationary settings

In building an active policer, the most difficult step is the
suspect detection that we have described in this paper in
the context of a passive policer.

We are also investigating the possible options in build-
ing an active policer that will not only detect misbehav-
ing flows, but also reliably sanction them. Options in that
case range from demoting the traffic to a lower class of
service, to increasing the congestion signal, to dropping
the traffic altogether. The most useful sanction will rein-
force the incentives framework so that the best policy for
all sources is to comply with the required rate adaptation.

Another design choice is whether a convicted flow
may redeem itself or not after a subsequent time of ex-
emplary compliance.

Probation One possible improvement is depicted in
figure 7: when the token level goes below a first warn-
ing threshold, the policer could mark packets instead of
dropping them. This way, the sender gets a chance to
back off in response to increased congestion before its
traffic gets dropped. If the source remains unresponsive,
the flow’s token level will go further down until packets
are effectively dropped by the policer.

largest

time
interarrival

token level

time

saturation

timeout
max

init

mtresh

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

Figure 7: Policer dynamics with ECN warnings. Com-
pliant flows will slow down when their token level goes
below the warning threshold mtresh .

The figure also shows a timeout threshold at which
point garbage collection would be operated on the token
bucket. This level woulld be reached if a flow remained
idle for the duration of a timeout period, from the time
when the bucket became saturated. This timeout should
be long enough so that a user doesn’t gain from alternat-
ing heavy bursts and complete idleness.

8

 34920 34940 34960 34980 35000 35020 35040 35060 35080

 5

 10

 15

 20
ecl w
tcp w

 28
 30
 32
 34
 36
 38
 40
 42
 44

tokens
congestion drop

warning
policed

Figure 8: The token bucket for a non-greedy legacy flow.

In the topmost part of Figure 8 we plot the token level
for a legacy flow that performs binary adaptation. Green
’x’ crosses show losses due to congestion, while blue ’+’
crosses show the warnings emitted when the token level
falls under the warning threshold, here 30.0 tokens.

The lower part of figure 8 shows the window allowed
by a multibit downstream metric and the one a TCP flow
would have adopted. The values on the x-axis represent
time in seconds since the start of the simulation.

The sender reacts to warnings and backs off. This
means that the performance of legacy flows depend on
the warning level, which may allow more or less vari-
ability in the sender’s rate.

By narrowing the difference between the maximum
amount of tokens and the warning threshold , the policer
would force shorter and shorter sawtooths, limiting the
performances of binary rate adaptation in reaching high
speeds and hence giving incentives to move to a multi-bit
rate adaptation framework relying for instance on the Ex-
plicit Congestion Level, ECL(), provided by re-feedback.

 34760 34770 34780 34790 34800 34810 34820 34830 34840 34850 34860

 5

 10

 15

 20
ecl w
tcp w

 39
 40
 41
 42
 43
 44
 45
 46
 47

tokens
congestion drop

warning
policed

Figure 9: ECL-aware sender.

Figure 9 illustrate hoe well a source reacting to a
multibit congestion signal can react. The reason why the
sender never consumes more tokens than those that ar-
rive is that it bounds the congestion window within the
maximum allowed by the multi-bit congestion metric. A
comparison of the adopted window with the one used by
the legacy TCP sender also shows a much higher regular-
ity. By narrowing the difference between the maximum

amount of tokens and the warning area, the service at-
tained by legacy senders will only get worse. This pro-
vides a potential incentive for a transition to multi-bit rate
adaptation.

Firm sanction As in a token bucket, drawing tokens
only when forwarding a packet should be enough, be-
cause in any case a sender would not be able to attain
a higher goodput than it has a right to. But this would
mean that, by pushing a higher throughput than it has
a right to, it would get exactly the goodput it deserves.
Hence not drawing any token from the bucket when we
drop packets would give an incentive not to behave and
instead leave to the policer the burden of regulating the
flow’s traffic. We instead want those senders that have
the necessary capability to perform rate adaptation on
their own and hence we have to incentivise it. For this
reason, we behave in a stricter way than a plain token
bucket.

Drawing at most as many tokens are available in the
token bucket does better than not drawing any token
when the packet is not forwarded. Say there are 0.53
tokens and a packet arrives that requires 0.72 tokens to
be forwarded. We introduce a negative saturation to 0,
so that the resulting −0.19 will not allow to forward
the packet and immediately after this decision the to-
ken counter will be reset to 0.0. Clearly enough, in this
case the best goodput is achieved by regulating the flow’s
traffic at the source, and pushing anything more than
deserved will see the goodput decrease instead of stay
steadily at the maximum rate possible.

 41000 42000 43000 44000 45000 46000 47000 48000

 5

 10

 15

 20
ecl w
tcp w

-200

-150

-100

-50

 0

 50
tokens

congestion drop
warning
policed

Figure 10: A heavily misbehaving flow.

Nevertheless, there are reasons that suggest that allow-
ing the token level to go negative is more conservative.
One of those reasons is the fact that otherwise pack-
ets with zero metrics would always be allowed to pass
through. But, if only packets with zero metrics can reach
the dropper, then the average seen by the dropper would
decrease and the dropper would catch those packets.

To be even stricter against misbehaving flows, we
chose to have an additional parameter, that amplifies the

9

token drain rate once the token level has become neg-
ative. Let’s call this parameter stricter policing and
suppose that it is equal to 2.0. Upon a packet arrival we
drain 1/x(p, T) tokens. Once these have been drawn we
check if the token level is negative. If the level is effec-
tively negative, then we drain again stricter policing
times 1/x(p, T), which with the default value of 2.0 we
chose for the parameter has that packet contribute three
times as much as it should have done.

For this reason, once identified as misbehaving flows,
packets should arrive more than three times slower than
the fair rate in order to re-gain a positive amount of to-
kens. Plot 10 shows the very drastic effects of this mea-
sure on a highly misbehaving flow. Transferring 2MB
of data takes circa 2 hours. Compare with the previous
two cases, the one of the legacy sender (image 8), for
which transferring the very same amount of data took
2 minutes, and the one of the smoothened rate adapta-
tion sender (image 9), for which it took one and a half
minutes.

effect on the throughput In plot 11 we show the re-
sult of an experience run at a moderate load. On the x-
axis we report the sender’s minimum window size in seg-
ments, those senders who have a minimum window size
of 0 being the non-greedy ones and representing the 95%
of all the flows. A sender that choses a minimum win-
dow of cwndmin segments will never adopt a congestion
window lower than cwndmin. On the y-axis, we rep-
resent the average attained throughput in bytes per sec-
ond. Even with the policer active, flows with a minimum
window of 1 segment have better performances than non-
greedy flows. This might be reasonably due to the satura-
tion in the representation of the downstream congestion,
as a congestion metric saturation greater than −1.5 does
not allow to police rate adaptation to a congestion level
higher than 60%, that would correspond to a steady state
average window of 1 single segment.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 11: The average goodput with an ingress policer.

The experiment clearly shows that when a flow misbe-
haves, the achieved throughput starts decreasing, in such
a way that the best strategy for a sender is to behave. This
because by misbehaving, as the clear monotonic trend
shown in the plot underlines, a sender would get a lower
goodput than by behaving.

4.3 Discussion
The experiments realised on the implementation of the
policer validate the performance of the mechanism in the
context of a stationary network. The performance of the
policing agent in a non-stationary environment is more
arguable, but our experiment show that it is possible to
make it work by making the policer mildly active in re-
inforcing the congestion signal.

Our comparison with the main other policing ap-
proaches shows that the path-specific policer we propose
is more robust because it limits the number of compli-
ant flows wrongly declared misbehaving. The evaluation
of that aspect of the performance is missing for a non-
stationary network, but we show in Section5.2 how it is
possible to reinforce the robustness guarantee. Alterna-
tive policing proposals cannot be consolidated for robust-
ness without a deterioration of performance in terms of
responsiveness, even in a stationary network context.

The responsiveness of the path-specific policer we
propose is also better than the responsiveness of other
proposed approaches for traffic more greedy than the
benchmark given by the design requirement. The path-
specific policer is less responsive for only slightly greedy
traffic but such traffic is less of a threat than more greedy
traffic.

The performance improvement given by the path-
specific policer must however be tempered by a number
of caveats which we address in the next section: - the im-
plementation design presented in section 3 requires state
per flow which limits the scalability of the system. We
present below a sampling variant on the basic design that
alleviates the state requirements for short-lived compli-
ant flows - the policing mechanism require the availabil-
ity of up-to-date information on the end-to-end path of
the flow, which are not available in the current context of
TCP/IP standards. We outline below an incremental de-
ployment option that enables the operation of the policer
in the current Internet.

5 Extensions and further work

5.1 Policing for other rate adaptation dis-
ciplines

In today’s Internet, most flows are expected to be TCP-
compliant and their long-term throughput would never be

10

expected to exceed much their expected fair throughput
for too long.

In the future, other rate adaptation policies may be-
come as common. An example of such an alternative
rate adaptation defined by Kelly [7] assumes users with
a constant willingness-to-pay, in a context where a fixed
price may be charged for each congestion mark detected
in the flow.

In that case the fair throughput of a flow would be
define with respect to a constant-willingness-to-pay rate
adaptation policy: ν∗Kelly = w∗

m where w∗ is a bench-
mark willingness-to-pay.

5.2 Optimising the performance of the po-
licer

It is possible to improve the robustness of the path-
specific policer by increasing the token filling rate. For
the same design objective, a higher token fill rate will
require a smaller bucket depth. The impact of the perfor-
mance shown in Figure 12. The improvement in terms
of robustness goes in pair with an improvement in terms
of responsiveness for the detection of flows more greedy
than the benchmark. The downside is that it becomes
much harder to detect quickly - if at all - misbehaving
flows less greedy than the benchmark.

Figure 12 shows on a logarithmic scale the detection
time with respect to the greediness, for a basic policer,
and a policer with ahigher-filling rate.

0.1

1

10
0 1 2 3 4 5 6 7 8

greediness

de
te

ct
io

n
tim

e

shifted policer
basic policer
ideal

Figure 12: Increasing the token filling rate improves ro-
bustness and overall responsiveness - The responsive-
ness improvement is focused on flows greedier than the
benchmark, while it deteriotates for less greedy flows po-
licer

5.3 Controlling the state requirements
A drawback of the path-specific policer is that it requires
state per flow. However it is possible to restrict this re-
quirement, so that very-short lived flows don’t require
state, by monitoring greediness on a sampled subset of
the traffic. When a packet arrives, its instantaneous ex-
pected fair throughput ν∗ is computed as previously. The
token level for that flow is only updated with a probabil-
ity p = 1

ν∗ = κTi
√

mi, in which case one token exactly
is consumed from the bucket, as illustrated in Figure 13.

Suspect
blacklist

Egress
buffer

(α*-α#).τ*

α# .dti

1

Update token level

b>0?

bmax

b

0

Incoming
traffic

Packet
(Ti, mi)

Packet
(Ti, mi)

YES

NO

ui<κ.Ti.√mi

YES

NO

Figure 13: A sampling policer will reduce the state re-
quirements of the policer, by avoiding to create a token
bucket monitoring short-lived compliant flows

More significantly a token bucket for a new flow is
not instantiated until a packet of that flow is sampled.
Given the throughput of the flow ν, the sample rate will
be νp = ν

ν∗ = α. In average, the first sample of a flow
will happen when ν.p.τs = α.τs = 1.

Therefore state is unlikely to be required for short-
lived compliant flows, for which τlife > τs = 1/α.

5.4 Performing path-specific policing in
the current Internet

The analysis in this paper has been carried out by assum-
ing that the congestion level and the roundtrip are read-
ily available to the policer with all necessary accuracy.
However, in today’s Internet, the end-to-end congestion
level is only available as a binary signal per packet, in
the form of ECN. Estimating the roundtrip requires an
accurate estimate of the downstream delay. While the
TTL field was initially meant to be decremented by each
router by a number of time units equivalent to the trans-
mission time to the next hop, it is not used in this way.

Work is in progress to design a re-feedback frame-
work [1] that may be incrementally deployed on the In-
ternet [2] . We believe it is possible to take a similar
policing approach in that case as the approach presented
here. Further extensive experiments will be necessary to

11

assess how the more limited information available in that
case affects the performance of the policing agent.

6 Conclusion

At the moment, there is little means to assess the com-
pliance of a flow - or an end-system in the longer term -
to the rate adaptation policy they have contracted to. We
have shown that proposed approaches are not completely
robust as they allow for high throughput flows on short
uncongested paths to be categorised as misbehaving.

In this paper, we have proposed a novel throughput
policing mechanism that decides whether a flow is com-
pliant with respect to the characterisation information of
the path of the flow. We have shown that when such
a path-specific policer is designed to achieve the same
responsiveness objective as other policing mechanisms,
it is more robust and it is more responsive to the most
greedy flow.

Such a performance improvement doesn’t come at no
cost. The basic design requires per-flow states, but it
is possible to alleviate this state requirement by sam-
pling the information on which the policer monitors the
compliance of every flow so that maintained state is fo-
cused on the most contravening flows: long-lived and
very greedy.

Another complication is the need for the policer to ob-
tain information on the end-to-end characterisation of the
path. This information would be available in the context
of a re-feedback framework, and there exist incremental
deployment options that ensure the path-specific policer
can operate with the limited information it gets from the
current Internet context.

The path-specific policer we have proposed in this
document is a further step to develop an accountabil-
ity infrastructure for the Internet, within the re-feedack
framework. Indeed, the path-specific policer allows net-
work operators to assess that end-systems adjust their
bandwidth usage to accommodate the dynamic evolution
of the conditions of the path of their data, which mean
they will be able to cope with a broader choice of rate
adaptation disciplines to suit the needs of future applica-
tions.

References
[1] BRISCOE, B., JACQUET, A., CAIRANO-GILFEDDER, C. D.,

SALVATORI, A., SOPPERA, A., AND KOYABE, M. Policing
congestion response in an internetwork using re-feedback. Proc.
ACM SIGCOMM’05, CCR 35, 4 (Sept. 2005).

[2] BRISCOE, B., JACQUET, A., AND SALVATORI, A. Re-ecn:
Adding accountability for causing congestion to tcp/ip. (Work
in progress).

[3] CHHABRA, P., JOHN, A., SARAN, H., AND SHOREY,
R. XCHOKe: Malicious source control for conges-

tion avoidance at Internet gateways. In Proc. IEEE In-
ternational Conference on Network Protocols (ICNP’02)
(URL: http://www.jungle.bt.co.uk/projects/
2020comms/refs/icnp/02/276.pdf, Nov. 2002), IEEE.
(rejected).

[4] FLOYD, S., AND FALL, K. Promoting the use of end-to-end
congestion control in the Internet. IEEE/ACM Transactions on
Networking 7, 4 (Aug. 1999), 458–472.

[5] FLOYD, S., AND JACOBSON, V. Random early detection gate-
ways for congestion avoidance. IEEE/ACM Transactions on Net-
working 1, 4 (Aug. 1993), 397–413.

[6] FLOYD, S., AND KEMPF, J. IAB Concerns Regarding Conges-
tion Control for Voice Traffic in the Internet. RFC 3714 (Infor-
mational), Mar. 2004.

[7] KELLY, F. P., MAULLOO, A. K., AND TAN, D. K. H. Rate con-
trol for communication networks: shadow prices, proportional
fairness and stability. Journal of the Operational Research Soci-
ety 49, 3 (1998), 237–252.

[8] MAHAJAN, R., FLOYD, S., AND WETHERAL, D. Controlling
high-bandwidth flows at congested router. In Proc. IEEE In-
ternational Conference on Network Protocols (ICNP’01) (URL:
http://citeseer.nj.nec.com/545435.html, 2001).

[9] MATHIS, M., SEMKE, J., AND MAHDAVI, J. The macroscopic
behavior of the TCP congestion avoidance algorithm. Computer
Communications Review 27, 3 (1997).

[10] OTT, T. J., LAKSHMAN, T. V., AND WONG, L. H. SRED:
Stabilized RED. In Proc. IEEE Conf. on Computer Comm’s (In-
focom’99) (Mar. 1999), pp. 1346–1355.

[11] PAN, R., BRESLAU, L., PRABHAKER, B., AND SHENKER, S.
Approximate fairness through differential dropping. CCR 33, 2
(Apr. 2003), 23–40.

[12] PAN, R., PRABHAKAR, B., AND PSOUNIS, K. CHOKe, A
stateless active queue management scheme for approximating fair
bandwidth allocation. In Proc. IEEE Conf. on Computer Comm’s
(Infocom’00) (Mar. 2000), IEEE.

[13] REDDY, S. A. L. N. LRU-RED: An active queue management
scheme to contain high bandwidth flows at congested routers. In
Proc Globecomm’01 (URL: http://citeseer.nj.nec.
com/473674.html, Nov. 2001).

[14] Riverhead. Web page URL: http://www.riverhead.
com/, 2004+.

[15] Sandvine. Web page URL: http://www.sandvine.com/,
2004+.

12

http://www.jungle.bt.co.uk/projects/2020comms/refs/icnp/02/276.pdf
http://www.jungle.bt.co.uk/projects/2020comms/refs/icnp/02/276.pdf
http://citeseer.nj.nec.com/545435.html
http://citeseer.nj.nec.com/473674.html
http://citeseer.nj.nec.com/473674.html
http://www.riverhead.com/
http://www.riverhead.com/
http://www.sandvine.com/

	Introduction
	Objectives and requirements
	Characteristics of misbehaving flows
	Objective of a path-specific policer
	Requirements on the information framework

	Basic policer design
	Experiments
	Comparative analysis
	Performance evaluation in non-stationary settings
	Discussion

	 Extensions and further work
	Policing for other rate adaptation disciplines
	 Optimising the performance of the policer
	Controlling the state requirements
	Performing path-specific policing in the current Internet

	Conclusion
	References

