
MARKS: Zero Side Effect Multicast Key
Management using Arbitrarily Revealed Key

Sequences

Bob Briscoe, <rbriscoe@jungle.bt.co.uk>; BT Research, B54/74, BT Labs, Martlesham Heath, Ipswich,
IP5 3RE, England

Abstract. The goal of this work is to separately control individual secure sessions between unlimited pairs of
multicast receivers and senders. At the same time, the solution given preserves the scalability of receiver
initiated Internet multicast for the data transfer itself. Unlike other multicast key management solutions, there
are absolutely no side effects on other receivers when a single receiver joins or leaves a session and no
smartcards are required. The cost per receiver-session is typically just one short set-up message exchange
with a key manager. Key managers can be replicated without limit because they are only loosely coupled to
the senders who can remain oblivious to members being added or removed. The technique is a general
solution for access to an arbitrary sub-range of a sequence of information and for its revocation, as long as
the end of each sub-range can be planned at the time each access is requested.

1. Introduction

This paper presents techniques to maintain an individual security relationship between
multicast senders and each receiver without compromising the efficiency and
scalability of IP multicast's data distribution. We focus on issues that are foremost if
the multicast information is being sold commercially. Of prime concern is how to
individually restrict each receiver only to data for which it has paid.
 We adopt an approach where the key used to encrypt sent data is systematically
changed for each new unit of application data. The keys are taken from a sequence
seeded with values initially known only to senders. A key sequence construction is
presented where arbitrarily different sub-sequences can be revealed to each receiver
by only revealing a small number of intermediate seed values rather than having to
reveal the every key in each sub-sequence. Specifically a maximum of O(log(N))
seeds need to be revealed once per session to each receiver in order to reconstruct a
sub-sequence N keys long. This should be compared with the most efficient multicast
key management solutions to date, that require a message of length O(log(n)) to be
multicast to all n receivers every time a receiver or group of receivers joins or leaves.
Further, calculation of each key in the sequence only requires a mean of under two fast
hash operations. (Notation is explained in Appendix B.)
 In contrast, whenever a receiver is added or removed with the present scheme,
there is zero side effect on other receivers. A special group key change isn't required
because systematic changes occur sufficiently regularly anyway. No keys are sent over
multicast, therefore reliable multicast isn't required. If key managers are delegated to
handle requests to set-up receiver sessions, the senders can be completely oblivious to
any receiver addition or removal. Thus, there is absolutely no coupling back to the
senders. In many commercial scenarios (e.g. prepayment) key managers can be
stateless, allowing performance to grow linearly with unbounded key manager
replication. Resilience of the whole system would also be assured in such scenarios,
even in the face of partial failures, due to the complete decoupling of all the elements.
 Our thesis is that there are many applications that only rarely if ever require
premature eviction, e.g. pre-paid or subscription pay-TV or pay-per-view. Thus, we

don't present a solution for unplanned eviction, but instead concentrate on the
pragmatic scenario of pre-planned eviction, which we believe is a novel approach.
Each eviction from the multicast group is planned at each session set-up, but each is
still allowed to occur at an arbitrary time. Nonetheless, we briefly describe how the
occasional unplanned eviction can be catered for by modular combination with
existing solutions at the expense of loss of simplicity and scalability.
 Four other key sequence constructions are presented in a companion technical
report [Briscoee99], which also presents a mathematical model that encompasses all
five schemes and others in the same class (including the one-way function tree (OFT)
[McGrew98]). Each scheme in the companion report has particular strengths; one is
useful for sessions of unknown duration, another multiplies the effective key length
against brute force attack (without increasing the operational key-length) and yet
another is extremely simple and efficient in terms of message bandwidth but has
limited commercial applicability. The scheme chosen for this paper is the simplest and
is secure enough for most commercial scenarios.
 In section 2, we discuss requirements and describe related work on multicast key
management and other multicast security issues. In Section 3 we use an example
application to put the paper into a practical context and to highlight the scalability
advantages of using systematic key changes. In section 4 we present the key sequence
construction that allows different portions of a key sequence to be reconstructed from
various combinations of intermediate seeds. Section 5 discusses the efficiency and
security of the construction. Section 6 very briefly describes variations on the
approach to add other security requirements such as multi-sender multicast, a
watermarked audit trail and unplanned eviction, although more detail and a wider
literature review can be found in [Briscoee99]. Finally limitations of the approach are
discussed followed by conclusions.

2. Background, Definitions and Requirements

When using Internet multicast, senders send to a multicast group address while
receivers 'join' the multicast group through a message to their local router. For
scalability, the designers of IP multicast deliberately ensured that any one router in a
multicast tree would hide all downstream join and leave activity from all upstream
routers and senders [Deering91]. Thus a multicast sender is oblivious to the identities
of its receivers. Clearly any security relationship with individual receivers is
impossible if they can't be uniquely distinguished. Conversely, if receivers have to be
distinguished from each other, the scalability benefits start to be eroded.
 If a multicast sender wishes to restrict its data to a set of receivers, it will
typically encrypt the data at the application level. End-to-end access is then controlled
by limiting the circulation of the key. A new receiver could have been storing away
the encrypted stream before it joined the secure session. Therefore, every time a
receiver is allowed in, the key needs to be changed (termed backward security
[McGrew98]). Similarly, after a receiver is thrown out or requests to leave, it will still
be able to decrypt the stream unless the key is changed again (forward security). Most
approaches work on the basis that when the key needs to be changed, every receiver
will have to be given a new key. Continually changing keys clearly has messaging side
effects on all the other receivers than the one joining or leaving.
 We define a 'secure multicast session' as the set of data that a receiver could

understand, having passed one access control test. If one key is used for many related
multicast groups, they all form one secure session. If a particular receiver leaves a
multicast group then re-joins but she could have decrypted the information she missed,
the whole transmission is still a single secure session. We envisage very large receiver
communities, e.g. ten million viewers for a popular Internet pay-TV channel. Even if
just 10% of the audience tuned in or out within a fifteen minute period, this would
potentially cause thousands of secure joins or leaves per second.
 We use the term 'application data unit' (ADU) as a more general term for the
minimum useful atom of data from a security or commercial point of view (one second
in the above example). The ADU equates to the aggregation interval used in Chang et
al [Chang99] and has also been called a cryptoperiod when measured in units of time.
ADU size is application and security scenario dependent. It may be an initialisation
frame and its set of associated 'P-frames' in a video sequence or it may be ten minutes
of access to a network game. Note that the ADU from a security point of view can be
different from that used at a different layer of the application. ADU size can vary
throughout the duration of a stream dependent on the content. ADU size is a primary
determinant of system scalability. If a million receivers were to join within fifteen
minutes, but the ADU size was also fifteen minutes, this would only require one
re-key event.
 However, reduction in re-keying requirements isn't the only scalability issue. In
the above example, a system that can handle a million requests in fifteen minutes still
has to be provided, even if its output is just one re-key request to the senders. With
just such scalability problems in mind, many multicast key management architectures
introduce a key manager role as a separate concern from the senders. This deals with
policy concerns over membership and isolates the senders from much of the
messaging traffic needed for access requests.

2.1 Related Work

Ballardie suggests exploiting the same scalability technique used for the underlying
multicast tree, by delegating key distribution along the chain of routers in a core based
multicast routing tree [IETF_RFC1949]. However, end-to-end security suffers from
the complexity of requiring edge customers to entrust their keys to many intermediate
network providers requiring a long chain of security associations. The Iolus system
[Mittra97] sets up a similar distribution hierarchy, but only involving trusted
end-systems. However, these gateway nodes also partition re-keying side effects by
decrypting and re-encrypting the stream localising sub-group keys. This introduces a
latency burden on every packet in the stream and requires strategically placed
intermediate systems to volunteer their processing resource.
 An alternative class of approaches involves a single key for the multicast data,
but a hierarchy of keys under which to send out a new key over the same multicast
channel as the data. These approaches involve a degree of redundant re-keying traffic
arriving at every receiver in order for the occasional message to arrive that is
decipherable by that receiver. The state of the art in this class is Chang et al
[Chang99]. The group members are arranged as the leaves of a binary tree with the
group session key at the root. Two auxiliary keys are assigned per layer of the tree. If
each member is assigned a different user identity number (UID) this effectively
assigns a pair of auxiliary keys to each bit in the UID space. The first of each pair is

given to users with a 1 at that bit position in their UID and the other when there is a 0.
When a single member leaves, a new group session key is randomly generated and
multicast encrypted with every auxiliary key in the tree except those held by the
leaving member. This guarantees (aside from the reliability of multicast) that every
remaining member will get at least one message they can decrypt. A variant recognises
the potential for aggregation of member removals if many occur within the timespan
of one ADU. The group session key is multicast to the group multiple times, each
encrypted with different logical combinations of the auxiliary keys in order to ensure
all members but the leaving ones can decrypt at least one message. Finding this
minimised set has the same solution as the familiar problem of reducing the number of
logic gates and inputs in the field of logic hardware design. Wong et al [Wong98] take
an approach that is a generalisation of Chang et al, analysing key graphs as a general
case of trees. They find a tree of degree four rather than binary is the most efficient for
large groups. The standardised approach to pay-TV key management also falls into
this class [ITU-R.810]. A set of secondary keys is created and each receiver holds a
sub-set of these in tamper-resistant storage. The group key is also unknown outside the
tamper-resistant part of the receiver. In case the group key becomes compromised, a
new one is regularly generated and broadcast multiple times under different secondary
keys to ensure the appropriate receivers can re-key.
 All work in this class of approaches uses multicast itself as the transport to send
new keys. As 'reliable multicast' is still to some extent a contradiction in terms, all
such approaches have to allow for some receivers missing the occasional multicast of
a new key due to localised transmission losses. Some approaches include redundancy
in the re-keying to allow for losses, but this reduces their efficiency and increases their
complexity. Others simply ignore the possibility of losses, delegating the problem to a
choice of a sufficiently reliable multicast scheme.
 The Nark scheme [Briscoec99] falls into the same class as the present work
because the group key is systematically changed for each new ADU in a stream.
However, unlike with the present approach, a smartcard happens to be required to give
non-repudiation of delivery and latency so its presence can also be exploited to
control which keys in the sequence to reveal. Each receiver has a proxy of the sender
running within her smartcard, so all smartcards can be sent one primary seed for the
whole key sequence. The proxy on the smartcard then determines which keys to give
out depending on the policy it was given by the key manager when the receiver set up
the session. The present paper shows how to construct a key sequence such that it can
be partially reconstructed from intermediate seeds, thus removing the need for a
smartcard if non-repudiation is not a requirement.
 Beyond the requirement we focus on, two taxonomies of multicast security
requirements [Bagnall99, Canetti99] include many other possible combinations of
security requirements for multicast. It is generally agreed that a modular approach is
required to building solutions for combined requirements, rather than searching for a
single monolithic 'super-solution'. Later, as examples of this modular approach, we
show how a number of variations can be added to our basic key management schemes
to achieve a selection of the more commercially important requirements.

3. Sender-Decoupled Architecture

We now describe a large-scale network game scenario to explain why systematic key

changes allow sender decoupling, giving the scalability benefits asserted in the
introduction. This motivates the need for key sequences that can initially be built from
a small number of seeds. Use of a practical example also clarifies why it must be
possible to reveal arbitrary portions of the key sequence to different customers. This
motivates the need for reconstruction of any sub-range of the key sequence, also from
a small number of intermediate seeds.
 We deliberately choose an example where the financial value of an ADU
(defined in Section 2) doesn't relate to time or data volume, but only to a completely
application-specific factor. In this example, participation is charged per 'game-minute',
a duration that is not strictly related to real-time minutes, but is defined and signalled
by the game time-keeper. The game consists of many virtual zones, each moderated by
a different zone controller. The zone controllers provide the background events and
data that bring the zone to life. They send this data encrypted on a multicast address
per zone, but the same ADU index and hence key is used at any one time in all zones.
Thus the whole game is one single 'secure multicast session' (defined in Section 2)
despite being spread across many multicast addresses. Players can tune in to the
background data for any zone as long as they have the current key. The foreground
events created by the players in the zone are not encrypted, but they are meaningless
without reference to this background data.
 Fig 3.1 only shows data flows relevant to game security and only those once the
game is in progress, not during set-up. Clearly all players are sending data, but the
figure only shows encrypting senders, S - the zone controllers. Similarly, only
receivers that decrypt, R, are shown - the game players. A game controller sets up the
game security (not shown but described below). Key management operations are
delegated to a number of replicated key managers, KM, that use secure Web server
technology.
 The key to the secure multicast session is changed every game-minute (every
ADU) in a sequence. All encrypted data is headed by an ADU index in the clear,
which refers to the key needed to decrypt it. After the set-up phase, the game
controller, zone controllers and key managers hold initial seeds that enable them to
calculate the sequence of keys to be used for the entire duration of the game.

Game set-up
1. The game controller (not shown) unicasts a shared 'control session key' to all

KM and S after satisfying itself of the authenticity of their identity. The easiest
way to do this is for all S and KM to run secure Web servers so that the
session key can be sent to each of them encrypted with each public key using
client authenticated secure sockets layer (SSL) communications [Frier96]. The
game controller also notifies all KM and S of the multicast address it will use
for control messages, which they immediately join.

2. The game controller then generates the initial seeds to construct the entire key
sequence and multicasts them to all KM and all S, encrypting the message with
the control session key and using a reliable multicast protocol suitable for the
probably small number of targets involved.

3. The game is announced in an authenticated session directory announcement
[Handley97] regularly repeated over multicast (not shown). The announcement
protocol is enhanced to include details of key manager addresses and the price
per game-minute. Authenticated announcement prevents an attacker setting up

spoof payment servers to collect the game's revenues. Key managers as well as
receivers listen to this announcement, in order to get the current price of a
game-minute.

Fig 3.1 - Key management system design

Receiver session set-up, duration and termination
1. A receiver that wishes to pay to join the game, having heard it advertised in the

session directory, contacts a KM Web server requesting a certain number of
game-minutes using the appropriate form. This is shown as 'unicast set-up' in
Fig 3.1. R pays the KM the cost of the requested game-minutes, perhaps
paying in some form of e-cash or in tokens won in previous games. In return,
KM sends a set of intermediate seeds that will allow R to calculate just the
sub-range of the key sequence that she has bought. The key sequence
construction described in the next section makes this possible efficiently. All
this would take place over SSL with only KM needing authentication, not R.

2. R generates the relevant keys using the intermediate seeds she has bought.
3. R joins the relevant multicasts determined by the game application, one of

which will always be the encrypted background zone data from one S. R uses a
key from the sequence calculated in the previous step to decrypt these
messages, thus making the rest of the game data meaningful.

4. Whenever the time-keeper signals a new game-minute (over the control
multicast), all the zone controllers increment their ADU index and use the next
key in the sequence. They all use the same ADU index. Each R notices that the
ADU index in the messages from S has been incremented and uses the
appropriate next key in the sequence.

5. When the game-minute index approaches the end of the sequence that R has
bought, the application gives the player an 'Insert coins' warning before she
loses access. The game-minutes continue to increment until the point is
reached where the key required is outside the range that R can feasibly
calculate. If R has not bought more game-minutes, she has to drop out of the
game.

This scenario illustrates how senders can be completely decoupled from all receiver
join and leave activity as long as key managers know the financial value of each ADU
index or the access policy to each ADU through some pre-arrangement. There is no
need for any communication between key managers and senders during the session.
Senders certainly never need to hear about any receiver activity. If key managers need
to avoid selling ADUs that have already been transmitted, they merely need to
synchronise with the changing stream of ADU sequence numbers from senders. In the
example, key managers synchronise by listening in to the multicast data itself. In other
scenarios, it may be possible for synchronisation to be purely time-based, either via
explicit synchronisation signals or implicitly by time-of-day synchronisation. In yet
other scenarios (e.g. multicast distribution of commercial software), the time of
transmission may be irrelevant. For instance, the transmission may be regularly
repeated, with receivers being sold keys to a part of the sequence that they can tune in
to at any later time.
 In this example, pre-payment is used to buy seeds. This ensures key managers
hold no state about their customers. This means they can be infinitely replicated as no
central state repository is required, as would otherwise be the case if seeds were
bought on account and the customer's account status needed to be checked. Thus
performance can be linear with key manager replication and system resilience is
independent of key manager resilience.

4. Key Sequence Construction

The following notations are used:

b(s) is the notation used for a function that blinds the value of s . That is, a
computationally limited adversary cannot find s from b(s) . An example of a
blinding or one-way function is a hash function such as MD5
[IETF_RFC1321] or the standard Secure Hash 1 [NIST_Sha-1]. Good hash
functions typically require only lightweight computational resources. Hash
functions are designed to reduce an input of any size to a fixed size output. In
all cases, we will use an input that is already the same size as the output,
merely using the blinding property, not the size reduction property of the hash.
r(s) is any computationally fast one-to-one function that maps from a set of
input values to itself. A circular (rotary) bit shift is an example of such a
function.

4.1 Binary Hash Tree (BHT)

The binary hash tree requires two blinding functions, b0() and b1() , to be

well-known. We will term these the 'left' and the 'right' blinding functions. Typically

they could be constructed from a single blinding function, b() , by applying one of
two simple one-to-one functions, r 0() and r 1() before the blinding function. As

illustrated in Fig 4.1.1.

Fig 4.1.1 - Two blinding functions from one.

Thus: b 0(s) = b(r 0(s)); b 1(s) = b(r 1(s))

 For instance, the first well-known blinding function could be a one bit left
circular shift followed by an MD5 hash, while the second blinding function could be a
one bit right circular shift followed by an MD5 hash. Other alternatives might be to
precede one blinding function with an XOR with 1 or a concatenation with a
well-known word. It seems advantageous to choose two functions that consume
minimal but equal amounts of processor resource as this balances the load in all cases
and limits the susceptibility to covert channels that would otherwise appear given the
level of processor load would reveal the choice of function being executed.
Alternatively, for efficiency, two variants of a hash function could be used, e.g. MD5
with two different initialisation vectors. However, it seems ill advised to tamper with
tried-and-tested algorithms. The key sequence is constructed as follows:

1. The sender randomly generates an initial seed value, s(0,0) . As a concrete
example, we will take its value as 128 bits wide.

2. The sender decides on the required maximum tree depth, D, which will lead to
a maximum key sequence length, N0=2D before a new initial seed is required.

3. The sender generates two 'left' and 'right' first level intermediate seed values,
applying respectively the 'left' and the 'right' blinding functions to the initial
seed:
s(1,0) = b 0(s(0,0)) ; s(1,1) = b 1(s(0,0)) .

The sender generates four second level intermediate seed values:
s(2,0) = b 0(s(1,0)) ; s(2,1) = b 1(s(1,0)) ;

s(2,2) = b 0(s(1,1)) ; s(2,3) = b 1(s(1,1)) ,

and so on, creating a binary tree of intermediate seed values to a depth of D
levels.

Formally, if s(d,i) is an intermediate seed that is d levels below the
initial seed, s(0,0) :
s(d,i) = b p(s(d-1, i/2)) (4.1.1)

where p=imod2 (see Appendix B for notation)
4. The key sequence is then constructed from the seed values across the leaves of

the tree. Strictly, the stream cipher in use may not require 128b keys, therefore
a shorter key may be derived from the leaf seeds by truncation of the most (or

least) significant bits, typically to 64b. The choice of stream cipher is
irrelevant as long as it is fast and secure.
That is, if D=5, k 0 = s(5,0) ; k 1 = s(5,1) ; ... k 31 =

s(5,31) .
Formally, k i = s(D,i) (4.1.2)

5. The sender starts multicasting the stream, encrypting ADU0 with k0, ADU1

with k1 etc. but leaving at least the ADU sequence number in the clear.

6. If the sender delegates key management, it must privately communicate the
initial seeds to the key managers.

A receiver reconstructs a portion of the sequence as follows:

1. When a receiver is granted access from ADUm to ADUn, the sender (or a key

manager) unicasts a set of seeds to that receiver (e.g. using SSL). The set
consists of the intermediate seeds closest to the tree root that enable
calculation of the required range of keys without enabling calculation of any
key outside the range.
These are identified by testing the indexes, i , of the minimum and maximum
seed using the fact that an even index is always a 'left' child, while an odd
index is always a 'right' child. A test is performed at each layer of the tree,
starting from the leaves and working upwards. A 'right' minimum or a 'left'
maximum always needs revealing before moving up a level. If a seed is
revealed, the index is shifted inwards by one seed. To move up a layer, the
minimum and maximum indexes are halved with the maximum rounded down.
The odd/even tests are repeated on the new indexes, revealing a 'right'
minimum or 'left' maximum as before. The process continues until the
minimum and maximum cross or meet. They can cross after either or both
have been shifted inwards. They can meet after they have both been shifted
upwards, in which case the seed where they meet needs revealing before
terminating the procedure.
This procedure is described more formally, in C-like code in Appendix A

2. Clearly, each receiver needs to know where each seed that it is given resides in
the tree. The seeds and their indexes can be explicitly paired when they are
revealed. Alternatively, to reduce the bandwidth required, the protocol may
specify the order in which seeds are sent so that each index can be calculated
implicitly from the minimum and maximum index and the order of the seeds.
This is possible because there is only one minimal set of seeds that allows
re-creation of any one range of keys.
Each receiver can then repeat the same pairs of blinding functions on these
intermediate seeds as the sender did to re-create the sequence of keys, km to

kn. (Equations 4.1.1 & 4.1.2)

3. Any other receiver can be given access to a completely different range of
ADUs by being sent a different set of intermediate seeds.

The creation of a key sequence with D=4 is graphically represented in Fig 4.1.2. As an
example, we circle the relevant intermediate seeds that allow one receiver to re-create

the key sequence from k3to k9. The seeds and keys that remain blinded from this

receiver are shown on a grey background. Of course, a value of D greater than 4
would be typical in practice.

Fig 4.2.2 - Binary hash tree

Note that each layer can be assigned an arbitrary value of d as long as it uniquely
identifies the layer. Nothing relies on the actual value of d or D. Therefore it is not
necessary for the sender to reveal how far the tree extends upwards, thus improving
security.
 Often a session will have an unknown duration when it starts. Clearly, the choice
of D limits the maximum length of key sequence from any one starting point. The
simplest work-round is just to generate a new initial seed and start a new binary hash
tree alongside the old if it is required. If D is known by all senders and receivers, a
range of keys that overflows the maximum key index, 2D, will be immediately
apparent to all parties. In such cases it would be sensible to allocate a 'tree id' for each
new tree and specify this along with the seeds for each tree.

5. Discussion

5.1 Storage and Processing Costs

The general approach is to use a small number of seeds to generate a larger number of
keys, both at the sender before encryption and at the receiver before decryption. In
either case, there may be limited memory capacity for the key sequence, which
appears to require exponentially more memory than the seeds. We will now show that
the tree construction requires minimal memory and minimal processing at either the
sender or the receiver as each new key in the sequence is calculated. We assume the
keys are used sequentially and once a key has been used it will never be required
again. After this we will discuss the trade-offs between storage and processing that key

managers may make, given that they have to be able to serve seeds from arbitrary
points in the future tree at any time.
 For senders and receivers using the BHT, it is most efficient to only store the
seeds on the branch of the tree from a root to that key following the one currently in
use. Note that there may be multiple roots, particularly for receivers, where each
revealed seed is a root. In practice this principle translates into being able to
deallocate memory for a parent seed immediately it has been hashed to produce its
right child. If leaf seeds are also deallocated as soon as the next in the sequence is in
use, this will ensure the tree only holds log(N) seeds in memory on top of any
revealed seeds being held to generate the rest of the tree to the right of the current key.

 Re-using the earlier example in Fig 4.2.2, we will now follow the key calculation
sequence step-by-step. For brevity we will assume keys are synonymous with their
corresponding leaf seeds:

1. s(4,3) is immediately available as one of the revealed seeds.
2. s(4,4) requires two hash operations from s(2,1) . The value of s(3,2)

calculated on the way should be stored.
3. s(4,3) may be deallocated once s(4,4) is in use
4. s(4,5) requires one hash of the stored s(3,2)
5. s(4,4) and s(3,2) may then be deallocated
6. s(4,6) requires two hashes from s(2,1) . Again the value of s(3,3)

calculated on the way should be stored.
7. s(2,1) may be deallocated as soon as it has been hashed
8. s(4,5) may be deallocated as soon as s(4,6) is in use
9. The process continues along similar lines until s(4,9) is finished with, when

it is deallocated leaving no further seeds in memory.

It will be noted that, if the above seed storage strategy is adopted, one hash operation
is required per key on the seeds in the penultimate layer, one hash every two keys on
the next layer up, one hash every four keys on the next layer and so on. In other
words, no branch of the tree ever requires the hash to be calculated more than once.
Therefore:

(mean no. of hashes per key) = (no. of
branches) / (no. of leaves)
 = (2 (D+1) - 1) / 2 D
 < 2

If memory is extremely scarce (e.g. an embedded device) but some clock cycles are
spare, storage can be traded off against processing. Any intermediate seeds down the
branch of the tree to the current key need to be calculated, but they don't all need to be
stored. Those closest to the leaves should be stored (cached), as they will be needed
soonest to calculate the next few keys. As intermediate seeds nearer to the root are
required, they can be recalculated as long as the seeds originally sent by the key
manager are never discarded until the sequence has left them behind.
 Unlike senders or receivers, a key manager cannot guarantee to only access the
key-space sequentially. It will have to respond to requests for seeds from anywhere in

the tree. However, for most scenarios it is likely that requests will tend not to be
randomly distributed. Therefore, a key manager can use an identical approach to the
device with scarce memory. It can calculate seeds in any part of the tree from the
initial seeds, but cache those being most frequently used. This simply requires a fixed
size cache memory allocation and discard of the least recently used values in the store.

5.2 Efficiency

Table 5.2.1 shows various performance parameters of the BHT per secure multicast
session, where:

R, S and KM are the receiver, sender and key manager, respectively, as
defined in Section 3
N (= n-m+1) is the length of the range of keys that the receiver
requires, randomly positioned in the key space
ws is the size of a seed (typically 128b)

wh is the size of the key management protocol header overhead

t s is the processor time to blind a seed (plus one relatively negligible

circular shifting operation)

BHT

per R

(unicast message size)/w s - w h

or
(min storage)/w s

min 1

max 2(log(N+2) - 1)

meanO(log(N) - 1)

per R (processing latency)/t s

min 0

max log(N)

meanO(log(N) /2)

per R or S (processing per key)/t s

min 1

max log(N)

mean2

per S or KM (min storage)/w s
1

per S (min random bits)/w s

Table 5.2.1 - Efficiency parameters of the BHT per secure multicast session

The unicast message size for each receiver's session set-up is shown equated to the
minimum amount of storage each receiver requires. This is the storage required before
starting the session, not once keys have started to be calculated. The minimum sender
storage row has the same meaning. The processing latency is the time required for one
receiver to be ready to decrypt incoming data after having received the unicast set-up
message for its session. Note that there is no latency cost when other members join or
leave, as in schemes that cater for unplanned eviction. The figures for processing per
key assume sequential access of keys and the caching strategy described in Section

5.1. The exceptional cases when a session starts or ends are not included in the figures
for per key processing. Only the sender (or a group controller if there are multiple
senders) is required to generate random bits for the initial seeds. The number of bits
required is clearly equal to the minimum sender storage of these initial seeds.
 It can be seen that the only parameters that depend on the size of the group
membership are those that are per receiver. The cost of two of these (storage and
processing latency) is distributed across the group membership thus being constant per
receiver. Only the unicast message size causes a cost at a key manager that rises
linearly with group membership size, but the cost is only borne once per receiver
session. Certainly, none of the per receiver costs are themselves dependent on the
group size as in all schemes that allow unplanned eviction. Thus, the BHT
construction is highly scalable.

5.3 Security

Each seed in the tree is potentially twice as valuable as its child. Therefore, there is an
incentive to exhaustively search the seed space for the correct value that blinds to the
current highest known seed value in the tree. For the MD5 hash, this will involve 2127

MD5 operations on average. It is possible a value will be found that is incorrect but
blinds to a value that collides with the known value (typically one will be found every
264 operations with MD5). This will only be apparent by using the seed to produce a
range of keys and testing one on some data supposedly encrypted with it. Having
succeeded at breaking one level, the next level will be twice as valuable again, but will
require the same brute-force effort to crack. Note that one MD5 hash (portable source)
of a 128b input takes about 4us on a Sun SPARCserver-1000. Thus, 2128 MD5s would
take 4e25 years. MD5 optimised for its host architecture is about twice as fast.
 Generally, the more random values that are needed to build a tree, the more it can
contain sustained attacks to within the bounds of the sub-tree created from each new
random seed. However, for long-running sessions, there is a trade-off between security
and the convenience of a continuous key-space (as against concatenating BHTs
side-by-side described earlier). The randomness of the randomly generated seeds is
another potential area of weakness that must be correctly designed.
 Any key sequence construction like that discussed here is vulnerable to collusion
between valid group members. If a sub-group of members agree amongst themselves
to each buy a different range of the key space, they can all share the seeds they are
sent so that they can all access the union of their otherwise separate key spaces.
Arbitrage is a variant of member collusion that has already been discussed. This is
where one group member buys the whole key sequence then sells portions of it more
cheaply than the selling price, still making a profit if most keys are bought by more
than one customer. Protection against collusion with non-group members is discussed
in Section 6.2 on watermarking.
 Finally, the total system security for any particular application clearly depends on
the strength of the security used when setting up the session. The example scenario in
Section 3 describes the issues that need to be addressed and suggests standard
cryptographic techniques to meet them. As always, the overall security of an
application is as strong as the weakest part, which is more likely to be some 'human'
element than the key sequence construction discussed here.

6. Requirement Variations

The key management scheme described in the current work lends itself to modular
combination with other mechanisms to meet the additional commercial requirements
described below.

6.1 Multi-Sender Multicast

A multi-sender multicast session can be secured using the BHT as long as all the
senders arrange to use the same key sequences. They need not all simultaneously be
using the same key as long as the keys they use are all part of the same sequence.
Receivers can know which key to use even if each sender is out of sequence with the
others as long as the ADU index is transmitted in the clear as a header for the
encrypted ADU. The example scenario in Section 3 described how multiple senders
might synchronise the ADU index they were all using if this was important to the
commercial model of the application. If each sender in a multi-sender multicast uses
different keys or key sequences, each sender is creating a different secure multicast
session even if they all use the same multicast address. This follows from the
distinction between a multicast session and a secure multicast session defined in
Section 2.

6.2 Watermarked Audit Trail

Re-multicast of received data requires very low resources on the part of any receiver.
Even if the value of the information received is relatively low there is always a profit
to be made by re-multicasting data and undercutting the original price (arbitrage), as
proved in Herzog et al [Herzog95]. In general, prevention of information copying is
considered infeasible; instead most attention focuses on the more tractable problem of
copy detection by uniquely 'watermarking' each copy of a work. If a watermarked
copy is later discovered, it can be traced back to its source, thus deterring the holders
of original copies from passing on further, illicit copies. Watermarks are typically
applied to the least significant bits of a medium to avoid significantly degrading the
quality. An approach such as Chameleon [Anders97] can be used to watermark the
keys used to decrypt the stream of data and can therefore be combined with keys from
the BHT.
 In Chameleon a stream is ciphered by combining a regular stream cipher with a
large block of bits (512kB in Chameleon's concrete example). Each receiver is given a
long-term copy of the block to decipher the stream. The block is watermarked for each
receiver in a way specific to the medium. Because the block is only used for the XOR
operation, the position of any watermarked bits is preserved in the output, allowing the
approach to be generic. Thus, the keys generated by the BHT construction can be
treated as a sequence of intermediate keys from which a watermarked sequence of
final keys is generated, thus enforcing watermarked decryption.
 However, this approach suffers from an applicability limitation of Chameleon
that has not been previously discussed to our knowledge. Chameleon doesn't detect
'semi-internal' leakage to users who legitimately hold a valid long term key block.
Intermediate keys, rather than final ones, can be leaked to any such receiver. For
instance, in the above network game example, a group of players can collude to each

buy a different game-hour and share the (unwatermarked) intermediate keys that each
buys between themselves. Thus a receiver not entitled to certain of the intermediate
keys can create final keys watermarked with her own key block and hence decrypt the
cipherstream. Although the keys and data produced are stamped with her own
watermark, this only gives an audit trail to the target of the leak, not the source
(shutting the stable door after the horse has bolted).
 Chameleon does nonetheless create an audit trail for any keys or data that are
passed to a completely unauthorised receiver - that is a receiver without a long-term
key block, e.g. someone who has not played the game recently. In such cases the
traitor who revealed the keys or data can be traced if the keys or data are traced.
Similarly, there is an audit trail if one of the players passes on their long-term key
block instead, as it also contains a watermark traceable to the source of the leak. Thus
Chameleon 'raises the bar' against leakage, and is therefore still a valid candidate for
modular combination with BHT.

6.3 Unplanned Eviction

As already pointed out, the BHT allows for eviction from the group at arbitrary times,
but only if planned at the time each receiver session is set up. If pre-planned eviction
is the common case, but occasionally unplanned evictions are needed, keys from the
BHT can be combined with another scheme, such as LKH++ [Chang99] to allow the
occasional unplanned eviction. To achieve this, as with watermarking above, keys
from the sequence generated by the BHT are treated as intermediate keys. These are
combined (e.g. XORed) with a group key distributed using for example LKH++ to
produce a final key used for decrypting the data stream. Thus both the BHT
intermediate key and the LKH++ intermediate key are needed to produce the final key
at any one time.
 Indeed, any number of intermediate keys can be combined (e.g. using XOR) to
meet multiple requirements simultaneously. For instance, MARKS, LKH++ and
Chameleon intermediate keys can be combined to simultaneously achieve low cost
planned eviction, occasional unplanned eviction and a watermarked audit trail against
leakage outside the long-term group.
 Formally, the final key, k i,j,... = c(k' i , k' j , ...) , where

intermediate keys k' can be generated from sequences using a BHT construction or
any other means such as Chameleon or LKH++ and c() is a combining function,
such as XOR.
 In general, combination in this way produces an aggregate scheme with storage
costs that are the sum of the individual component schemes. However, combining
LKH++ with MARKS, where most evictions are planned, cuts out all the re-keying
messages of LKH++ unless an unplanned eviction is actually required.

7. Limitations and Further Work

Duplication of information costs so little that selling multiple copies at a unit price
much greater than the cost of duplication always results in an economic incentives for
potential buyers to collude. We discuss receiver collusion and arbitrage in Sections
5.3 & 6.2 but the best solution we can offer without requiring smartcards only offers
the possibility of detecting collusion between a group member and a non-member.

Detecting intra-group collusion without requiring specialist hardware is left for further
work.
 We have assumed that knowledge of more than one value blinded in different
ways from the same starting value doesn't lead to an analytical solution to calculate the
original value. Until proofs exist showing any blinding function is resistant to
analytical (as against brute force) attack, it won't be possible to prove whether an
analytical attack has been made easier by our techniques.
 Finally, through pressure of time, we have avoided analysis of trees of degree
three and above. They potentially offer greater efficiency at the expense of additional
complexity. For instance the experiments in Wong et al recommend a tree of degree
four, but the pattern of usage that their tree is subjected to is only tenuously related to
the present work.

7. Conclusion

We have presented a solution to manage the keys of very large groups. It preserves the
scalability of receiver initiated Internet multicast by completely de-coupling senders
from all receiver join and leave activity. Senders are also completely decoupled from
the key managers that absorb this receiver activity. We have shown that many
commercial applications have models that only need stateless key managers, in which
cases unlimited key manager replication is feasible. These gains have been achieved
by the use of systematic group key changes rather than receiver join or leave activity
driving re-keying. Decoupling is achieved by senders and key managers pre-arranging
the unit of financial value in the multicast data stream (the 'application data unit' with
respect to charging). Using this model, there is zero side effect on other receivers (or
on the senders) when one receiver joins or leaves. We also ensure multicast is not used
for key management, only for bulk data transfer. Thus, re-keying isn't vulnerable to
random transmission losses, which are complex to repair scalably when using
multicast.
 State of the art techniques that allow unplanned eviction from the group are still
costly in messaging terms. In contrast we have focussed on the problem of planned
eviction. That is, eviction per receiver after some arbitrary future ADU, but planned at
the time the receiver requests a session. We have asserted that many commercial
scenarios based on pre-payment or subscription don't require unplanned eviction but
do require arbitrary planned eviction. Examples are pay-TV, pay-per-view TV or
network gaming. To achieve planned but arbitrary eviction we have designed a key
sequence construction that is used by the senders to systematically change the group
key. It is designed such that an arbitrary sub-range of the sequence can be
reconstructed by revealing a small number of seeds (16B each). We can reveal N keys
to each receiver using O(log(N)) seeds. The scheme requires on average just
O(log(N) /2) fast hash operations to get started, then on average no more than
just two more hashes to calculate each new key in the sequence. This implies under
10us of processing time to generate each ADU key with today's technology.
 To put this work in context, for pay TV charged per second with 10% of ten
million viewers tuning in or out within a fifteen minute period, the best alternative
scheme (Chang et al) might generate a re-key message of the order of tens of kB every
second, multicast to every group member. The present work requires a message of a
few hundred bytes unicast just once to each receiver at the start of perhaps four hours

of viewing. This comparison is not strictly fair as, unlike the present scheme, Chang et
al and the other schemes of its class allow for unplanned eviction from the group, thus
allowing accurate charging for serendipitous viewing. However, the purpose of this
work is to present a far more scalable solution for commercial scenarios where
unplanned eviction is not required. Another way of putting this is that the cost of
scenarios requiring unplanned eviction might make them economically unviable
compared to those that can make do with planned eviction.
 Nonetheless, if unplanned eviction is occasionally required, we have shown how
to combine our scheme with Chang's to get the best of both worlds. Combining
schemes sums the storage requirements of each, but both are very low in this respect.
We also show how to further combine with the Chameleon watermarking scheme to
give rudimentary detection of information leakage outside the group.

Acknowledgements

Jake Hill, Ian Fairman, David Parkinson (BT)

References

 [Anders97] Ross Anderson & Charalampos Manifavas (Cambridge Uni), "Chameleon - A New Kind of
Stream Cipher" Encryption in Haifa (Jan 1997),
<URL:http://www.cl.cam.ac.uk/ftp/users/rja14/chameleon.ps.gz>
 [Bagnall99] Pete Bagnall, Bob Briscoe & Alan Poppitt, (BT), "Taxonomy of Communication
Requirements for Large-scale Multicast Applications", Internet Draft (work in progress), Internet
Engineering Task Force (17 May 1999) <draft-ietf-lsma-requirements-03.txt>
 [Briscoec99] Bob Briscoe & Ian Fairman (BT), "Nark: Receiver-based Multicast Non-repudiation and Key
Management", forthcoming in ACM conference on Electronic Commerce (Nov 1999),
<URL:http://www.labs.bt.com/projects/mware/>
 [Briscoee99] Bob Briscoe (BT), "MARKS: Zero Side Effect Multicast Key Management using Arbitrarily
Revealed Key Sequences", BT Technical Report (Aug 1999),
<URL:http://www.labs.bt.com/projects/mware/>
 [Canetti99] Ran Canetti (IBM T.J. Watson), Juan Garay (Bell Labs), Gene Itkis (NDS), Daniele
Micciancio (MIT), Moni Naor (Weizmann Inst. of Science), Benny Pinkas (Weizmann Inst. of Science),
"Multicast Security: A Taxonomy and Efficient Constructions", Proceedings IEEE Infocomm'99, Vol2
708-716 (Mar 1999), <URL:http://www.wisdom.weizmann.ac.il/~bennyp/PAPERS/infocom.ps>
 [Chang99] Isabella Chang, Robert Engel, Dilip Kandlur, Dimitrios Pendarakis, Debanjan Saha, (IBM T.J.
Watson Research Center) "Key Management for Secure Internet Multicast using Boolean Function
Minimization Techniques", Proceedings IEEE Infocomm'99, Vol2 689-698 (Mar 1999),
<URL:http://www.research.ibm.com/people/d/debanjan/papers/infocom99.srm.pdf>
 [Deering91] S. Deering, “Multicast Routing in a Datagram Network,” PhD thesis, Dept. of Computer
Science, Stanford University, (1991).
 [Frier96] A. Frier, P. Karlton and P. Kocher, (Netscape), "The SSL 3.0 Protocol", Nov 18, 1996.
 [Handley97] Mark Handley (UCL), "On Scalable Internet Multimedia Conferencing Systems", PhD thesis
(14 Nov 1997) <URL:http://www.aciri.org/mjh/thesis.ps.gz>
 [Herzog95] Shai Herzog (IBM), Scott Shenker (Xerox PARC), Deborah Estrin (USC/ISI), "Sharing the
cost of Multicast Trees: An Axiomatic Analysis", in Proceedings of ACM/SIGCOMM '95, Cambridge, MA,
Aug. 1995, <URL:http://www.research.ibm.com/people/h/herzog/sigton.html>
 [IETF_RFC1321] Ronald L. Rivest, "The MD5 Message-Digest Algorithm", Request for Comments
(RFC) 1321, Internet Engineering Task Force (1992) <URL:rfc1321.txt>
 [IETF_RFC1949] Tony Ballardie, "Scalable multicast key distribution", Request for Comments (RFC)
1949, Internet Engineering Task Force (May 1996) <URL:rfc1949.txt>
 [ITU-R.810] ITU-R Rec. 810, "Conditional-Access Broadcasting Systems", (1992)

<URL:http://www.itu.int/itudocs/itu-r/rec/bt/810.pdf>
 [McGrew98] McGrew, David A., & Alan T. Sherman, "Key establishment in large dynamic groups using
one-way function trees," TIS Report No. 0755, TIS Labs at Network Associates, Inc., Glenwood, MD (May
1998). 13 pages.
 [Mittra97] Suvo Mittra, "Iolus: A framework for scalable secure multicasting," Proceedings of the ACM
SIGCOMM '97, 14-18 Sep 1997 Cannes, France.
 [NIST_Sha-1] FIPS Publication 180-1, Secure hash standard, NIST, U.S. Department of Commerce,
Washington, D.C. (April 1995).
 [Wong98] Chung Kei Wong, Mohamed Gouda and Simon S Lam, "Secure Group Communications Using
Key Graphs", Proceedings of ACM SIGCOMM'98 (Sep 98)
<URL:http://www.acm.org/sigcomm/sigcomm98/tp/abs_06.html>

Appendix A - Algorithm for Identifying Mminimum Set of
Intermediate Seeds for BHT

In the following C-like code fragment

the function odd(x) tests whether x is odd
and the function reveal(d,i) reveals seed s(d,i) to the receiver

min=m; max=n;
for(d=D; ; d--) { // working from leaves...
 // move up tree 1 level ea loop
 if (min == max) { // min & max have converged...
 reveal(d,min); // ...so reveal sub-tree root..
 break; // ...and quit
 }
 if odd(min) { // odd min never left child...
 reveal(d,min); // ...so reveal odd min seed
 min++; // and step min in 1 to right
 }
 if !odd(max) { // even max never right child..
 reveal(d,max); // ...so reveal even max seed
 max--; // and step max in 1 to left
 }
 if (min > max) break; // min & max cousins, so quit
 min/=2; // halve min ...
 max/=2; // ... & halve max ready for...
} // ... next level round loop

Appendix B - Notation

O(x) is notation for 'of order x '.
j/P is notation for the value of j/P rounded down to the nearest integer (the floor function).
j mod P is notation for the remainder of j/P .

