
Tunneling Through Inner Space

Bob Briscoe∗

31 Oct 2014

Abstract

It is common but perhaps misguided to provide exten-
sibility for a layer X header in the layer X header.

Strawman principle: In a middlebox
world, it is both more principled and more
pragmatic to extend the layer X header
within layer X + 1 (i.e. within the payload
encapsulated by the layer X header).1,2

For instance, extensions to the IP header should not be
located in a chain of extensions to the IP header; they
should be in an area of the payload that IP encapsu-
lates (e.g. where you would expect UDP or TCP or an
IPv6 destination option). Similarly, extensions to TCP
should not be located in the TCP Options within the
TCP header, they should be located within the TCP
Data (i.e. in the space encapsulated by TCP that is
intended for the app-layer).

I’m not yet even convinced myself that this approach
warrants promotion to the status of a principle. In the
four examples this paper explores, it happened to be
possible to make the approach work with some inge-
nious hackery, but it would not be easy in general.

Therefore the message cannot be that existing protocols

should be extended like this (because they were not

designed to be extended in this way, so it will not always

possible). The message is that we can at least try.

And, in future, protocols would be more extensible in

a middlebox world if they were designed so that they

could be extended within their own encapsulation.

Terminology

Muddlebox: A middlebox in a muddle—designed
to make a quick buck. Saying “protocol exten-
sibility rules” to one of these vendors will earn
you a patronising smile.

∗bob.briscoe@bt.com, BT Research & Technology,
B54/77, Adastral Park, Martlesham Heath, Ipswich, IP5
3RE, UK

1Given the Internet architecture denies the existence of
L5-6, assume for now that 4 + 1 = 7

2I first heard this principle articulated by Rob Hancock
in Feb 2010 at a plenary meeting of the Trilogy project.

Meddlebox: A meddling middlebox—designed to
seek out potential attacks that do not conform
to the stereotype known to be safe. Saying
“protocol extensibility rules” to one of these
vendors will earn you a patronising snort.

This paper is about extensions, not options. Good
protocol design should cater for options and exten-
sions separately. When a protocol is first designed,
it is certainly good practice to separate out optional
parts—modular structure is good discipline and it
makes the core functions efficient. However, exten-
sions are different—by definition, the original de-
sign did not cater for them, so they can break the
mould.

1 Rationale for the Strawman
Principle

Some reasons why the strawman is principled, as
well as pragmatic:

• Implementations of layer X that have not im-
plemented or are not interested in the exten-
sion to layer X need not be bothered with
walking over a load of extensions they do not
know or care about.

• Implementations of the extension can be coded
to know where to look for the extensions they
implement.

• A legacy muddlebox that intervenes at layer X
will pass the payload (layer X + 1) transpar-
ently. Therefore extending layer X within its
payload should traverse muddleboxes.

• An endpoint (or meddlebox) that needs to in-
tervene in the new layer-X extension can be
upgraded to know the location of the exten-
sion in layer X + 1.

• The strawman principle is not a manifesto for
extending layer X at layer X + 1, X + 2, . . .
and ever-deeper. This would only happen in
the unlikely case where the initial protocol de-
sign (with its options) was not fit for purpose,

Version 00 1 of 4

mailto:bob.briscoe@bt.com


TR-TUB8-2014-001 Tunneling Through Inner Space

leading certain layer-X + 1 extensions to be-
come essential for common use. Then extend-
ing these extensions could push into the next
layer down.

• Extending layer X should not be confused with
attacking at layer X. If an attack on layer X is
encapsulated in layer X + 1, meddleboxes will
be reprogrammed to block it. Whereas, if a
useful extension to layer X were encapsulated
in layer X + 1m, meddleboxes would not be
reprogrammed to block it.

• An extension to layer X intended for cooper-
ation with layer-X middleboxes can be added
at layer X or X + 1, depending respectively
whether it will work with legacy middleboxes
or not.

• If the endpoints of layer X don’t want layer-X
middleboxes to intervene in their layer-X ex-
tension, they can authenticate and/or encrypt
layer X + 1 and layer-X will still work.

2 Example Tricks & Hacks

Below are some examples of where the strawman
principle has already been applied (sometimes un-
consciously) to make protocol extensions traverse
middleboxes. Each is an example of the ingenious
tricks that have been necessary, because the straw-
man principle had not been articulated when the
Internet’s protocols were designed.

2.1 Minion

Minion [ICG13] encapsulates a transport protocol
within the TCP wire protocol, but provides a richer
set of application services:

• multiplexing of multiple messages (or message
streams) on a single connection;

• interleaving of multiplexed messages (to elim-
inate head-of-line blocking);

• message cancellation;

• request/reply support;

• ordered and unordered messages;

• chained messages;

• multiple priority levels with byte-granularity
preemption;

• datagram transport layer security (DTLS).

On the wire Minion is indistinguishable from a TCP
connection. Therefore it traverses many forms of
middlebox.

The Minion transport can be implemented wholly
in user space, using only the socket API to TCP in
the kernel. Ideally though, it needs one simple ker-
nel extension (in the form of a new socket option).
This makes the receiver’s TCP stack deliver out-
of-order data directly to the application, so that
Minion can manage its own message ordering, in-
cluding interleaving, etc.

TCP’s segment boundaries cannot be relied on as
the boundaries for Minion messages, because mid-
dleboxes might resegment a TCP stream.3 There-
fore Minion uses Recursively Embeddable Consis-
tent Overhead Byte Stuffing (RECOBS) to intro-
duce its own marker bytes at the start and end of
messages, and to encode the rest of the stream to
avoid these byte values.

Minion does not signal its presence as an explicit
transport protocol number in the IP header. It
is built into an application that uses a specific
ephemeral port, so the app implicitly knows that
both ends implement the Minion transport. It
would therefore be hard to provide the Minion ap-
plication services on a well-known port.4

Some middleboxes ‘normalise’ a connection, not
only so that it complies with the TCP wire proto-
col5, but also so that it complies with TCP’s seman-
tics. Therefore Minion had to compromise by keep-
ing TCP’s fully reliable retransmission behaviour
even though the service it provides to the app al-
lows partial reliability (e.g. cancelling a message
if it would arrive too late). Minion only continues
to retransmit some messages to keep middleboxes
happy—it can still deliver messages out of order,
and it can always ignore some retransmissions.

2.2 Inner Space

Inner Space for TCP Options [Bri14] is still in the
design stage. It provides more space for TCP op-
tions (and extensions) than the limited 40B avail-
able in the TCP header. Some combinations of re-
cent TCP options already no longer fit alongside
the commonly used options, largely because they

3Where segment boundaries are concerned, segmentation
offload hardware in the NIC of the host can be categorised as
a middlebox for our purposes. Nonetheless, real ‘boxes’ that
split TCP connections also alter TCP’s e2e segmentation.

4Unless the app started with TCP and negotiated to use
Minion within the application—quite aside from the prob-
lem of having to mimic the app-layer protocol that some
middleboxes expect on certain well-known ports, e.g. http
on port 80.

5Probably as TCP was in the 1990s when the text book
that the developer still has from college was written

2 of 4 Version 00



Tunneling Through Inner Space TR-TUB8-2014-001

include cryptographic material that is necessarily
fairly large and incompressible (e.g. TCP Fast Op-
tion, TCP Authentication Option, tcpcrypt, Mul-
tipath TCP).

Inner Space has a lot of similarities with Minion,
but with the purpose of locating extra TCP exten-
sions within the TCP data, so that they enjoy more
space and traverse middleboxes. It takes care to
appear identical to TCP on the wire. Rather than
use a TCP option to signal the presence of Inner
Space within the TCP Data, it uses a magic num-
ber at the start of the byte stream in each direction
(estimated to cause a false positive on one connec-
tion globally in more than 40 years). Therefore,
Inner Space restores TCP’s extensibility—not only
does it traverse most middleboxes, but extensions
do not have to waste handshaking latency checking
for option-stripping middleboxes (e.g. for tcpcrypt
or mptcp).

The Inner Space protocol within the TCP data is
solely a framing protocol that identifies where the
segment boundaries were when they were sent, and
the extent of the Inner TCP option space on each.
The protocol6 recognises that TCP actually needs
two sorts of extensions:

Immediate Those processed in order of reception;

Ordered Those processed in the order they were
sent (e.g. those that apply to the byte stream
at the point they were inserted, such as re-key
commands);

To process extensions in order of reception, the
TCP stack on the receiver has to be able to ex-
tract these options even if there are still gaps in the
earlier byte-stream. To find segment boundaries
even if middleboxes have resegmented the stream,
it uses a similar but improved scheme to Minion’s;
called zero overhead message boundary insertion
(ZOMBI).

Inner Space is implemented in the TCP stack and it
aims to apply to all existing applications that use
TCP and all existing TCP options as well as fu-
ture ones (the TCP client uses an optimistic hand-
shake to detect whether the server supports Inner
Space). Therefore, unlike Minion, Inner Space en-
counters middleboxes that have a stereotypical view
of the application layer, not just TCP. On some
well-known ports, especially port 80, middleboxes
expect the TCP payload to look like HTTP, e.g. a
Web filter will parse the HTTP to find the URL.

Fortunately, this does not require the TCP stack to
hold knowledge of all well-known app protocols. In-
stead, Inner Space includes the optional facility to

6Not -02 as cited, but the next revision, which will be out
by the time of the SEMI workshop

preserve the start of the application layer payload
in the first two segments of a connection (it defers
the framing header to the end of the first segment).
Experiments will determine whether this is suffi-
cient to traverse such deep packet inspection (DPI)
boxes.

Like Minion, Inner Space has to walk on egg-shells
to appear to comply with middleboxes’ stereotypi-
cal view of TCP:

• Some TCP options acknowledge data (e.g.
SACK or MPTCP’s Data ACK) and others
are applied to pure ACKs (e.g. tcpcrypt’s
MAC which covers the TCP header). There-
fore, Inner Space takes care that all ‘Imme-
diate’ options do not require any receive win-
dow even though they are carried within the
TCP Data (they are processed on reception so
they are never buffered anyway). Otherwise
deadlock could occur if receive buffer were re-
quired in one direction to acknowledge data in
the other [RPB+12].

• These ‘Immediate’ options do not require re-
liable delivery, but they are included with the
TCP sequence space solely to pander to mid-
dleboxes that would otherwise ‘correct’ the
seq and ack numbers. This means that op-
tions within ACKs that otherwise contain no
TCP payload consume sequence space (e.g.
the MAC option of tcpcrypt). In turn, this
means that Inner Space has to suppress ACK-
ing ACKs that contain extensions but no ac-
tual payload, otherwise the resulting ACK
storm would continue for ever. If some subse-
quent actual payload is ACKed, it will cover
this unACK’d data cumulatively—effectively
extremely delayed ACKs.

2.3 ConEx Destination Option

Congestion Exposure (ConEx) is a signal at the
IP layer from the sender to certain policy devices
in the network (e.g. traffic management functions).
ConEx policy devices are therefore middleboxes.
After much debate, it was decided to locate ConEx
signals [KKU14] within an IPv6 destination option,
even though the destination doesn’t even need to
read it or even be ConEx-aware (nonetheless, the
ConEx signal is immutable e2e and can be covered
by the e2e authentication of the IPv6 AH header).

The rationale was that ConEx signals needed to be
visible at network trust boundaries, where an IP
header should always be visible (borders gateways,
multiservice edge nodes, gateway GPRS support
nodes, etc.). However, it would have been wrong
to use a hop-by-hop option, otherwise every IP hop

Version 00 3 of 4



TR-TUB8-2014-001 Tunneling Through Inner Space

would have had to walk over the option, only to
discover it had not been configured to recognise
it (ConEx recognition would only be enabled on
policy devices).

Locating ConEx signals in a header intended for
the next layer up was the best compromise, because
ConEx policy devices could be programmed to look
for it, even though the destination option was not
originally intended for middleboxes.

ConEx highlighted the need for a ‘middlebox ex-
tension header’ in IPv6, to complete the family
of hop-by-hop and destination options. A middle-
box header would need to include facilities for con-
trolling propagation by tunnel endpoints, so that
new middlebox options (like ConEx) will always
be copied to the outer IP header over a tunnel,
to assure accessibility to middleboxes. However,
the design of IPv6 makes the introduction of such
a new family of headers fraught with deployment
difficulties—there are no controls over how tunnel
endpoints treat unrecognised extensions.

2.4 Generic UDP Tunneling (GUT)

Generic UDP Tunneling (GUT [MVB10]) was de-
signed and implemented to allow new transport
protocols to be tunnelled over UDP. On the wire
it looks like a UDP datagram, but inside it po-
tentially contains another transport protocol. A
process would run on a well-known GUT port, and
simple decapsulate the contents of the UDP header
and re-present it to the stack as if it had just ar-
rived as the IP payload—thus circumventing any
middleboxes on the path.

GUT in itself is an example of the strawman prin-
ciple of extending the transport layer within the
payload of the transport layer (UDP). Nonetheless,
the really interesting aspect of GUT is that it even
includes a facility to extend IP; UDP and GUT
headers. The GUT header (encapsulated by UDP)
contains a Next Header field that recognises the
same extension number space as an IPv6 header.
Therefore it can encapsulate new IP extensions or
new transport protocols that would not otherwise
traverse middleboxes.

GUT was consciously designed using the strawman
principle of this paper. The idea being that an IP-
aware middlebox or host does not need to see a field
in the IP header to be able to find an extension to
IP. If a middlebox or host has the code installed to
understand an extension, that code tells it where
the extension is to be found. The legacy wire pro-
tocol does not have to tell it.

3 Guidelines for the Future

All the above tricks have been necessary because
the Internet’s protocols were designed so that an
extension to layer X had to be declared in the layer
X header. In retrospect, would it not have been so
much easier if the original Internet protocols had
followed the strawman principle for protocol exten-
sibility? Below are some strawman guidelines bsed
on this principle, for how protocols ought to be de-
signed for extensibility in future, to provide a struc-
ture for both middlebox traversal and middlebox
co-operation:

• Distinguish between options and extensions.

• Provide space in layer X + 1 that can be
jumped over by layer-X + 1 implementations,
so that it can be used to extend layer-X with-
out corrupting the payload used by layer X+1.

These guidelines cover wire protocol extension. Fur-
ther thought is required to develop guidelines for
extensibility of protocol semantics.

References

[Bri14] Bob Briscoe. Inner Space for TCP Options. In-
ternet Draft draft-briscoe-tcpm-inner-space-01,
Internet Engineering Task Force, October 2014.
(Work in Progress).

[ICG13] Janardhan Iyengar, Stuart Cheshire, and Josh
Graessley. Minion - Wire Protocol. Internet
Draft draft-iyengar-minion-protocol-01, Internet
Engineering Task Force, July 2013. (Work in
Progress).

[KKU14] Suresh Krishnan, Mirja Kuehlewind, and Car-
los Ralli Ucendo. IPv6 Destination Option for
ConEx. Internet Draft draft-ietf-conex-destopt-
07, Internet Engineering Task Force, October
2014. (Work in progress).

[MVB10] Jukka Manner, Nuutti Varis, and Bob Briscoe.
Generic UDP Tunnelling (GUT). Internet Draft
draft-manner-tsvwg-gut-02, Internet Engineer-
ing Task Force, July 2010. (Expired).

[RPB+12] Costin Raiciu, Christophe Paasch, Sebastien
Barre, Alan Ford, Michio Honda, Fabien Duch-
ene, Olivier Bonaventure, and Mark Handley.
How Hard Can It Be? Designing and Imple-
menting a Deployable Multipath TCP. In Proc.
USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI’12), April 2012.

4 of 4 Version 00


	Rationale for the Strawman Principle
	Example Tricks & Hacks
	Minion
	Inner Space
	ConEx Destination Option
	Generic UDP Tunneling (GUT)

	Guidelines for the Future
	References

