
 1

Nark: Receiver-Based Multicast Non-Repudiation
and Key Management

Bob Briscoe
BT Research

B54/74, BT Adastral Park
Martlesham Heath, Ipswich, IP5 3RE, England

+44 1473 645196

bob.briscoe@bt.com

Ian Fairman
BT Research

c/o B54/74, BT Adastral Park
Martlesham Heath, Ipswich, IP5 3RE, England

ian.fairman@btinternet.com

ABSTRACT

The goal of this work is to separately control individual secure
sessions between unlimited pairs of multicast receivers and senders
while preserving the scalability of receiver initiated Internet
multicast for the data transfer itself. Unlike other secure multicast
solutions, there are absolutely no side-effects on other receivers
when a single receiver joins or leaves a session. Each individual
receiver can also reliably prove whether any fragment of the data
hasn't been delivered or wasn't delivered on time (e.g. late video
frames). Further, each receiver's data can be subject to an individual,
watermarked audit trail. The cost per receiver-session is typically
just one set-up message exchange with a key manager. Key
managers can be replicated without limit because they are only
loosely coupled to the senders who can remain oblivious to
members being added or removed. The solution requires a tamper-
resistant processor such as a smartcard at each receiver. However,
generic cards supplied by a trusted third party are used rather than
cards specific to each information provider. The technique can be
applied to other bulk data distribution channels instead of multicast,
such as DVD.

Keywords
Multicast, Non-repudiation, Key management, Smartcard,
Watermark, Audit trail, Internet.

1. INTRODUCTION
This paper explores techniques to maintain an individual security
relationship between multicast senders and each receiver without
compromising the efficiency and scalability of IP multicast's data
distribution. We focus on issues that are foremost if the multicast
information is being sold commercially. Of prime concern is how to
individually restrict each receiver to extract only the data for which
it has paid. Secondly, commercial information delivery systems
should preferably include the capability for individual proof of

delivery. Where both non-repudiation and transport reliability aren't
intrinsic to the delivery system, the cost of providing customer
support to handle billing complaints is likely to overshadow all
other costs. However, where streamed information is concerned,
simple proof of reception is not enough. Timely reception must also
be provable. Thirdly, of particular concern with multicast
information products is prevention or at least detection of unlicensed
re-distribution of received information.

We adopt an approach where the key used to encrypt sent data is
systematically changed for each new unit of application data. The
keys are taken from a pseudo-random sequence seeded with a value
initially known only to the senders. When a receiver wishes to join,
it requires a trusted third party smartcard. At the end of each
receiver's set-up phase, its card is running a key generator seeded
with the same value as that of the senders and it contains a policy
defining which keys the receiver is entitled to. The smartcard does
no decryption; it merely hands out a key whenever a request
conforms to the policy. The smartcard can record a summary of
which keys it has given out that can be used as a non-repudiable
'delivery note' in the case of delivery disputes.

Thus, whenever a receiver is added or removed, there is zero side-
effect on other receivers. A special group key change doesn't have to
be initiated because systematic changes occur all the time anyway.
No keys need sending over the multicast, therefore reliable multicast
isn't required. If key managers are delegated to handle requests to
set-up receiver sessions, the senders can be completely oblivious of
any receiver addition or removal. Thus, there is absolutely no
coupling back to the senders. For stateless key manager scenarios
(e.g. pre-payment with no credit) any amount of key manager
replication can be introduced. The key managers just give out
session seeds and policies in return for pre-payments. Thus
performance is linear with key manager replication and system
resilience is independent of key manager resilience.

Thus we focus on a pragmatic scenario where evictions from the
multicast group are typically planned at session set-up, but still
might occur at arbitrary times. Nonetheless, we do cater for the
occasional unplanned eviction, although the scheme doesn't scale if
the level of its use becomes high. Our thesis is that there are many
applications that only rarely require premature eviction, e.g. pay-TV
or pay-per-view. Consequently, our scheme typically requires just
one set-up message per receiver session. All further security
messaging proceeds between the receiver and its smartcard, which
acts as a proxy of the key manager. If the receiver wishes to dispute

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
E-COMMERCE 99, Denver, Colorado
1999 ACM 1-58113-176-3/99/0011..$5.00

 2

delivery of certain parts of the stream, another message is required at
the end of the session to present the 'delivery note'.

In section 2, we discuss requirements and describe related work on
multicast key management, non-repudiable receipting and detection
of re-multicast. In section 3 we describe the underlying composition
of the systems we have implemented to meet all our requirements.
Then, in section 4, we describe the design of specialisations we have
implemented to achieve each requirement. Section 5 describes how
secure sessions are set up, torn down or modified (e.g. for an
unplanned eviction). Section 6 briefly describes our implementation.
Finally limitations of the approach are discussed followed by
conclusions.

2. BACKGROUND AND REQUIREMENTS
When using Internet multicast, senders send to a multicast group
address while receivers 'join' the multicast group through a
message to their local router. For scalability, the designers of IP
multicast deliberately ensured that any one router in a multicast
tree would hide all downstream join and leave activity from all
upstream routers and senders [11]. Thus a multicast sender is
oblivious to the identities of its receivers. Clearly any security
relationship with individual receivers is impossible if they can't be
uniquely distinguished. Conversely, if receivers have to be
distinguished from each other, the scalability benefits start to be
eroded.

2.1 Multicast key management
If a multicast sender wishes to restrict its data to a set of receivers, it
will typically encrypt the data at the application level. End-to-end
access is then controlled by limiting the circulation of the key. A
new receiver could have been storing away the encrypted stream
before it joined the secure session. Therefore, every time a receiver
is allowed in, the key needs to be changed (termed backward
security [19]). Similarly, after a receiver is thrown out or requests to
leave, it will still be able to decrypt the stream unless the key is
changed again (forward security). Most approaches work on the
basis that when the key needs to be changed, every receiver will
have to be given a new key. Continually changing keys clearly has
messaging side-effects on other receivers than the one joining or
leaving.

We define a 'secure multicast session' as the set of data that a
receiver could understand, having passed one access control test. If
one key is used for many related multicast groups, they all form one
secure session. If a particular receiver leaves a multicast group then
re-joins but she could have decrypted the information she missed,
the whole transmission is still a single secure session. We envisage
very large receiver communities, e.g. ten million viewers for a
popular Internet pay-TV channel. Even if just 10% of the audience
tuned in or out within a fifteen minute period, this would potentially
cause thousands of secure joins or leaves per second.

We use the term 'application data unit' (ADU) as a more general
term for the minimum useful atom of data from a security or
commercial point of view (one second in the above example). ADU
size is application dependent. It may be an initialisation frame and
its set of associated 'P-frames' in a video sequence or it may be ten
minutes of access to a network game. For performance, an ADU
may be only partially encrypted with the remainder in the clear [18].
ADU size can vary throughout the duration of a stream dependent
on the content. ADU size is a primary determinant of system
scalability. If a million receivers were to join within fifteen minutes,

but the ADU size was also fifteen minutes, this would only require
one re-key event.

However, reduction in re-keying requirements isn't the only
scalability issue. In the above example, a system that can handle a
million requests in fifteen minutes still has to be provided, even if its
output is just one re-key request to the senders. With just such
scalability problems in mind, many multicast key management
architectures introduce a key manager role as a separate concern
from the senders. This deals with policy concerns over membership
and isolates the senders from much of the messaging traffic needed
for access requests.

We now describe the most scalable of the group key management
proposals. Ballardie suggested exploiting the same scalability
technique used for the underlying multicast tree, by delegating key
distribution along the chain of routers in a core based multicast
routing tree [4]. However, this suffers from a lack of end-to-end
security, requiring edge customers to entrust their keys to many
intermediate network providers. The Iolus system [20] sets up a
similar distribution hierarchy, but only involving trusted end-
systems. However, gateway nodes in the hierarchy decrypt and re-
encrypt the stream to isolate sub-group members from key-changes
in other sub-groups. This increases latency and set-up complexity
and reduces resilience.

An alternative class of approaches involves a single key for the
multicast data, but a hierarchy of keys under which to send out a
new key over the same multicast channel as the data. These
approaches involve a degree of redundant re-keying traffic arriving
at every receiver in order for the occasional message to arrive that is
decipherable by that receiver. The logical key hierarchy (LKH) [25]
gives each receiver its own key then creates the same number of
extra keys, one for each node of a binary tree of keys with each
member's key at the leaves. The root of the tree is the group key
under which data is encrypted. When a member joins or leaves, all
the keys on their branch to the root are replaced in one long message
multicast to the whole tree. Perlman has suggested an improvement,
termed LKH+, where a one way function could be used to compute
the next key from the existing one [22]. Only the new key would be
revealed to the joining member. The one-way function tree (OFT)
technique is in the same class of approaches [19]. Like LKH, all
members have their own key, and a binary tree of keys is built over
them with the root also being the group key. Because the keys at
each intermediate node are a combination of the hashes of the two
keys below, rather than being freely generated, Perlman's suggestion
cannot be applied. LKH+ is therefore more efficient than OFT in
most scenarios. The standardised approach to pay-TV key
management also falls into this class [17]. A set of secondary keys is
created and each receiver holds a sub-set of these in tamper-resistant
storage. The group key is also unknown outside the tamper-resistant
part of the receiver. In case the group key becomes compromised, a
new one is regularly generated and broadcast multiple times under
different secondary keys to ensure the appropriate receivers can re-
key. All the key hierarchy approaches send new keys over the
multicast itself. As 'reliable multicast' is still to some extent a
contradiction in terms, either efficiency is reduced through adding
redundant messaging or complexity is increased to cope with losses.

Dillon [12] falls into the same class of approaches to key
management as the current work. Each broadcast document is
encrypted using a different key rather than the key only being
changed in synchrony with the addition or removal of receiver

 3

interest. In the interests of full disclosure, we note that the present
work is the subject of a European patent filing [6].

2.2 Multicast non-repudiation
The need for proof of delivery is recognised in two taxonomies of
multicast security requirements [3, 8], but solutions are rarely
discussed in the academic literature. Proof of delivery is a very
different problem to acknowledgement of delivery. It has to be
possible to prove the receiver did indeed receive data when they
might deny reception. Pay-TV and pay-per-view systems
invariably use the tamper-resistant processing and storage
capabilities of the local receiver to record which products or
programmes have been requested in order to form a bill at a later
time (e.g. [17, 11] as already cited).

The novel aspect of the present work is the ability to prove that
individual fragments of an isochronous stream (e.g. video) not
only arrived, but arrived in time to be played out, giving suitable
perceived quality for a real-time application. Our approach is for
the receiving system to only request a key to decrypt the stream if
there is sufficient time remaining to decrypt it and still achieve
smooth play-out. This is possible because the link between the
receiving computer and the smartcard has predictable latency and
minimal risk of packet drop unlike the Internet connection
between sender and receiver.

2.3 Multicast audit trail
Re-multicast of received data requires very low resources on the part
of any receiver. Even if the value of the information received is
relatively low there is always a profit to be made by re-multicasting
data and undercutting the original price, as proved in Herzog et al
[15].

In general, prevention of information copying is considered
infeasible; instead most attention focuses on the more tractable
problem of copy detection. It is possible to 'watermark' different
copies of a copyrighted digital work. If a watermarked copy is later
discovered, it can be traced back to its source, thus deterring the
holders of original copies from passing on further, illicit copies.
Watermarks are typically applied to the least significant bits of a
medium to avoid significantly degrading the quality. Such bits are in
different locations with different regularity in different media,
therefore there is never likely to be a generic approach [23]. The
most generic scheme discussed to date is Chameleon [2]. In
Chameleon a stream is ciphered by combining a regular stream
cipher with a large block of bits. Each receiver is given a long-term
copy of the block to decipher the stream. In the concrete example
given, four 64b words in the 512kB block are chosen by indexing
the block with the output of the regular stream cipher. Then all four
are XORed together with each 64b word of the stream. The block
given to each receiver is watermarked in a way specific to the
medium. For instance, the least significant bit of every 16b word of
an audio stream might be the only place where a watermark can be
stored without degrading the content significantly. Because the
block is only used for the XOR operation, the position of any
watermarked bits is preserved in the output.

Naor et al [21] formalises a pragmatic approach to 'traitor tracing' by
proposing a parameter that represents the minimum number of
group members that need to collude to eliminate a watermark. The
elimination criteria are that none of the conspirators are identifiable,
and it is assumed that the copyright owner will want to avoid
accusing innocent members. For instance, changing at least the

square root of the total number of bits that could hold a watermark
in the Chameleon scheme would protect against conspiracies of four
or less members.

Watercasting [8] is a novel, if rather convoluted way to embed an
individual watermark in each receiver's copy of multicast data.
Multicast forwarding is modified by including active networking
elements at strategic branch points. These elements drop redundant
data inserted into the original stream in order to produce a different
drop pattern on each forwarded branch. A chain of trusted network
providers is required for watercasting, each of which has to be
willing to reveal their authenticated tree topology to each sender.

In this paper, for completeness, we report how it is possible to add
an audit trail back to the copier of multicast information using
watermarking. Our approach is not novel in this respect, simply re-
using Chameleon. However, we include it to demonstrate our
modular approach to the addition of mechanisms.

2.4 Other requirements
Beyond the three requirements we have focussed on so far, the
taxonomies we have already cited include many other possible
combinations of security requirements for multicast. We have placed
sender authentication outside the scope of this paper, but its
importance merits a brief survey of the literature. A sender may
merely need to prove it is one of the group of valid receivers in
which case use of the group encryption key suffices. If encryption
isn't required, a MAC based on the group key can be attached to
each packet. If receivers require each sender to authenticate their
messages individually, public key signing leads to an unscalable
solution because of the sheer volume of heavy asymmetric key
operations required. Canetti et al [9] provides an up to date review
of more efficient approaches to this problem and a group MAC
proposal.

So far we have focussed on the scenario where the data is an ordered
stream and access is given between some start and some later end
point. A more random access approach might be required for non-
sequential application name spaces [13]. However, often we cannot
generate a number at position n in the sequence if we have generated
the number at position m where m > n, unless we store all numbers
in the sequence up to the mth term or regenerate the sequence.
Storing numbers in the sequence or regenerating the sequence is
usually impractical for devices that are as limited as smartcards. For
random access to any point in a sequence, in the longer version of
this paper [7] we present a fast algorithm to generate any key from a
seed as an alternative to keyed hash algorithms.

2.5 Implementations
 Many of the schemes discussed above are theoretical works.
Known exceptions are Iolus and Chameleon. A report on
implementation experience with LKH is provided by Boxall [5] and
Shoup et al report on their implementation of session key
distribution using smart cards [24].

3. BASIC SCHEME
In explaining the basic scheme we will firstly give a concrete
example of how it would be used and then give a description of the
core of the scheme upon which other features can be built.

3.1 A Concrete Example
 Our example is of a content provider who wishes to multicast
streamed video and charge viewers for watching it.

 4

The content provider first divides the video stream into units that
potential viewers can use to select what they want to see. The
obvious unit here is a 'TV channel' or may-be a 'TV programme'.
Each of these units is given an ID termed the session ID. Next the
content-provider sets up a video server which has access to the
video in a streamable form. As part of the set-up process a seed is
generated and a formula chosen. This is used to generate symmetric
encryption keys based on this seed for encrypting and decrypting the
data. The content provider also sets up another key management
server to hand out these seeds in return for payment. The sender
passes on the programme information, including the seed and
formula, to that server. The content provider then advertises the
programmes on the channel, perhaps using a web site or email, with
the session ID and the key management server being used to
uniquely identify the channel to the system. When the broadcast
time arrives the video server starts streaming. Each frame of video is
given it's own ID within the channel and a corresponding key is
generated from this ID, the seed key and the formula. This new key
is used to encrypt each frame before it is sent.

Now we consider the receiver's side. The user has a computer that is
connected to the network and a smartcard reader. They also have a
smartcard which contains it's own public/private key pair and has
been certified by a trusted third party. The private key is unavailable
to the user. The user finds a programme they want to watch on a
web site and clicks on the "set-up" link for that programme. The link
URL downloads a file containing the information that is needed to
join the session and the browser passes this on to the user's video
player software (which has been configured as a browser helper
application). The video player passes this information on to a socket
factory, the internals of which are outside the scope of this paper -
see Flexinet [14]. The essential point is that a communications stack
is built containing a decrypter. When the decrypter is set up it in turn
sets up a key generator in the smart card, which in turn needs a seed
and a policy. The decrypter requests these from a key server in
return for a payment. They arrive encrypted with the smartcard's
public key and are passed to the key generator.

The socket factory then passes a socket reference back to the video
application which need not be aware that decryption is taking place
beneath it. The video application simply uses this socket to join the
multicast. When the TV programme starts, the socket waits until it
receives all the data for each frame, then asks the smartcard for the
key for that particular frame, decrypts the frame and passes the
frame on to the video player application for decompression and
display. The smartcard can record the number of keys that were
generated per programme and a summary of which keys were passed
out.

After the programme finishes, there is no need to do anything
further unless reception was poor or incomplete. The receiver can
ask the smartcard to produce a 'delivery note' for the partially
received programme which the smartcard signs with it's private key.
This can be forwarded on to the payment server to prove the right to
a refund.

3.2 Core Set-up
The core scheme involves a sender sending data via some
distribution mechanism to zero or more receivers. The sender
divides the data stream into a number of application data units
(ADUs). Each ADU sent in a session has an ADU ID associated
with it. These IDs are typically numeric. For the session there exists
a mapping of IDs to keys and, before it is sent, the data in an ADU

is encrypted using the key associated with the ADU's ID. Any
receiver receiving data in the session must know the ID to key
mapping used for that session and uses it to find the key for any
ADUs it receives and wishes to decrypt.

The process of sending data is as follows:

1. Sending application passes an unencrypted ADU on to the
communications system.

2. The communications system requests the next ID from the ID
generator...

3. which returns a new ID.

4. The communications systems requests the key for that ID from
the key generator...

5. which returns the key.

6. The communication system passes the ADU and the key on to
the encrypter...

7. which returns an encrypted ADU.

8. The communications system passes the encrypted ADU and the
ID on to the send point for distribution.

Figure 1 - Sending Stage – Sender

Note that the scheme is independent of the distribution mechanism.
We use Internet multicast, but it could be DVD or other media.

The process for receiving data is as follows (note that smartcard
security is only added when we discuss the variations later):

1. The receive point passes on an encrypted ADU and ID it has
received from the distribution mechanism to the
communications system.

2. The communications system requests the key for that ID from
the key generator...

3. which returns the key.

4. The communications system passes the encrypted ADU and the
key on to the decrypter...

5. which returns an unencrypted ADU…

6. which is passed on to the ADU to the application for
processing.

 5

Figure 2 - Sending Stage - Receiver

4. VARIATIONS
4.1 Multicast Key Management
The scenario here is the situation where we have an ongoing
multicast session and where receivers joining the session are only
allowed to receive a portion of the data. An example of this might be
where the multicast was a video broadcast and where a receiver
might pay to receive an hour or a days worth of video.

In this case we add a key limiter that limits the production of keys,
i.e. to a certain number or perhaps to a particular range of IDs. The
key limiter and the key generator are placed within the tamper-proof
processor. In Figure 3, a key is returned by the key generator only if
the ADU ID passes the key limiter's test. The limiter will usually
also be required to restrict its output to one response per key. This
protects against the same card being shared around multiple
receivers as a relatively convenient way to decrypt the same data
multiple times rather than passing all the keys around. This would
require internal receipting capabilities similar to those described in
the next section.

Figure 3 - Multicast Key Management

4.2 Non-repudiation
In this scenario we are concerned with being able to confirm how
much data an application received. Sending acknowledgements for
each ADU is impractical, especially as the number of receivers grow
large. Also, this does not prevent the receiver trying to fool the
sender by not sending acknowledgements for ADUs it has received.
What we do in this case is to produce a 'delivery note' of all the data
received in a session. If, at the end of a session, we need to confirm
how much data was received by an application in a particular
session, we can query its secure processing environment and get the
'delivery note' for that session.

Figure 4 - Non-repudiation

In this case we can create receipts for every ADU decrypted by
intercepting every return of a key and recording the ADU ID in a
file. For ordered streams, the receipting storage format only needs
to be a simple index to the last key given out, plus a list of any
exceptions. If random access to any ADU is envisaged, a block of
bits, one for each ADU, would be required to record which keys
had already been given out. More efficient tree-based variants are
possible to reduce storage requirements in most realistic
scenarios.

If different types of ADUs in a stream require different treatment
with respect to security it is simplest to create a separate secure
session for them. For instance, high quality transmission costs for
adverts might be refunded only if a delivery note is returned to
prove they were at least decrypted if not watched (e.g. a hash of
the decrypted frames might be required). These would form a sub-
session with a different policy in the smartcard.

4.3 Audit Trails
The problem this variation helps to address is that of a receiver in
the session colluding with other receivers that are not part of the
session by sending them keys or decrypted data. There are two
variants: on-card and off-card watermarking, the latter depicted in
Figure 5. In the first variant only the plaintext data is watermarked
therefore each ADU key is never revealed outside the smart card.
In the second variant, the keys themselves are watermarked so
both the keys and the data can be revealed outside the card. If the

 6

watermarked keys or data are then sent on to other machines and
detected later, it is possible to establish the identity of the source
of the "leak" from the watermark. This variation assumes that the
data is watermarkable, e.g. images.

Figure 5 - Off-card Watermarking

On-card watermarking is only feasible with a fairly highly
powered tamper-resistant cryptographic co-processor. It is
impractical with smartcards due to processing and memory
limitations. Off-card watermarking needs only light card
resources. An approach such as Chameleon [2] as described
earlier is preferred as long as there is sufficient memory on the
receiver to hold the whole watermarked key block (about 512kB
in the concrete example). The following steps for off-card
watermarking assume the sender encrypter unit produces its
stream cipher by combining a standard cipher with an
unwatermarked version of the long-term key-block, as in
Chameleon.
1. The receive point passes the encrypted ADU and ADU ID

into the communications system.
2. The communications system passes a) the ID into the key

generator and b) the encrypted ADU into the decrypter.
3. The generator passes the intermediate key for that ID into the

decrypter.
4. The decrypter passes the intermediate key to the watermarker
5. The watermarker uses the intermediate key as an index into a

long term watermarked key block to return the key to the
decrypter

6. The decrypter uses the key to decrypt the ADU and passes it
to the communications system…

7. which passes the watermarked ADU on to the application.

4.4 Multiple Sender Systems
This variation addresses the issue of having many senders within a
session. For simplicity’s sake we might want to use the same key
generator for information sent from all senders, although this
would require that the key generator would be able to generate
keys for any order of IDs (which would be true in the general case
of senders not being synchronised). If we wished to have key
generators that required IDs in order or we wished to produce

individual delivery notes for each sender (see Non-repudiation)
then we need to maintain a number of key generators, one for each
sender. To identify each sender we would have to generate a
unique ID for each one, i.e. for information sent across the
Internet we could use the IP address and port number which is
sent as part of the packet. To seed the sequences we can then use a
common seed for all senders within a session which is then
combined with the unique ID in some way, i.e. XORed with the
common seed, which is then used as the seed for that sender. The
receiving stack now uses a switch to retrieve the correct key for
the data unit. Of course, the sending stack need only maintain a
single key generator for all data it sends to a session.

Figure 6 - Multiple Sender Systems – Receiver

5. SESSION CONTROL
For any of the above schemes can be used it is necessary to have
some auxiliary functions implemented.

In the follow sections this notation is used:
1. sign(k,d) - d signed with key k (i.e. d and the signature of d

with k)
2. enca(k,d) - d encrypted asymmetrically with key k
3. encs(k,d) - d encrypted symmetrically with key k

5.1 Tamper-proof Processor Confirmation
The object here is to confirm that the tamper-proof processor is
one that the sender can trust. We assume that every secure
processing environment leaves the factory with a securely stored
private key and a public key that has been signed by a trusted
third party (TTP) trusted by the sender.
1. Sender generates a random string r (a nonce)
2. Sender sends r to receiver
3. Receiver sends r to secure space
4. Secure space signs r with private key s to produce sign(s,r)
5. Secure space returns sign(s,r) and public key p signed with

the TTP's private key t (producing sign(t,p)) to receiver
6. Receiver returns [sign(s,r), sign(t,p)] to sender
7. Sender checks TTP is one it trusts
8. Sender checks sign(t,p) with TTP (either by invoking TTP

server or using cached TTP public key)
9. Sender checks sign(s,r) with p.

 7

5.2 Session Set-up
The sender needs to set-up the keying system so that it can generate
a sequence of numbers for decoding each packet. This sequence will
be some chaotic/pseudo-random sequence.
1. Sender generates a seed value v.
2. Sender generates a session key k.
3. Sender encrypts v using secure space's public key p producing

enca(p,v).
4. Sender sends [k,enca(p,v)] to receiver.
5. Receiver sends [k,enca(p,v)] to secure space.
6. Keying system sets packet counter to zero.
7. Keying system deciphers enca(p,v) using secret key s.
8. Keying system initialises sequence generator with v.
For multicast key management the sender will also send some
information to limit the production of keys, such as a limit on the
maximum number of keys.
This describes a simple scenario where a single sequence generator
can create an unlimited sequence of numbers and create a single
delivery note type. More realistically the session information would
include:
Sent in plain:
• Session Key
Sent encrypted:
• Seed value
• Sequence generator type
• Delivery note type (for non-repudiation)
• Maximum number of keys to generate (for multicast key

management)
In this scenario there are a limited number of sequence generators
and delivery note types that can be used as it is identifiers that are
being sent over as part of the session information. Alternatively a
secure class loader could be implemented that would allow new
sequence generators and delivery note types to be uploaded into the
encryption system. This would offer the most future-proofing.
Another aspect of session set-up is session amendment. The user
may pay to receive a certain amount of data and then later on pay for
some more. This would ideally be handled by updating the session
information (probably just increasing the maximum number of keys
to be generated) while the session is active.

5.3 Session Tear-down
Sessions simply end when the sender stops sending data or the
key generator stops generating keys. In the case of non-
repudiation though there is a need to retrieve the delivery note
from the secure environment. The following steps allow this.
1. Receiver requests delivery note for session key k from keying

system.
2. Keying system generates delivery note for session key k, ck.
3. Keying system signs ck with private key s giving sign(s,ck).
4. Keying system returns sign(s, ck) to receiver.
5. Receiver sends sign(s, ck) to sender.
6. Sender checks sign(s, ck) against public key p of keying

system known to be used by the receiver (database lookup).
7. Sender refunds if necessary.

5.4 Access Revocation - Poison Pill
It may be desirable for a session controller to be able to modify or
revoke a receiver’s membership of a session. The solution detailed
below assumes that each member of the session has an ID (or
several IDs) within the session, although this ID does not have to

be unique to the member (if it is not unique then the ID obviously
represents a group). It also requires that the smartcard will not co-
operate if the required control data is not passed to it with each
key request.

This is a probabilistic approach. Every time an ADU is sent it
contains an encrypted control message and secure space ID which
must be passed into the secure space along with the key ID to
obtain the key. If the secure space ID(s) contained in the
encrypted block refer to this particular space then it checks the
flags. If the stop flag is set then the card 'commits suicide' - no
more keys are passed out. If the contact sender flag is set then the
secure space does a remote procedure call to the sender (or the
sender's representative) and will not give out more keys until it
has a new key generation policy. Alternatively more general
control messages might take the place of these two flags.

If several users need to be thrown out of the session then their
secure space IDs will be rotated through different packets.

ADU format:
1. Signature of Hash (2)
2. Hash of 3, 4, 5, 6
3. ADU ID
4. Stop flag (y/n) (encrypted)
5. Contact sender flag (y/n) (encrypted)
6. secure space IDs (encrypted)
7. ADU data (encrypted)

The stack passes 1, 2, 3, 4, 5 and 6 into the secure space to receive
the key for 7.

If the length of the control message and number of secure space
IDs is variable then there needs to be an unencrypted field before
the flags stating the total length of the control message and secure
space IDs.

6. IMPLEMENTATION
An implementation of this system was created for demonstration
purposes. It was written in Java 1.1 and used the Cryptix 3.0.3
[10] library for cryptography. Aspects of the system can easily be
changed: the formula used to generate keys (one based on the
logistic mapping [16] has been implemented); the policy for
limiting keys (policies for producing fixed numbers of keys and
keys for a range of IDs have been implemented); the
cryptographic system (DES was implemented); the receipt type
(one simple receipt was implemented). The prototype did not use
any smartcards but those aspects of the design are cleanly
separated from the rest of the system. Simple graphical
applications were written to demonstrate the sender and receiver
roles.

7. LIMITATIONS AND FURTHER WORK
Our approach relies on the tamper-resistance of smartcards.
Products are continually being produced with improved tamper-
resistance features, but there will always be attrition between the
designers of tampering techniques [1] and the designers of
resistance to them. The need to regularly replace the smartcard is
therefore an inherent weakness in our scheme. Indeed, the fact
that a smartcard is needed at all, is in itself a major impediment to
take up of the scheme. We have tried to mitigate this barrier by
designing for a generic trusted third party card (e.g. a Java card),
rather than one tailored to a specific service provider.

 8

The non-repudiation aspect of this work is only useful in a
commercial model where there is an incentive for the receiver to
volunteer the delivery note to the information provider. Such
scenarios are easy to imagine, but this means the capability is
not universally useful. For instance, it would not be possible to
give away the stream of information then ask each receiver to
volunteer their delivery note to calculate how much they should
pay. The beneficial corollary is that it is difficult to get the
smartcard to give out thousands of keys off-line in order to
break the seed. The smart card won't give out any keys if it
doesn't have a key limiter policy and if it does have a policy, it
will only give out keys the user has paid for.

This paper contains no formal security analysis of the strength
of the schemes employed. A number of questions are left
unanswered, such as whether the seed of a pseudo-random
sequence becomes easier to predict, the more values from the
sequence are revealed.

We must also admit to the standard limitations that apply to
most other work on copyright protection. A watermark-based
audit trail is only proof against small numbers in collusion and
it only helps detection not prevention. Also, traitor tracing relies
on finding the watermarked data in the first place; a problem
that this paper and others on the subject invariably leave
unresolved.

Regarding further work, we claimed in the abstract that this
approach could be applied to other means of bulk data
distribution than multicast, such as DVD (digital video/versatile
disk). We envisage a scenario where data on the DVD would be
encrypted with a stream cipher such that it would be
indistinguishable from a multicast stream once it was read from
the disk. As long as the initial set up with the smartcard had
occurred on-line, the rest of the DVD could be played off-line,
only requiring interaction with the smartcard, not the network.
Any final 'delivery note' of exactly what had been accessed
would then be available to present to the provider of the DVD.
In a similar vein, policies and seeds to load into the smart card
could be supplied on various media other than over the Internet.
All these scenarios and more are introduced in [7], but we have
done no specific design or implementation work on them.

8. CONCLUSION
We have presented a number of modular mechanisms to enable
secure sessions tailored to each individual multicast receiver
while at the same time not compromising the inherent
scalability of Internet multicast, achieved through loose
coupling between senders and receivers. Unlike other schemes,
we typically require absolutely no coupling at all from receivers
back to senders but still create a security relationship between
each receiver and a key manager replica. The key managers can
be highly replicated as they require no coupling back to the
sender. As long as a stateless commercial model is required
(e.g. pre-payment rather than credit), key manager replication is
limitless. Further, as members join and leave, there are
absolutely no side-effects on other receivers, unlike traditional
multicast key management schemes.

All this loose coupling is made possible by a simple technique
where multicast senders systematically change the group
encryption key rather than only changing it whenever there is a
change to the group membership. This innovation is driven by

the insight that there will always be a minimum application data
unit (ADU) granularity, within which there is no commercial
advantage to changing the group key. The traditional approach
has been to group together membership change events within
the timespan of an ADU and then drive key changes dependent
on whether none or some events have occurred within each
timeslot. Instead, by systematically changing group keys
whether or not it is necessary, the whole system can rely on the
key changes and not require tight coupling back to the senders.
A further advantage of this approach is that there is no need to
send control messages over the multicast channel itself. Thus no
reliable multicast mechanism is assumed or required and no
complexity is involved when messages are dropped. The only
exception is the rare need to send a 'poison pill', which merely
requires statistical delivery.

In order to distribute the load of key management further, we
require each receiver to operate a smartcard, into which the
information provider can install a key generator capable of
mirroring the systematic key generation of the senders. We
prefer generic smartcards certified by trusted third parties, so
that any key generator can be installed at session set-up. This
mitigates the barrier created by the need for each receiver to
obtain a card, as it can be re-used for multiple services. A policy
is installed into the smart card at session set up to control which
keys it will give out to its receiver. The details depend on the
specifics of the wider application.

Further, we have shown by implementation that it is even
possible to prove timely reception of real-time data units using
this arrangement. The smart card records which keys it has been
asked for and if a packet arrives late, the receiver simply
refrains from asking for the key. Thus, the smartcard generates a
delivery note that can later be used by the receiver to prove that
only a certain number of data units were usefully decrypted.

We have also described how it would be possible to combine
the above approach with a key watermarking scheme such as
'Chameleon'. This provides a small but significant deterrent
against a receiver giving away or re-selling either the keys or
the decrypted data, because both are watermarked in such a way
as to trace that receiver.

We believe these mechanisms (combined with sender
authentication approaches described elsewhere) provide a
soundly engineered basis for a number of very large scale
commercial applications built over Internet multicast. We have
also briefly described how the same techniques could usefully
be applied to other bulk data distribution mechanisms, such as
DVDs. The techniques also have application where protection
of information security rather than value is required.

9. REFERENCES
[1] Ross Anderson and MG Kuhn, "Tamper Resistance - A

Cautionary Note", in proceedings of the second USENIX
Electronic Commerce Workshop (Nov 96) pp 1-21
<URL:http://www.cl.cam.ac.uk/users/rja14/ #Reliability>

[2] Ross Anderson & Charalampos Manifavas (Cambridge Uni),
"Chameleon - A New Kind of Stream Cipher" Encryption in
Haifa (Jan 1997),
<URL:http://www.cl.cam.ac.uk/ftp/users/rja14/chameleon.ps.
gz>

 9

[3] Pete Bagnall, Bob Briscoe & Alan Poppitt, (BT), "Taxonomy
of Communication Requirements for Large-scale Multicast
Applications", Internet Draft (approved for RFC), Internet
Engineering Task Force (17 May 1999) <draft-ietf-lsma-
requirements-03.txt>

[4] Tony Ballardie, "Scalable multicast key distribution",
Request for Comments (RFC) 1949, Internet Engineering
Task Force (May 1996) <URL:rfc1949.txt>

[5] Sarah Boxall (Cambridge Uni), Report on industrial
placement (Sep 1998).

[6] Bob Briscoe and Ian Fairman (BT), "Multicast Key
Management", European patent publication no.
EP98304429.8 (Dec 97).

[7] Bob Briscoe and Ian Fairman (BT), "Nark: Receiver-based
Multicast Key Management and Non-repudiation", BT
Technical Report (Jun 1999),
<URL:http://www.labs.bt.com/projects/mware/>

[8] Ian Brown, Colin Perkins & Jon Crowcroft (UCL),
"Watercasting: Distributed Watermarking of Multicast
Media", forthcoming NGC'99, Pisa, (Nov 1999),
<URL:ftp://cs.ucl.ac.uk/darpa/watercast.ps.gz>

[9] Ran Canetti (IBM T.J. Watson), Juan Garay (Bell Labs),
Gene Itkis (NDS), Daniele Micciancio (MIT), Moni Naor
(Weizmann Inst. of Science), Benny Pinkas (Weizmann Inst.
of Science), "Multicast Security: A Taxonomy and Efficient
Constructions", Proceedings IEEE Infocomm'99, Vol2 708-
716 (Mar 1999), <URL:http://www.wisdom.weizmann.ac.il/
~bennyp/PAPERS/infocom.ps>

[10] Cryptix library, <URL:http://www.cryptix.org/>

[11] S. Deering, "Multicast Routing in a Datagram Network,"
PhD thesis, Dept. of Computer Science, Stanford University,
(1991).

[12] Douglas M Dillon (Hughes), "Deferred Billing, Broadcast,
Electronic Document Distribution System and Method",
International patent publication no. WO 97/26611 (24 July
1997).

[13] M. Fuchs, C. Diot, T. Turletti, M. Hoffman, "A Naming
Approach for ALF Design", in proceedings of HIPPARCH
workshop, London, (June 1998)
<URL:ftp://ftp.sprintlabs.com/diot/naming-hipparch.ps.gz>

[14] Richard Hayton, Andrew Herbert & Douglas Donaldson,
(APM), "FlexiNet - A flexible component oriented

middleware system", in proceedings of SIGOPS'98 (1998),
<URL:http://www.ansa.co.uk/>

[15] Shai Herzog (IBM), Scott Shenker (Xerox PARC), Deborah
Estrin (USC/ISI), "Sharing the cost of Multicast Trees: An
Axiomatic Analysis", in Proceedings of ACM/SIGCOMM '95,
Cambridge, MA, Aug. 1995,
<URL:http://www.research.ibm.com/
people/h/herzog/sigton.html>

[16] James Gleick, "Chaos", 1987, ISBN: 0749386061

[17] ITU-R Rec. 810, "Conditional-Access Broadcasting Systems",
(1992) <URL:http://www.itu.int/itudocs/itu-r/rec/bt/810.pdf>

[18] Thomas Kunkelmann, Rolf Reinema & Ralf Steinmetz
(Darmstadt Tech Uni), "Evaluation of Different Video
Encryption Methods for a Secure Multimedia Conferencing
Gateway", 4th COST 237 Workshop, Lisboa, Portugal,
Springer Verlag LNCS 1356, ISBN 3-540-63935-7 (Dec
1997), <URL:http://www.ito.tu-
darmstadt.de/publs/cost97.ps.gz>

[19] McGrew, David A., & Alan T. Sherman, "Key establishment in
large dynamic groups using one-way function trees," TIS
Report No. 0755, TIS Labs at Network Associates, Inc.,
Glenwood, MD (May 1998). 13 pages.

[20] Suvo Mittra, "Iolus: A framework for scalable secure
multicasting," Proceedings of the ACM SIGCOMM '97, 14-18
Sep 1997 Cannes, France. <URL:http://www-
sop.inria.fr/rodeo/sigcomm97/papers/p113.html>

[21] Moni Naor & Benny Pinkas (Weizmann Inst of Sci, Rehovot),
''Threshold Traitor Tracing'', CRYPTO '98.
<URL:http://www.wisdom.weizmann.ac.il/~bennyp/PAPERS/t
tt.ps>

[22] Radia Perlman (Sun), observation concerning LKH [25] from
the conference floor - termed "LKH+"

[23] Schneier B, "Applied cryptography", 2nd Edition, John Wiley
& Sons (1996).

[24] V. Shoup and A.D. Rubin, "Session Key Distribution Using
Smart Cards", in Proc. of Eurocrypt'96 (1996),
<URL:http://www.cs.nyu.edu/cgi-
bin/cgiwrap/~rubin/keydist.ps>

[25] Wallner, Debby M., Eric J. Harder, and Ryan C. Agee, "Key
management for multicast: Issues and architectures," Request
for Comments (RFC) 2627, Internet Engineering Task Force
(Jun 1999) <URL:rfc2627.txt>

