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ABSTRACT  

The goal of this work is to separately control individual secure 
sessions between unlimited pairs of multicast receivers and senders 
while preserving the scalability of receiver initiated Internet 
multicast for the data transfer itself. Unlike other secure multicast 
solutions, there are absolutely no side-effects on other receivers 
when a single receiver joins or leaves a session. Each individual 
receiver can also reliably prove whether any fragment of the data 
hasn't been delivered or wasn't delivered on time (e.g. late video 
frames). Further, each receiver's data can be subject to an individual, 
watermarked audit trail. The cost per receiver-session is typically 
just one set-up message exchange with a key manager. Key 
managers can be replicated without limit because they are only 
loosely coupled to the senders who can remain oblivious to 
members being added or removed. The solution requires a tamper-
resistant processor such as a smartcard at each receiver. However, 
generic cards supplied by a trusted third party are used rather than 
cards specific to each information provider. The technique can be 
applied to other bulk data distribution channels instead of multicast, 
such as DVD. 

Keywords 
Multicast, Non-repudiation, Key management, Smartcard, 
Watermark, Audit trail, Internet. 

1. INTRODUCTION 
This paper explores techniques to maintain an individual security 
relationship between multicast senders and each receiver without 
compromising the efficiency and scalability of IP multicast's data 
distribution. We focus on issues that are foremost if the multicast 
information is being sold commercially. Of prime concern is how to 
individually restrict each receiver to extract only the data for which 
it has paid. Secondly, commercial information delivery systems 
should preferably include the capability for individual proof of 

delivery. Where both non-repudiation and transport reliability aren't 
intrinsic to the delivery system, the cost of providing customer 
support to handle billing complaints is likely to overshadow all 
other costs. However, where streamed information is concerned, 
simple proof of reception is not enough. Timely reception must also 
be provable. Thirdly, of particular concern with multicast 
information products is prevention or at least detection of unlicensed 
re-distribution of received information. 

We adopt an approach where the key used to encrypt sent data is 
systematically changed for each new unit of application data. The 
keys are taken from a pseudo-random sequence seeded with a value 
initially known only to the senders. When a receiver wishes to join, 
it requires a trusted third party smartcard. At the end of each 
receiver's set-up phase, its card is running a key generator seeded 
with the same value as that of the senders and it contains a policy 
defining which keys the receiver is entitled to. The smartcard does 
no decryption; it merely hands out a key whenever a request 
conforms to the policy. The smartcard can record a summary of 
which keys it has given out that can be used as a non-repudiable 
'delivery note' in the case of delivery disputes. 

Thus, whenever a receiver is added or removed, there is zero side-
effect on other receivers. A special group key change doesn't have to 
be initiated because systematic changes occur all the time anyway. 
No keys need sending over the multicast, therefore reliable multicast 
isn't required. If key managers are delegated to handle requests to 
set-up receiver sessions, the senders can be completely oblivious of 
any receiver addition or removal. Thus, there is absolutely no 
coupling back to the senders. For stateless key manager scenarios 
(e.g. pre-payment with no credit) any amount of key manager 
replication can be introduced. The key managers just give out 
session seeds and policies in return for pre-payments. Thus 
performance is linear with key manager replication and system 
resilience is independent of key manager resilience. 

Thus we focus on a pragmatic scenario where evictions from the 
multicast group are typically planned at session set-up, but still 
might occur at arbitrary times. Nonetheless, we do cater for the 
occasional unplanned eviction, although the scheme doesn't scale if 
the level of its use becomes high. Our thesis is that there are many 
applications that only rarely require premature eviction, e.g. pay-TV 
or pay-per-view. Consequently, our scheme typically requires just 
one set-up message per receiver session. All further security 
messaging proceeds between the receiver and its smartcard, which 
acts as a proxy of the key manager. If the receiver wishes to dispute 
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delivery of certain parts of the stream, another message is required at 
the end of the session to present the 'delivery note'. 

In section 2, we discuss requirements and describe related work on 
multicast key management, non-repudiable receipting and detection 
of re-multicast. In section 3 we describe the underlying composition 
of the systems we have implemented to meet all our requirements. 
Then, in section 4, we describe the design of specialisations we have 
implemented to achieve each requirement. Section 5 describes how 
secure sessions are set up, torn down or modified (e.g. for an 
unplanned eviction). Section 6 briefly describes our implementation. 
Finally limitations of the approach are discussed followed by 
conclusions. 

2. BACKGROUND AND REQUIREMENTS 
When using Internet multicast, senders send to a multicast group 
address while receivers 'join' the multicast group through a 
message to their local router. For scalability, the designers of IP 
multicast deliberately ensured that any one router in a multicast 
tree would hide all downstream join and leave activity from all 
upstream routers and senders [11]. Thus a multicast sender is 
oblivious to the identities of its receivers. Clearly any security 
relationship with individual receivers is impossible if they can't be 
uniquely distinguished. Conversely, if receivers have to be 
distinguished from each other, the scalability benefits start to be 
eroded. 

2.1 Multicast key management 
If a multicast sender wishes to restrict its data to a set of receivers, it 
will typically encrypt the data at the application level. End-to-end 
access is then controlled by limiting the circulation of the key. A 
new receiver could have been storing away the encrypted stream 
before it joined the secure session. Therefore, every time a receiver 
is allowed in, the key needs to be changed (termed backward 
security [19]). Similarly, after a receiver is thrown out or requests to 
leave, it will still be able to decrypt the stream unless the key is 
changed again (forward security). Most approaches work on the 
basis that when the key needs to be changed, every receiver will 
have to be given a new key. Continually changing keys clearly has 
messaging side-effects on other receivers than the one joining or 
leaving. 

We define a 'secure multicast session' as the set of data that a 
receiver could understand, having passed one access control test. If 
one key is used for many related multicast groups, they all form one 
secure session. If a particular receiver leaves a multicast group then 
re-joins but she could have decrypted the information she missed, 
the whole transmission is still a single secure session. We envisage 
very large receiver communities, e.g. ten million viewers for a 
popular Internet pay-TV channel. Even if just 10% of the audience 
tuned in or out within a fifteen minute period, this would potentially 
cause thousands of secure joins or leaves per second. 

We use the term 'application data unit' (ADU) as a more general 
term for the minimum useful atom of data from a security or 
commercial point of view (one second in the above example). ADU 
size is application dependent. It may be an initialisation frame and 
its set of associated 'P-frames' in a video sequence or it may be ten 
minutes of access to a network game. For performance, an ADU 
may be only partially encrypted with the remainder in the clear [18]. 
ADU size can vary throughout the duration of a stream dependent 
on the content. ADU size is a primary determinant of system 
scalability. If a million receivers were to join within fifteen minutes, 

but the ADU size was also fifteen minutes, this would only require 
one re-key event. 

However, reduction in re-keying requirements isn't the only 
scalability issue. In the above example, a system that can handle a 
million requests in fifteen minutes still has to be provided, even if its 
output is just one re-key request to the senders. With just such 
scalability problems in mind, many multicast key management 
architectures introduce a key manager role as a separate concern 
from the senders. This deals with policy concerns over membership 
and isolates the senders from much of the messaging traffic needed 
for access requests. 

We now describe the most scalable of the group key management 
proposals. Ballardie suggested exploiting the same scalability 
technique used for the underlying multicast tree, by delegating key 
distribution along the chain of routers in a core based multicast 
routing tree [4]. However, this suffers from a lack of end-to-end 
security, requiring edge customers to entrust their keys to many 
intermediate network providers. The Iolus system [20] sets up a 
similar distribution hierarchy, but only involving trusted end-
systems. However, gateway nodes in the hierarchy decrypt and re-
encrypt the stream to isolate sub-group members from key-changes 
in other sub-groups. This increases latency and set-up complexity 
and reduces resilience. 

An alternative class of approaches involves a single key for the 
multicast data, but a hierarchy of keys under which to send out a 
new key over the same multicast channel as the data. These 
approaches involve a degree of redundant re-keying traffic arriving 
at every receiver in order for the occasional message to arrive that is 
decipherable by that receiver. The logical key hierarchy (LKH) [25] 
gives each receiver its own key then creates the same number of 
extra keys, one for each node of a binary tree of keys with each 
member's key at the leaves. The root of the tree is the group key 
under which data is encrypted. When a member joins or leaves, all 
the keys on their branch to the root are replaced in one long message 
multicast to the whole tree. Perlman has suggested an improvement, 
termed LKH+, where a one way function could be used to compute 
the next key from the existing one [22]. Only the new key would be 
revealed to the joining member. The one-way function tree (OFT) 
technique is in the same class of approaches [19]. Like LKH, all 
members have their own key, and a binary tree of keys is built over 
them with the root also being the group key. Because the keys at 
each intermediate node are a combination of the hashes of the two 
keys below, rather than being freely generated, Perlman's suggestion 
cannot be applied. LKH+ is therefore more efficient than OFT in 
most scenarios. The standardised approach to pay-TV key 
management also falls into this class [17]. A set of secondary keys is 
created and each receiver holds a sub-set of these in tamper-resistant 
storage. The group key is also unknown outside the tamper-resistant 
part of the receiver. In case the group key becomes compromised, a 
new one is regularly generated and broadcast multiple times under 
different secondary keys to ensure the appropriate receivers can re-
key. All the key hierarchy approaches send new keys over the 
multicast itself. As 'reliable multicast' is still to some extent a 
contradiction in terms, either efficiency is reduced through adding 
redundant messaging or complexity is increased to cope with losses. 

Dillon [12] falls into the same class of approaches to key 
management as the current work. Each broadcast document is 
encrypted using a different key rather than the key only being 
changed in synchrony with the addition or removal of receiver 
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interest. In the interests of full disclosure, we note that the present 
work is the subject of a European patent filing [6]. 

2.2 Multicast non-repudiation 
The need for proof of delivery is recognised in two taxonomies of 
multicast security requirements [3, 8], but solutions are rarely 
discussed in the academic literature. Proof of delivery is a very 
different problem to acknowledgement of delivery. It has to be 
possible to prove the receiver did indeed receive data when they 
might deny reception. Pay-TV and pay-per-view systems 
invariably use the tamper-resistant processing and storage 
capabilities of the local receiver to record which products or 
programmes have been requested in order to form a bill at a later 
time (e.g. [17, 11] as already cited). 

The novel aspect of the present work is the ability to prove that 
individual fragments of an isochronous stream (e.g. video) not 
only arrived, but arrived in time to be played out, giving suitable 
perceived quality for a real-time application. Our approach is for 
the receiving system to only request a key to decrypt the stream if 
there is sufficient time remaining to decrypt it and still achieve 
smooth play-out. This is possible because the link between the 
receiving computer and the smartcard has predictable latency and 
minimal risk of packet drop unlike the Internet connection 
between sender and receiver. 

2.3 Multicast audit trail 
Re-multicast of received data requires very low resources on the part 
of any receiver. Even if the value of the information received is 
relatively low there is always a profit to be made by re-multicasting 
data and undercutting the original price, as proved in Herzog et al 
[15]. 

In general, prevention of information copying is considered 
infeasible; instead most attention focuses on the more tractable 
problem of copy detection. It is possible to 'watermark' different 
copies of a copyrighted digital work. If a watermarked copy is later 
discovered, it can be traced back to its source, thus deterring the 
holders of original copies from passing on further, illicit copies. 
Watermarks are typically applied to the least significant bits of a 
medium to avoid significantly degrading the quality. Such bits are in 
different locations with different regularity in different media, 
therefore there is never likely to be a generic approach [23]. The 
most generic scheme discussed to date is Chameleon [2]. In 
Chameleon a stream is ciphered by combining a regular stream 
cipher with a large block of bits. Each receiver is given a long-term 
copy of the block to decipher the stream. In the concrete example 
given, four 64b words in the 512kB block are chosen by indexing 
the block with the output of the regular stream cipher. Then all four 
are XORed together with each 64b word of the stream. The block 
given to each receiver is watermarked in a way specific to the 
medium. For instance, the least significant bit of every 16b word of 
an audio stream might be the only place where a watermark can be 
stored without degrading the content significantly. Because the 
block is only used for the XOR operation, the position of any 
watermarked bits is preserved in the output. 

Naor et al [21] formalises a pragmatic approach to 'traitor tracing' by 
proposing a parameter that represents the minimum number of 
group members that need to collude to eliminate a watermark. The 
elimination criteria are that none of the conspirators are identifiable, 
and it is assumed that the copyright owner will want to avoid 
accusing innocent members. For instance, changing at least the 

square root of the total number of bits that could hold a watermark 
in the Chameleon scheme would protect against conspiracies of four 
or less members. 

Watercasting [8] is a novel, if rather convoluted way to embed an 
individual watermark in each receiver's copy of multicast data. 
Multicast forwarding is modified by including active networking 
elements at strategic branch points. These elements drop redundant 
data inserted into the original stream in order to produce a different 
drop pattern on each forwarded branch. A chain of trusted network 
providers is required for watercasting, each of which has to be 
willing to reveal their authenticated tree topology to each sender. 

In this paper, for completeness, we report how it is possible to add 
an audit trail back to the copier of multicast information using 
watermarking. Our approach is not novel in this respect, simply re-
using Chameleon. However, we include it to demonstrate our 
modular approach to the addition of mechanisms. 

2.4 Other requirements 
Beyond the three requirements we have focussed on so far, the 
taxonomies we have already cited include many other possible 
combinations of security requirements for multicast. We have placed 
sender authentication outside the scope of this paper, but its 
importance merits a brief survey of the literature. A sender may 
merely need to prove it is one of the group of valid receivers in 
which case use of the group encryption key suffices. If encryption 
isn't required, a MAC based on the group key can be attached to 
each packet. If receivers require each sender to authenticate their 
messages individually, public key signing leads to an unscalable 
solution because of the sheer volume of heavy asymmetric key 
operations required. Canetti et al [9] provides an up to date review 
of more efficient approaches to this problem and a group MAC 
proposal. 

So far we have focussed on the scenario where the data is an ordered 
stream and access is given between some start and some later end 
point. A more random access approach might be required for non-
sequential application name spaces [13]. However, often we cannot 
generate a number at position n in the sequence if we have generated 
the number at position m where m > n, unless we store all numbers 
in the sequence up to the mth term or regenerate the sequence. 
Storing numbers in the sequence or regenerating the sequence is 
usually impractical for devices that are as limited as smartcards. For 
random access to any point in a sequence, in the longer version of 
this paper [7] we present a fast algorithm to generate any key from a 
seed as an alternative to keyed hash algorithms. 

2.5 Implementations 
 Many of the schemes discussed above are theoretical works. 
Known exceptions are Iolus and Chameleon. A report on 
implementation experience with LKH is provided by Boxall [5] and 
Shoup et al report on their implementation of session key 
distribution using smart cards [24]. 

3. BASIC SCHEME 
In explaining the basic scheme we will firstly give a concrete 
example of how it would be used and then give a description of the 
core of the scheme upon which other features can be built. 

3.1 A Concrete Example 
 Our example is of a content provider who wishes to multicast 
streamed video and charge viewers for watching it. 
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The content provider first divides the video stream into units that 
potential viewers can use to select what they want to see. The 
obvious unit here is a 'TV channel' or may-be a 'TV programme'. 
Each of these units is given an ID termed the session ID. Next the 
content-provider sets up a video server which has access to the 
video in a streamable form. As part of the set-up process a seed is 
generated and a formula chosen. This is used to generate symmetric 
encryption keys based on this seed for encrypting and decrypting the 
data. The content provider also sets up another key management 
server to hand out these seeds in return for payment. The sender 
passes on the programme information, including the seed and 
formula, to that server. The content provider then advertises the 
programmes on the channel, perhaps using a web site or email, with 
the session ID and the key management server being used to 
uniquely identify the channel to the system. When the broadcast 
time arrives the video server starts streaming. Each frame of video is 
given it's own ID within the channel and a corresponding key is 
generated from this ID, the seed key and the formula. This new key 
is used to encrypt each frame before it is sent. 

Now we consider the receiver's side. The user has a computer that is 
connected to the network and a smartcard reader. They also have a 
smartcard which contains it's own public/private key pair and has 
been certified by a trusted third party. The private key is unavailable 
to the user. The user finds a programme they want to watch on a 
web site and clicks on the "set-up" link for that programme. The link 
URL downloads a file containing the information that is needed to 
join the session and the browser passes this on to the user's video 
player software (which has been configured as a browser helper 
application). The video player passes this information on to a socket 
factory, the internals of which are outside the scope of this paper - 
see Flexinet [14]. The essential point is that a communications stack 
is built containing a decrypter. When the decrypter is set up it in turn 
sets up a key generator in the smart card, which in turn needs a seed 
and a policy. The decrypter requests these from a key server in 
return for a payment. They arrive encrypted with the smartcard's 
public key and are passed to the key generator. 

The socket factory then passes a socket reference back to the video 
application which need not be aware that decryption is taking place 
beneath it. The video application simply uses this socket to join the 
multicast. When the TV programme starts, the socket waits until it 
receives all the data for each frame, then asks the smartcard for the 
key for that particular frame, decrypts the frame and passes the 
frame on to the video player application for decompression and 
display. The smartcard can record the number of keys that were 
generated per programme and a summary of which keys were passed 
out. 

After the programme finishes, there is no need to do anything 
further unless reception was poor or incomplete. The receiver can 
ask the smartcard to produce a 'delivery note' for the partially 
received programme which the smartcard signs with it's private key. 
This can be forwarded on to the payment server to prove the right to 
a refund. 

3.2 Core Set-up 
The core scheme involves a sender sending data via some 
distribution mechanism to zero or more receivers. The sender 
divides the data stream into a number of application data units 
(ADUs). Each ADU sent in a session has an ADU ID associated 
with it. These IDs are typically numeric. For the session there exists 
a mapping of IDs to keys and, before it is sent, the data in an ADU 

is encrypted using the key associated with the ADU's ID. Any 
receiver receiving data in the session must know the ID to key 
mapping used for that session and uses it to find the key for any 
ADUs it receives and wishes to decrypt. 

The process of sending data is as follows: 

1. Sending application passes an unencrypted ADU on to the 
communications system. 

2. The communications system requests the next ID from the ID 
generator... 

3. which returns a new ID. 

4. The communications systems requests the key for that ID from 
the key generator... 

5. which returns the key. 

6. The communication system passes the ADU and the key on to 
the encrypter... 

7. which returns an encrypted ADU. 

8. The communications system passes the encrypted ADU and the 
ID on to the send point for distribution. 

 

Figure 1 - Sending Stage – Sender 

 

Note that the scheme is independent of the distribution mechanism. 
We use Internet multicast, but it could be DVD or other media. 

The process for receiving data is as follows (note that smartcard 
security is only added when we discuss the variations later): 

1. The receive point passes on an encrypted ADU and ID it has 
received from the distribution mechanism to the 
communications system. 

2. The communications system requests the key for that ID from 
the key generator... 

3. which returns the key. 

4. The communications system passes the encrypted ADU and the 
key on to the decrypter... 

5. which returns an unencrypted ADU… 

6. which is passed on to the ADU to the application for 
processing. 
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Figure 2 - Sending Stage - Receiver 

4. VARIATIONS 
4.1 Multicast Key Management 
The scenario here is the situation where we have an ongoing 
multicast session and where receivers joining the session are only 
allowed to receive a portion of the data. An example of this might be 
where the multicast was a video broadcast and where a receiver 
might pay to receive an hour or a days worth of video.  

In this case we add a key limiter that limits the production of keys, 
i.e. to a certain number or perhaps to a particular range of IDs. The 
key limiter and the key generator are placed within the tamper-proof 
processor. In Figure 3, a key is returned by the key generator only if 
the ADU ID passes the key limiter's test. The limiter will usually 
also be required to restrict its output to one response per key. This 
protects against the same card being shared around multiple 
receivers as a relatively convenient way to decrypt the same data 
multiple times rather than passing all the keys around. This would 
require internal receipting capabilities similar to those described in 
the next section.  

 

Figure 3 - Multicast Key Management 

 

4.2 Non-repudiation 
In this scenario we are concerned with being able to confirm how 
much data an application received. Sending acknowledgements for 
each ADU is impractical, especially as the number of receivers grow 
large. Also, this does not prevent the receiver trying to fool the 
sender by not sending acknowledgements for ADUs it has received. 
What we do in this case is to produce a 'delivery note' of all the data 
received in a session. If, at the end of a session, we need to confirm 
how much data was received by an application in a particular 
session, we can query its secure processing environment and get the 
'delivery note' for that session.  

 

Figure 4 - Non-repudiation 

In this case we can create receipts for every ADU decrypted by 
intercepting every return of a key and recording the ADU ID in a 
file. For ordered streams, the receipting storage format only needs 
to be a simple index to the last key given out, plus a list of any 
exceptions. If random access to any ADU is envisaged, a block of 
bits, one for each ADU, would be required to record which keys 
had already been given out. More efficient tree-based variants are 
possible to reduce storage requirements in most realistic 
scenarios. 

If different types of ADUs in a stream require different treatment 
with respect to security it is simplest to create a separate secure 
session for them. For instance, high quality transmission costs for 
adverts might be refunded only if a delivery note is returned to 
prove they were at least decrypted if not watched (e.g. a hash of 
the decrypted frames might be required). These would form a sub-
session with a different policy in the smartcard. 

4.3 Audit Trails 
The problem this variation helps to address is that of a receiver in 
the session colluding with other receivers that are not part of the 
session by sending them keys or decrypted data. There are two 
variants: on-card and off-card watermarking, the latter depicted in 
Figure 5. In the first variant only the plaintext data is watermarked 
therefore each ADU key is never revealed outside the smart card. 
In the second variant, the keys themselves are watermarked so 
both the keys and the data can be revealed outside the card. If the 
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watermarked keys or data are then sent on to other machines and 
detected later, it is possible to establish the identity of the source 
of the "leak" from the watermark. This variation assumes that the 
data is watermarkable, e.g. images. 

 

Figure 5 - Off-card Watermarking 

 

On-card watermarking is only feasible with a fairly highly 
powered tamper-resistant cryptographic co-processor. It is 
impractical with smartcards due to processing and memory 
limitations. Off-card watermarking needs only light card 
resources. An approach such as Chameleon [2] as described 
earlier is preferred as long as there is sufficient memory on the 
receiver to hold the whole watermarked key block (about 512kB 
in the concrete example). The following steps for off-card 
watermarking assume the sender encrypter unit produces its 
stream cipher by combining a standard cipher with an 
unwatermarked version of the long-term key-block, as in 
Chameleon. 
1. The receive point passes the encrypted ADU and ADU ID 

into the communications system. 
2. The communications system passes a) the ID into the key 

generator and b) the encrypted ADU into the decrypter. 
3. The generator passes the intermediate key for that ID into the 

decrypter. 
4. The decrypter passes the intermediate key to the watermarker 
5. The watermarker uses the intermediate key as an index into a 

long term watermarked key block to return the key to the 
decrypter 

6. The decrypter uses the key to decrypt the ADU and passes it 
to the communications system… 

7. which passes the watermarked ADU on to the application. 

4.4 Multiple Sender Systems 
This variation addresses the issue of having many senders within a 
session. For simplicity’s sake we might want to use the same key 
generator for information sent from all senders, although this 
would require that the key generator would be able to generate 
keys for any order of IDs (which would be true in the general case 
of senders not being synchronised). If we wished to have key 
generators that required IDs in order or we wished to produce 

individual delivery notes for each sender (see Non-repudiation) 
then we need to maintain a number of key generators, one for each 
sender. To identify each sender we would have to generate a 
unique ID for each one, i.e. for information sent across the 
Internet we could use the IP address and port number which is 
sent as part of the packet. To seed the sequences we can then use a 
common seed for all senders within a session which is then 
combined with the unique ID in some way, i.e. XORed with the 
common seed, which is then used as the seed for that sender. The 
receiving stack now uses a switch to retrieve the correct key for 
the data unit. Of course, the sending stack need only maintain a 
single key generator for all data it sends to a session. 

 

Figure 6 - Multiple Sender Systems – Receiver 

5. SESSION CONTROL 
For any of the above schemes can be used it is necessary to have 
some auxiliary functions implemented. 

In the follow sections this notation is used: 
1. sign(k,d) - d signed with key k (i.e. d and the signature of d 

with k) 
2. enca(k,d) - d encrypted asymmetrically with key k 
3. encs(k,d) - d encrypted symmetrically with key k 

5.1 Tamper-proof Processor Confirmation 
The object here is to confirm that the tamper-proof processor is 
one that the sender can trust. We assume that every secure 
processing environment leaves the factory with a securely stored 
private key and a public key that has been signed by a trusted 
third party (TTP) trusted by the sender. 
1. Sender generates a random string r (a nonce) 
2. Sender sends r to receiver 
3. Receiver sends r to secure space 
4. Secure space signs r with private key s to produce sign(s,r) 
5. Secure space returns sign(s,r) and public key p signed with 

the TTP's private key t (producing sign(t,p)) to receiver 
6. Receiver returns [sign(s,r), sign(t,p)] to sender 
7. Sender checks TTP is one it trusts 
8. Sender checks sign(t,p) with TTP (either by invoking TTP 

server or using cached TTP public key) 
9. Sender checks sign(s,r) with p. 
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5.2 Session Set-up 
The sender needs to set-up the keying system so that it can generate 
a sequence of numbers for decoding each packet. This sequence will 
be some chaotic/pseudo-random sequence. 
1. Sender generates a seed value v. 
2. Sender generates a session key k. 
3. Sender encrypts v using secure space's public key p producing 

enca(p,v). 
4. Sender sends [k,enca(p,v)] to receiver. 
5. Receiver sends [k,enca(p,v)] to secure space. 
6. Keying system sets packet counter to zero. 
7. Keying system deciphers enca(p,v) using secret key s. 
8. Keying system initialises sequence generator with v. 
For multicast key management the sender will also send some 
information to limit the production of keys, such as a limit on the 
maximum number of keys. 
This describes a simple scenario where a single sequence generator 
can create an unlimited sequence of numbers and create a single 
delivery note type. More realistically the session information would 
include: 
Sent in plain: 
• Session Key 
Sent encrypted: 
• Seed value 
• Sequence generator type 
• Delivery note type (for non-repudiation) 
• Maximum number of keys to generate (for multicast key 

management) 
In this scenario there are a limited number of sequence generators 
and delivery note types that can be used as it is identifiers that are 
being sent over as part of the session information. Alternatively a 
secure class loader could be implemented that would allow new 
sequence generators and delivery note types to be uploaded into the 
encryption system. This would offer the most future-proofing.  
Another aspect of session set-up is session amendment. The user 
may pay to receive a certain amount of data and then later on pay for 
some more. This would ideally be handled by updating the session 
information (probably just increasing the maximum number of keys 
to be generated) while the session is active.  

5.3 Session Tear-down  
Sessions simply end when the sender stops sending data or the 
key generator stops generating keys. In the case of non-
repudiation though there is a need to retrieve the delivery note 
from the secure environment. The following steps allow this.  
1. Receiver requests delivery note for session key k from keying 

system.  
2. Keying system generates delivery note for session key k, ck.  
3. Keying system signs ck with private key s giving sign(s,ck).  
4. Keying system returns sign(s, ck) to receiver.  
5. Receiver sends sign(s, ck) to sender.  
6. Sender checks sign(s, ck) against public key p of keying 

system known to be used by the receiver (database lookup).  
7. Sender refunds if necessary.  

5.4 Access Revocation - Poison Pill  
It may be desirable for a session controller to be able to modify or 
revoke a receiver’s membership of a session. The solution detailed 
below assumes that each member of the session has an ID (or 
several IDs) within the session, although this ID does not have to 

be unique to the member (if it is not unique then the ID obviously 
represents a group). It also requires that the smartcard will not co-
operate if the required control data is not passed to it with each 
key request.  

This is a probabilistic approach. Every time an ADU is sent it 
contains an encrypted control message and secure space ID which 
must be passed into the secure space along with the key ID to 
obtain the key. If the secure space ID(s) contained in the 
encrypted block refer to this particular space then it checks the 
flags. If the stop flag is set then the card 'commits suicide' - no 
more keys are passed out. If the contact sender flag is set then the 
secure space does a remote procedure call to the sender (or the 
sender's representative) and will not give out more keys until it 
has a new key generation policy. Alternatively more general 
control messages might take the place of these two flags.  

If several users need to be thrown out of the session then their 
secure space IDs will be rotated through different packets.  

ADU format:  
1. Signature of Hash (2)  
2. Hash of 3, 4, 5, 6  
3. ADU ID  
4. Stop flag (y/n) (encrypted)  
5. Contact sender flag (y/n) (encrypted)  
6. secure space IDs (encrypted)  
7. ADU data (encrypted)  

The stack passes 1, 2, 3, 4, 5 and 6 into the secure space to receive 
the key for 7.  

If the length of the control message and number of secure space 
IDs is variable then there needs to be an unencrypted field before 
the flags stating the total length of the control message and secure 
space IDs.  

6. IMPLEMENTATION  
An implementation of this system was created for demonstration 
purposes. It was written in Java 1.1 and used the Cryptix 3.0.3 
[10] library for cryptography. Aspects of the system can easily be 
changed: the formula used to generate keys (one based on the 
logistic mapping [16] has been implemented); the policy for 
limiting keys (policies for producing fixed numbers of keys and 
keys for a range of IDs have been implemented); the 
cryptographic system (DES was implemented); the receipt type 
(one simple receipt was implemented). The prototype did not use 
any smartcards but those aspects of the design are cleanly 
separated from the rest of the system. Simple graphical 
applications were written to demonstrate the sender and receiver 
roles.  

7. LIMITATIONS AND FURTHER WORK  
Our approach relies on the tamper-resistance of smartcards. 
Products are continually being produced with improved tamper-
resistance features, but there will always be attrition between the 
designers of tampering techniques [1] and the designers of 
resistance to them. The need to regularly replace the smartcard is 
therefore an inherent weakness in our scheme. Indeed, the fact 
that a smartcard is needed at all, is in itself a major impediment to 
take up of the scheme. We have tried to mitigate this barrier by 
designing for a generic trusted third party card (e.g. a Java card), 
rather than one tailored to a specific service provider.  
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The non-repudiation aspect of this work is only useful in a 
commercial model where there is an incentive for the receiver to 
volunteer the delivery note to the information provider. Such 
scenarios are easy to imagine, but this means the capability is 
not universally useful. For instance, it would not be possible to 
give away the stream of information then ask each receiver to 
volunteer their delivery note to calculate how much they should 
pay. The beneficial corollary is that it is difficult to get the 
smartcard to give out thousands of keys off-line in order to 
break the seed. The smart card won't give out any keys if it 
doesn't have a key limiter policy and if it does have a policy, it 
will only give out keys the user has paid for.  

This paper contains no formal security analysis of the strength 
of the schemes employed. A number of questions are left 
unanswered, such as whether the seed of a pseudo-random 
sequence becomes easier to predict, the more values from the 
sequence are revealed.  

We must also admit to the standard limitations that apply to 
most other work on copyright protection. A watermark-based 
audit trail is only proof against small numbers in collusion and 
it only helps detection not prevention. Also, traitor tracing relies 
on finding the watermarked data in the first place; a problem 
that this paper and others on the subject invariably leave 
unresolved.  

Regarding further work, we claimed in the abstract that this 
approach could be applied to other means of bulk data 
distribution than multicast, such as DVD (digital video/versatile 
disk). We envisage a scenario where data on the DVD would be 
encrypted with a stream cipher such that it would be 
indistinguishable from a multicast stream once it was read from 
the disk. As long as the initial set up with the smartcard had 
occurred on-line, the rest of the DVD could be played off-line, 
only requiring interaction with the smartcard, not the network. 
Any final 'delivery note' of exactly what had been accessed 
would then be available to present to the provider of the DVD. 
In a similar vein, policies and seeds to load into the smart card 
could be supplied on various media other than over the Internet. 
All these scenarios and more are introduced in [7], but we have 
done no specific design or implementation work on them.  

8. CONCLUSION  
We have presented a number of modular mechanisms to enable 
secure sessions tailored to each individual multicast receiver 
while at the same time not compromising the inherent 
scalability of Internet multicast, achieved through loose 
coupling between senders and receivers. Unlike other schemes, 
we typically require absolutely no coupling at all from receivers 
back to senders but still create a security relationship between 
each receiver and a key manager replica. The key managers can 
be highly replicated as they require no coupling back to the 
sender. As long as a stateless commercial model is required 
(e.g. pre-payment rather than credit), key manager replication is 
limitless. Further, as members join and leave, there are 
absolutely no side-effects on other receivers, unlike traditional 
multicast key management schemes.  

All this loose coupling is made possible by a simple technique 
where multicast senders systematically change the group 
encryption key rather than only changing it whenever there is a 
change to the group membership. This innovation is driven by 

the insight that there will always be a minimum application data 
unit (ADU) granularity, within which there is no commercial 
advantage to changing the group key. The traditional approach 
has been to group together membership change events within 
the timespan of an ADU and then drive key changes dependent 
on whether none or some events have occurred within each 
timeslot. Instead, by systematically changing group keys 
whether or not it is necessary, the whole system can rely on the 
key changes and not require tight coupling back to the senders. 
A further advantage of this approach is that there is no need to 
send control messages over the multicast channel itself. Thus no 
reliable multicast mechanism is assumed or required and no 
complexity is involved when messages are dropped. The only 
exception is the rare need to send a 'poison pill', which merely 
requires statistical delivery.  

In order to distribute the load of key management further, we 
require each receiver to operate a smartcard, into which the 
information provider can install a key generator capable of 
mirroring the systematic key generation of the senders. We 
prefer generic smartcards certified by trusted third parties, so 
that any key generator can be installed at session set-up. This 
mitigates the barrier created by the need for each receiver to 
obtain a card, as it can be re-used for multiple services. A policy 
is installed into the smart card at session set up to control which 
keys it will give out to its receiver. The details depend on the 
specifics of the wider application.  

Further, we have shown by implementation that it is even 
possible to prove timely reception of real-time data units using 
this arrangement. The smart card records which keys it has been 
asked for and if a packet arrives late, the receiver simply 
refrains from asking for the key. Thus, the smartcard generates a 
delivery note that can later be used by the receiver to prove that 
only a certain number of data units were usefully decrypted.  

We have also described how it would be possible to combine 
the above approach with a key watermarking scheme such as 
'Chameleon'. This provides a small but significant deterrent 
against a receiver giving away or re-selling either the keys or 
the decrypted data, because both are watermarked in such a way 
as to trace that receiver.  

We believe these mechanisms (combined with sender 
authentication approaches described elsewhere) provide a 
soundly engineered basis for a number of very large scale 
commercial applications built over Internet multicast. We have 
also briefly described how the same techniques could usefully 
be applied to other bulk data distribution mechanisms, such as 
DVDs. The techniques also have application where protection 
of information security rather than value is required.  
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