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Abstract

The goal of this work is to separately control in-
dividual secure sessions between unlimited pairs of
multicast receivers and senders while preserving the
scalability of receiver initiated Internet multicast
for the data transfer itself. Unlike other secure mul-
ticast solutions, there are absolutely no side-effects
on other receivers when a single receiver joins or
leaves a session. Each individual receiver can also
reliably prove whether any fragment of the data
hasn’t been delivered or wasn’t delivered on time
(e.g. late video frames). Further, each receiver’s
data can be subject to an individual, watermarked
audit trail. The cost per receiver-session is typi-
cally just one set-up message exchange with a key
manager. Key managers can be replicated with-
out limit because they are only loosely coupled to
the senders who can remain oblivious to members
being added or removed. The solution requires a
tamper-resistant processor such as a smartcard at
each receiver. However, generic cards supplied by a
trusted third party are used rather than cards spe-
cific to each information provider. The technique
can be applied to other bulk data distribution chan-
nels instead of multicast, such as DVD.

Keywords: Data communication, Networks, Se-
curity, Group communication, Multicast, Broad-
cast, Encryption, Privacy, Access control, Key
management, Non-repudiation, Audit.

1 Introduction

This paper explores techniques to maintain an in-
dividual security relationship between multicast
senders and each receiver without compromising
the efficiency and scalability of IP multicast’s data

distribution. We focus on issues that are fore-
most if the multicast information is being sold com-
mercially. Of prime concern is how to individu-
ally restrict each receiver to extract only the data
for which it has paid. Secondly, commercial in-
formation delivery systems should preferably in-
clude the capability for individual proof of deliv-
ery. Where both non-repudiation and transport re-
liability aren’t intrinsic to the delivery system, the
cost of providing customer support to handle billing
complaints is likely to overshadow all other costs.
However, where streamed information is concerned,
simple proof of reception is not enough. Timely re-
ception must also be provable. Thirdly, of partic-
ular concern with multicast information products
is prevention or at least detection of unlicensed re-
distribution of received information.

We adopt an approach where the key used to en-
crypt sent data is systematically changed for each
new unit of application data. The keys are taken
from a pseudo-random sequence seeded with a value
initially known only to the senders. When a re-
ceiver wishes to join, it requires a smartcard or
other securely encapsulated processor containing its
own private key certified by a party trusted by both
the receiver and the senders. At the end of each
receiver’s set-up phase, its card is running a key
generator seeded with the same value as that of
the senders and it contains a policy defining which
keys the receiver is entitled to. The smartcard does
no decryption; it merely hands out a key whenever
a request conforms to the policy. The smartcard
can record a summary of which keys it has given
out that can be used as a non-repudiable ‘delivery
note’ in the case of disputes over delivery.

Thus, whenever a receiver is added or removed,
there is zero side-effect on other receivers. A special
group key change doesn’t have to be initiated be-
cause systematic changes occur all the time anyway.
No keys need sending over the multicast, therefore
reliable multicast isn’t required. If key managers
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are delegated to handle requests to set-up receiver
sessions, the senders can be completely oblivious of
any receiver addition or removal. As long as the
sender continues to change keys systematically, it
doesn’t need any control messaging from the key
managers. Thus, there is absolutely no coupling
back to the senders. The scheme is particularly
suited to a receiver pre-payment model. In this
scenario, any amount of key manager replication
can be introduced. The key managers just give
out session seeds and policies in return for pre-
payments. Because no credit is given, each key
manager is stateless. Thus performance is linear
with key manager replication and system resilience
is independent of key manager resilience. In these
respects, the model where all session state is stored
at the receiver is similar to the Netscape cookie
mechanism [21].

Thus we focus on a pragmatic scenario where
evictions from the multicast group are typically
planned at session set-up, but still might occur at
arbitrary times. This avoids the huge overhead seen
in other schemes to support regular unplanned evic-
tions. Nonetheless, we do cater for the occasional
unplanned eviction, although the scheme doesn’t
scale if the level of its use becomes high. Our thesis
is that there are many applications that only rarely
require premature eviction from a secure session.
For instance, the business model for many pay-TV
or pay-per-view services works on the basis of a
pre-payment giving the right to a certain viewing
window. Alternatively an account relationship is
created and it is only necessary to evict an account
holder if it becomes clear the account is in default.

By focussing on this pragmatic scenario, our
scheme typically requires just one set-up message
per receiver session, which can be with a highly
replicated key manager rather than the sender.
This exchange might, for instance, be a check that
the receiver’s identity entitles it to listen to infor-
mation up to a certain security classification. Or it
might be a prepayment that gives a certain view-
ing time. In both these examples and many others,
there would be no need for session state to be stored
at the key manager, which greatly aids scalability.
However, these are design issues for the application
using the secure session and are outside the scope
of this paper. All further security messaging pro-
ceeds between the receiver and its smartcard, which
acts as a proxy of the key manager. If the receiver
wishes to dispute delivery of certain parts of the
stream, another message is required at the end of
the session to present the ‘delivery note’. This as-
sumes a model where the delivery note isn’t treated
as the thing that is bought. Instead it is merely the
thing that can potentially prove the items delivered
are deficient compared to the items bought.

In section 2, we discuss requirements and describe
related work on multicast key management, non-
repudiable receipting and detection of re-multicast.
In section 3 we describe the underlying composi-
tion of the systems we have implemented to meet
all our requirements. Then, in section 4, we de-
scribe the design of specialisations we have imple-
mented to achieve each requirement. These consist
of zero side-effect multicast key management; ‘de-
livery notes’ that can even prove timely delivery;
and creation of an audit trail using watermarking
(yet to be implemented). We also describe how
the schemes can be extended for multiple sender
scenarios. Section 5 describes how secure sessions
are set-up, torn down or modified (e.g. for an un-
planned eviction). Section 6 describes various rec-
ommended schemes for generating and addressing
key sequences and section 7 briefly describes our im-
plementation. Finally limitations of the approach
are discussed followed by conclusions.

2 Background and require-
ments

When using Internet multicast, senders send to a
multicast group address while receivers ‘join’ the
multicast group through a message to their local
router. For scalability, the designers of IP multicast
deliberately ensured that any one router in a multi-
cast tree would hide all downstream join and leave
activity from all upstream routers and senders [12].
Any router’s own ‘join’ to the tree is therefore the
logical OR of the joins of all downstream receivers.
Thus a multicast sender is oblivious to the identi-
ties of its receivers. Clearly any security relation-
ship with individual receivers is impossible if they
can’t be uniquely distinguished. Conversely, if re-
ceivers have to be distinguished from each other,
the scalability benefits start to be eroded.

2.1 Multicast key management

Because of deliberate receiver anonymity, the po-
tential for eavesdropping Internet multicasts with-
out detection is high. If a multicast sender wishes to
restrict its data to a set of receivers, it will typically
encrypt the data at the application level. End-to-
end access is then controlled by limiting the circula-
tion of the key. A new receiver could have been stor-
ing away the encrypted stream before it requested
to join the secure session. Therefore, every time a
receiver is allowed in, the key needs to be changed
(termed backward security [23]). Similarly, after a
receiver is thrown out or requests to leave, it will
still be able to decrypt the stream unless the key is
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changed again (forward security). These problems
apply whether the join or leave is initiated by the
receiver (e.g. pay TV) or by the host of a secure
session (e.g. private side-meetings in a conference).
The efficiency of traditional multicast cannot ap-
ply if each receiver is being sent different data.1

Therefore, most approaches work on the basis that
when the key needs to be changed, every receiver
will have to be given a new key. Continually chang-
ing keys clearly has messaging side-effects on other
receivers than the one joining or leaving.

The most stringent requirements in the literature
involve hundreds of joins and leaves per second
for large-scale multicast simulations [27]. However,
this isn’t directly relevant, as it refers to the mem-
bership volatility of the multicast groups, not nec-
essarily of the ‘secure multicast sessions’. We de-
fine a ‘secure multicast session’ as the set of data
that a receiver could understand, having passed one
access control test. If one key is used for many
related multicast groups, they all form one secure
session. If a particular receiver leaves a multicast
group then re-joins but she could have decrypted
the information she missed, the whole transmis-
sion is still a single secure session. Nonetheless,
we are envisaging potentially much larger receiver
communities. With a potentially global audience,
ten million viewers of a popular Internet pay-TV
channel is not an unreasonable requirement. If per-
second charging for impulse viewing were possible,
it is likely that product managers would find many
and various ways to use it in their commercial offer-
ings. Thus, even if just 10% of the audience tuned
in or out within a fifteen minute period, this would
potentially cause thousands of secure joins or leaves
per second.

Incidentally, in the above example, we took one sec-
ond as the minimum granularity of charging. We
use the term ‘application data unit’ (ADU) as a
more general term for the minimum useful atom of
data from a security or commercial point of view.
ADU size is application dependent. It may be an
initialisation frame and its set of associated ‘P-
frames’ in a video sequence or it may be ten min-
utes of access to a network game (on the grounds
that any shorter access would have just as little
value). An ADU may be only partially encrypted
with the remainder in the clear. This is a common
technique used to improve performance while still
degrading the information sufficiently to render it
useless without decryption [22]. ADU size can vary
throughout the duration of a stream dependent on
the content. ADU size is a primary determinant of
system scalability. If a million receivers were to join
within fifteen minutes, but the ADU size was also

1The watercasting approach that is discussed later chal-
lenges this assumption.

fifteen minutes, this would only require one re-key
event.

However, reduction in re-keying requirements isn’t
the only scalability issue. In the above example,
a system that can handle a million requests in fif-
teen minutes still has to be provided, even if its
output is just one re-key request to the senders.
With just such scalability problems in mind, many
multicast key management architectures introduce
a key manager role as a separate concern from the
senders. This deals with policy concerns over mem-
bership and isolates the senders from much of the
messaging traffic needed for access requests.

Ever since Internet multicast became a feasible
proposition, scalability improvements have been
sought over the earlier group key management
schemes that scale linearly with group size (e.g. In-
gemarsson et al [19]). A second class of solutions
extend Diffie-Hellman public key cryptography in
order to act as a group key, but they require num-
bers of public key operations that also scale linearly
with group size. Ballardie suggested exploiting the
same scalability technique used for the underlying
multicast tree, by delegating key distribution along
the chain of routers in a core based multicast rout-
ing tree [5]. However, this suffers from a lack of
end-to-end security, requiring edge customers to
entrust their keys to many intermediate network
providers. The Iolus system [24] sets up a similar
distribution hierarchy, but only involving trusted
end-systems. However, it also addresses the side-
effects of re-keying the whole group by requiring
the gateway nodes in the hierarchy to decrypt and
re-encrypt the stream with a new key known only
to their local sub-group. This introduces a latency
burden on every packet in the stream and requires
strategically placed intermediate systems to volun-
teer their processing resource.

An alternative class of approaches involves a single
key for the multicast data, but a hierarchy of keys
under which to send out a new key over the same
multicast channel as the data. These approaches
involve a degree of redundant re-keying traffic ar-
riving at every receiver in order for the occasional
message to arrive that is decipherable by that re-
ceiver. The logical key hierarchy (LKH) [30] gives
each receiver its own key then creates the same
number of extra keys, one for each node of a bi-
nary tree of keys with each member’s key at the
leaves. For n receivers, LKH therefore requires the
centre to store 2n keys but each receiver need only
store log(n). The root of the tree is the group key
under which data is encrypted. When a member
joins or leaves, all the keys on their branch to the
root are replaced in one long message multicast to
the whole tree. Each new key is included twice;
each encrypted under one of the two keys below it.
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Each re-key message is therefore 2log(n) times the
key length. The closer a receiver is in the logical
tree to the changed leaf key, the more decrypt oper-
ations it will need to extract its new keys from this
message, the maximum being log(n). Perlman has
suggested an improvement to LKH, termed LKH+,
where a one way function could be used by all those
with knowledge of the existing key to compute the
next one [26]. The joining member would only be
told the new key and not be able to work back to the
old one. Unfortunately, the same argument could
not be applied for backward security.

The one-way function tree (OFT) technique is in
the same class of approaches [23]. Incidentally,
OFT is also presented in [4], which is particularly
notable for its comprehensive and accurate review
of the literature. Like LKH, all members have their
own key, and a binary tree of keys is built over them
with the root also being the group key. However,
the keys at each intermediate node are a combina-
tion of the hashes of the two keys below, rather than
being freely generated. Thus Perlman’s suggestion
cannot be applied to OFT because the group key is
not independent of the keys lower in the tree. As a
result, LKH+ becomes more efficient than OFT in
most scenarios. The standardised approach to pay-
TV key management also falls into this class [20].
A set of secondary keys is created and each receiver
holds a sub-set of these in tamper-resistant storage.
The group key is also unknown outside the tamper-
resistant part of the receiver. In case the group key
becomes compromised, a new one is regularly gen-
erated and broadcast multiple times under different
secondary keys to ensure the appropriate receivers
can re-key.

All work in this class of approaches uses multicast
itself as the transport to send new keys. As ‘reliable
multicast’ is still to some extent a contradiction in
terms, all such approaches have to allow for some
receivers missing the occasional multicast of a new
key due to localised transmission losses. Some ap-
proaches include redundancy in the re-keying to al-
low for losses, but this reduces their efficiency and
increases their complexity. Others simply ignore
the possibility of losses, delegating the problem to
a choice of a sufficiently reliable multicast scheme.

Dillon [13] falls into a separate class of approaches
to key management. Documents transmitted over
satellite are encrypted with a key generated from
a one way hash of a seed keyed with the docu-
ment ID. The seed is stored at the receiver in a
tamper-resistant security engine having been trans-
mitted under the public key of that security engine,
the private key being installed in the security en-
gine at manufacture. To request a document from
a catalogue, the receiving computer requests that
a key be generated by its associated security en-

gine which it pre-loads into its satellite receiver, to
be used when the next encrypted document broad-
cast is scheduled. Any documents that arrive with
no corresponding key awaiting them are discarded.
The distinguishing feature of this class of solutions
is that the group key used to encrypt a document is
specific to that document ID. Thus each broadcast
document is encrypted using a different key rather
than the key only being changed in synchrony with
the addition or removal of receiver interest.

In the interests of full disclosure, we note that the
present work, which falls into the same class as
Dillon, is described in a European patent filing [8].

2.2 Multicast non-repudiation

The need for proof of delivery is recognised in two
taxonomies of multicast security requirements [3,
10], but solutions are rarely discussed in the aca-
demic literature. Proof of delivery is a very dif-
ferent problem to acknowledgement of delivery. It
has to be possible to prove the receiver did indeed
receive data when they might deny reception. Pay-
TV and pay-per-view systems invariably use the
tamper-resistant processing and storage capabili-
ties of the local receiver to record which products or
programmes have been requested in order to form
a bill at a later time (e.g. [20, 13] as already cited).

The novel aspect of the present work is the ability to
prove that individual fragments of an isochronous
stream (e.g. video) not only arrived, but arrived
in time to be played out, giving suitable perceived
quality for a real-time application. Our approach
is for the receiving system to only request a key to
decrypt the stream if there is sufficient time remain-
ing to decrypt it and still achieve smooth play-out.
Because the tamper-resistant key generator records
how many keys have been requested, it can be used
to resolve disputes over proof of timely delivery.
This is possible because the link between the receiv-
ing computer and the smartcard has predictable la-
tency and minimal risk of packet drop compared
to the Internet connection between sender and re-
ceiver. Thus, when the smartcard responds to a key
request this can be assumed to equate to a success-
ful use of the key with a high degree of certainty.

2.3 Multicast audit trail

Re-multicast of received data requires very low re-
sources on the part of any receiver. Currently send-
ing to a multicast is offered by just a few Internet
providers at a considerable price premium. How-
ever, once the market becomes competitive we can
assume that prices for sending and receiving mul-
ticast will reflect costs plus a margin. Therefore
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sending prices will be nearly as low as for receiving.
Thus, even if the value of the information received
is relatively low there is always a profit to be made
by re-multicasting data and undercutting the orig-
inal price, as proved in Herzog et al [18]. The digi-
tal signet approach [14] is appealing, in that copy-
prevention is self-enforced. However, digital signets
are intended for scenarios where the data volume is
too large to be efficiently transferred over a net-
work and has instead been previously distributed
by other means (e.g. CDs or DVDs). The approach
relies on the key size being as large as the data, un-
less the copier divulges a personal secret. In the
scenarios we are considering, the data is already
being transferred over a network, therefore digital
signets would give no protection.

In general, prevention of information copying is
considered infeasible; instead most attention fo-
cuses on the more tractable problem of copy de-
tection. Early work in the field of digital steganog-
raphy showed that it was possible to ‘watermark’
different copies of a copyrighted digital work. If a
watermarked copy was later discovered, it could be
traced back to its source, thus deterring the hold-
ers of original copies from passing on further, illicit
copies [7]. Watermarks are typically applied to the
least significant bits of a medium to avoid signifi-
cantly degrading the quality. Such bits are in dif-
ferent locations with different regularity in different
media, therefore there is never likely to be a generic
approach [28]. The most generic scheme discussed
to date is Chameleon [2]. In Chameleon a stream
is ciphered by combining a regular stream cipher
with a large block of bits. Each receiver is given a
long-term copy of the block to decipher the stream.
In the concrete example given, four 64b words in
the 512kB block are chosen by indexing the block
with the output of the regular stream cipher. Then
all four are XOR’d together with each 64b word
of the stream. The block given to each receiver
is watermarked in a way specific to the medium.
For instance, the least significant bit of every 16b
word of an audio stream might be the only place
where a watermark can be stored without degrad-
ing the content significantly. Because the block is
only used for the XOR operation, the position of
any watermarked bits is preserved in the output.

Naor et al [25] formalises a pragmatic approach
to ‘traitor tracing’ by proposing a parameter that
represents the minimum number of group members
that need to collude to eliminate a watermark. The
elimination criteria are that none of the conspir-
ators are identifiable, and it is assumed that the
copyright owner will want to avoid accusing inno-
cent members. For instance, changing at least the
square root of the total number of bits that could
hold a watermark in the Chameleon scheme would

protect against conspiracies of four or less mem-
bers. Anderson and Manifavas point out that it
is probably easier for an attacker to subscribe in a
false name than organise larger conspiracies, there-
fore this seemingly small protection against collu-
sion should at least raise the strength of the weakest
link to that of the second weakest.

Watercasting [9] is a novel, if rather convoluted way
to embed an individual watermark in each receiver’s
copy of multicast data. Multicast forwarding is
modified by including active networking elements
at strategic branch points. These elements drop
redundant data inserted into the original stream
in order to produce a different drop pattern on
each forwarded branch. A chain of trusted network
providers is required for watercasting, each of which
has to be willing to reveal their authenticated tree
topology to each sender.

In this paper, for completeness, we report how it is
possible to add an audit trail back to the copier of
multicast information using watermarking. Our ap-
proach is not novel in this respect, simply re-using
Chameleon. However, we include it to demonstrate
our modular approach to the addition of mecha-
nisms.

2.4 Other requirements

Although the concerns that led to this work were
primarily commercial, the techniques apply equally
in scenarios where the information is considered
sensitive rather than for sale. Both individual con-
trol of access and identification of responsibility for
information leakage are important requirements in
such scenarios. However, proof of receipt is rarely
required. Fortunately, the proposed solutions are
deliberately modular. Therefore if receipting isn’t
important, that module need not be used.

Beyond the three requirements we have focussed
on so far, the taxonomies we have already cited in-
clude many other possible combinations of security
requirements for multicast. We have placed sender
authentication outside the scope of this paper, but
its importance merits a brief survey of the litera-
ture. A sender may merely need to prove it is one
of the group of valid receivers in which case use of
the group encryption key suffices. If the group of
valid senders is different from that of the receivers,
a message authentication code (MAC) on all sent
data based on a single key shared by the senders
is sufficient and efficient. If receivers require each
sender to authenticate their messages individually,
public key signing leads to an unscalable solution
because of the sheer volume of heavy asymmetric
key operations required. Balenson et al [4] and
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Canetti et al [10] both provide up to date reviews
of more efficient approaches to this problem.

So far we have focussed on the scenario where the
data is an ordered stream and access is given be-
tween some start and some later end point. A more
random access approach might be required for non-
sequential application name spaces [15], for which
we present a brief solution at the end of our section
on key generation techniques.

2.5 Implementations

Many of the schemes discussed above are theo-
retical works. Known exceptions are Iolus and
Chameleon. A report on implementation experi-
ence with LKH is provided by Boxall [6] and Shoup
et al report on their implementation of session key
distribution using smart cards [29].

3 Basic Scheme

In explaining the basic scheme we will firstly give a
concrete example of how it would be used and then
give a description of the core of the scheme upon
which other features can be built.

3.1 A Concrete Example

Our example is of a content provider who wishes
to multicast streamed video and charge viewers for
watching it.

The first thing the content provider needs to do is
to divide the video stream into units that potential
viewers can use to select what they want to see.
The obvious unit here is something like the “TV
programme”, i.e. a complete film or news broad-
cast or an episode in a series. Each of these units
is given an ID. Next the content-provider sets up
a video server which has access to the video in a
streamable form. As part of the set-up process a
seed is generated and a formula chosen. This is
used to generate symmetric encryption keys based
on this seed for encrypting and decrypting the data.
The content provider also sets up another key man-
agement server to hand out these seeds in return for
payment. The sender passes the programme infor-
mation, including the seed and formula, on to that
server. The content provider then advertises the
programme, perhaps using a web site or email, with
the programme ID and the key management server
being used to uniquely identify the programme to
the system. When the time comes to broadcast the
video the video server starts streaming. Each frame
of video is given it’s own ID within the programme

and a corresponding key is generated from this ID,
the seed key and the formula. This new key is used
to encrypt each frame before it is sent.

Now we consider the receiver’s side. The user has
a computer that is connected to the network and
a smartcard reader. They also have a smartcard
which contains it’s own public/private key pair and
has been certified by a trusted third party. The
private key is unavailable to the user. The user
finds a programme they want to watch on a web
site and clicks on the “set-up” link for that pro-
gramme. The link URL downloads a file contain-
ing the information that is needed to join the ses-
sion and the browser passes this on to the user’s
video player software (which has been configured
as a browser helper application). The video player
passes this information on to a socket factory, the
internals of which are outside the scope of this pa-
per - see Flexinet [17]. The essential point is that
a communications stack is built containing a de-
crypter. When the decrypter is set up it in turn
sets up a key generator in the smart card, which
in turn needs a seed and a policy. The decrypter
requests these from a key server in return for a pay-
ment. They arrive encrypted with the smartcard’s
public key and are passed to the key generator. All
the references necessary for this are included in the
original downloaded file.

The smartcard now has all the information it needs
to generate the keys to decrypt the frames. The
socket factory then passes a socket reference back
to the video application which need not be aware
that decryption is taking place beneath it. The
video application simply uses this socket to join
the multicast. When the TV programme starts,
the socket waits until it receives all the data for
each frame, then asks the smartcard for the key
for that particular frame, decrypts the frame and
passes the frame on to the video player application
for decompression and display. The smartcard can
record the number of keys that were generated per
programme and, space permitting, which keys were
passed out. If any frames are received for other
sessions the socket knows not to ask the smartcard
for keys, and even if it did the smartcard would not
provide them.

After the programme has finished, there is no need
to do anything further unless, for some reason, the
receiver did not receive all the video. What the re-
ceiver can do is to ask the smartcard to produce a
‘delivery note’ for the partially received programme
which the smartcard signs with it’s private key.
This can be forwarded on to the payment server
to prove that not all the data was received and a
refund can be arranged.
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Figure 1: Sending Stage — Sender

3.2 Core Set-up

The core scheme involves a sender sending data via
some distribution mechanism to zero or more re-
ceivers. The first thing to note is that during the
send phase there is no need for feedback from the
receiver and the number of receivers is irrelevant to
the functioning of the sending stage. The sender di-
vides the data stream into a number of application
data units (ADUs). As we have discussed previ-
ously, we take each of these ADUs to be a min-
imum useful component of the data stream, such
as a single video frame or frame element for video.
Each ADU sent in a session has an ID associated
with it. These IDs will probably be numeric but
there is no requirement that they should be or that
they follow a particular sequence. For the session
there exists a mapping of IDs to keys and, before
it is sent, the data in an ADU is encrypted using
the key associated with the ADU’s ID. Any receiver
receiving data in the session must know the ID to
key mapping used for that session and uses it to
find the key for any ADUs it receives and wishes to
decrypt.

The process of sending data is as follows:

1. Sending application passes an unencrypted
ADU on to the communications system.

2. The communications system requests the next
ID from the ID generator. . .

3. . . . which returns a new ID.

4. The communications systems requests the key
for that ID from the key generator. . .

5. . . . which returns the key.

6. The communication system passes the ADU
and the key on to the encrypter. . .
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Machine

Receiving
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System

6
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1
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Application

Decrypter

Key Generator

Distribution
Mechanism

Figure 2: Sending Stage — Receiver

7. . . . which returns an encrypted ADU.

8. The communications system passes the en-
crypted ADU and the ID on to the send point
for distribution.

The process for receiving data is as follows (note
that smartcard security is only added when we dis-
cuss the variations later):

1. The receive point passes on an encrypted ADU
and ID it has received from the distribution
mechanism to the communications system.

2. The communications system requests the key
for that ID from the key generator. . .

3. . . . which returns the key.

4. The communications system passes the en-
crypted ADU and the key on to the de-
crypter. . .

5. . . . which returns an unencrypted ADU. . .

6. . . . which is passed on to the ADU to the ap-
plication for processing.

4 Variations

4.1 Multicast Key Management

The scenario here is the situation where we have an
ongoing multicast session and where receivers join-
ing the session are only allowed to receive a portion
of the data. An example of this might be where
the multicast was a video broadcast and where a
receiver might pay to receive an hour or a days
worth of video.
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Figure 3: Multicast Key Management

In this case we add a key limiter that limits the pro-
duction of keys, i.e. to a certain number or perhaps
to a particular range of IDs. The key limiter and
the key generator are placed within the tamper-
proof processor.

The steps are as follows:

1. The receive point passes an encrypted ADU
and ADU ID on to the receiving communica-
tions system.

2. The communications system passes the ID on
to a key limiter.

3. If the ID passes the key limiter’s test, it is
passed on to the key generator, otherwise the
process stops here.

4. The key generator passes the key for the ID
back to the communications system.

5. The communications system passes the en-
crypted ADU and the key to a decrypter. . .

6. . . . which returns the unencrypted ADU. . .

7. . . . which is passed on to the application.

The limiter will usually also be required to restrict
its output to one response per key. This protects
against the same card being shared around multiple
receivers as a relatively convenient way to decrypt
the same data multiple times rather than passing
all the keys around. This would require internal
receipting capabilities similar to those described in
the next section.
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Figure 4: Non-repudiation

4.2 Non-repudiation

In this scenario we are concerned with being able
to confirm how much data an application received.
Sending acknowledgements for each ADU is im-
practical, especially as the number of receivers grow
large. Also, this does not prevent the receiver try-
ing to fool the sender by not sending acknowledge-
ments for ADUs it has received. What we do in this
case is to produce a ‘delivery note’ of all the data
received in a session. If, at the end of a session, we
need to confirm how much data was received by an
application in a particular session, we can query its
secure processing environment and get the ‘delivery
note’ for that session.

In this case we can create receipts for every ADU
decrypted by intercepting every return of a key and
recording it in a file. The steps are as follows:

1. Receive point receives an encrypted ADU and
ADU ID from distribution mechanism and
passes it on to the communications system.

2. The communications system passes the ID on
to the key generator. . .

3. . . . which passes the key and ID on to the in-
terceptor. . .

4. . . . which records the ID on a receipt. . .

5. . . . and passes the key back to the communica-
tions system.

6. The communications system passes the en-
crypted ADU and the key on to the de-
crypter. . .

7. . . . which returns the unencrypted ADU to the
communications system. . .
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8. . . . which passes it on to the application.

For ordered streams, the receipting storage format
only needs to be a simple index to the last key given
out. If random access to any ADU is envisaged, a
block of bits, one for each ADU, would be required
to record which keys had already been given out.
More efficient tree-based variants are possible to
reduce storage requirements in most realistic sce-
narios.

If different types of ADUs in a stream require dif-
ferent treatment with respect to security it is sim-
plest to create a separate secure session for them.
For instance, high quality transmission costs for ad-
verts might be refunded only if a delivery note is
returned to prove they were at least decrypted if
not watched (e.g. a hash of the decrypted frames
might be required). These would form a sub-session
with a different policy in the smartcard.

4.3 Audit Trails

The problem this variation helps to address is that
of a receiver in the session colluding with other re-
ceivers that are not part of the session by sending
them keys or decrypted data. There are two vari-
ants: on-card and off-card watermarking, depicted
in Figures 5 and 6 respectively. In the first variant
only the plaintext data is watermarked therefore
each ADU key is never revealed outside the smart
card. In the second variant, the keys themselves
are watermarked so both the keys and the data can
be revealed outside the card.

If the watermarked keys or data are then sent on
to other machines and detected later then it would
be possible to get the identity of the source of the
“leak” from the watermark. This variation assumes
that the data is watermarkable, e.g. images.

The steps for on-card watermarking are as follows:

1. The receive point passes the encrypted ADU
and ADU ID into the communications system.

2. The communications system passes a) the ID
into the key generator and b) the encrypted
ADU into the decrypter.

3. The generator passes the key for that ID into
the decrypter.

4. The decrypter uses the key to decrypt the ADU
and passes it to the watermarker.

5. The watermarker adds a watermark to the
ADU and passes the watermarked ADU on to
the communications system. . .

6. . . . which passes the watermarked ADU on to
the application.

On-card watermarking is only feasible with a fairly
highly powered tamper-resistant cryptographic co-
processor. It is impractical with smartcards due to
processing and memory limitations. Off-card wa-
termarking needs only light card resources. An ap-
proach such as Chameleon [2] as described earlier
is preferred as long as there is sufficient memory
on the receiver to hold the whole watermarked key
block (about 512kB in the concrete example). The
following steps for off-card watermarking assume
the sender encrypter unit produces its stream ci-
pher by combining a standard cipher with an un-
watermarked version of the long-term key-block, as
in Chameleon.

The steps at the receiver for off-card watermarking
are as follows:

1. The receive point passes the encrypted ADU
and ADU ID into the communications system.

2. The communications system passes a) the ID
into the key generator and b) the encrypted
ADU into the decrypter.

3. The generator passes the intermediate key for
that ID into the decrypter.

4. The decrypter passes the intermediate key to
the watermarker

5. The watermarker uses the intermediate key as
an index into a long term watermarked key
block to return the key to the decrypter

6. The decrypter uses the key to decrypt the ADU
and passes it to the communications system. . .

7. . . . which passes the watermarked ADU on to
the application.

4.4 Multiple Sender Systems

This variation addresses the issue of having many
senders within a session. For simplicity’s sake we
might want to use the same key generator for infor-
mation sent from all senders, although this would
require that the key generator would be able to gen-
erate keys for any order of IDs (which would be
true in the general case of senders not being syn-
chronised). If we wished to have key generators
that required IDs in order or we wished to produce
individual delivery notes for each sender (see Non-
repudiation) then we need to maintain a number
of key generators, one for each sender. To identify
each sender we would have to generate a unique
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ID for each one, i.e. for information sent across
the Internet we could use the IP address and port
number which is sent as part of the packet. To seed
the sequences we can then use a common seed for
all senders within a session which is then combined
with the unique ID in some way, i.e. XORed with
the common seed, which is then used as the seed for
that sender. The receiving stack now uses a switch
to retrieve the correct key for the data unit. Of
course, the sending stack need only maintain a sin-
gle key generator for all data it sends to a session.

The steps involved are:

1. The receive point passes an encrypted ADU,
ADU ID and source ID on to the communica-
tions system.

2. The communications system passes the ADU
ID and source ID on to the switch. . .

3. . . . which uses the source ID to pass the ADU
ID on to the correct key generator. . .

4. . . . which returns the key for that ID. . .

5. . . . which the switch returns to the communi-
cations system.

6. The encrypted ADU and key are passes to the
decrypter. . .

7. . . . which returns the unencrypted ADU. . .

8. . . . which is then passed to the application.

5 Session Control

For any of the above schemes can be used it is neces-
sary to have some auxiliary functions implemented.

In the follow sections this notation is used:

1. sign(k, d) - d signed with key k (i.e. d and the
signature of d with k)

2. enca(k, d) - d encrypted asymmetrically with
key k

3. encs(k, d) - d encrypted symmetrically with
key k

5.1 Tamper-proof Processor Confir-
mation

The object here is to confirm that the tamper-proof
processor is one that the sender can trust. We
assume that every secure processing environment
leaves the factory with a securely stored private key
and a public key that has been signed by a trusted
third party (TTP) trusted by the sender.

1. Sender generates a random string r (a nonce)
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2. Sender sends r to receiver

3. Receiver sends r to secure space

4. Secure space signs r with private key s to pro-
duce sign(s, r)

5. Secure space returns sign(s, r) and public key
p signed with the TTP’s private key t (produc-
ing sign(t, p)) to receiver

6. Receiver returns [sign(s, r), sign(t, p)] to
sender

7. Sender checks TTP is one it trusts

8. Sender checks sign(t, p) with TTP (either by
invoking TTP server or using cached TTP pub-
lic key)

9. Sender checks sign(s, r) with p.

5.2 Session Set-up

The sender needs to set-up the keying system so
that it can generate a sequence of numbers for de-
coding each packet. This sequence will be some
chaotic/pseudo-random sequence.

1. Sender generates a seed value v.

2. Sender generates a session key k.

3. Sender encrypts v using secure space’s public
key p producing enca(p, v).

4. Sender sends [k, enca(p, v)] to receiver.

5. Receiver sends [k, enca(p, v)] to secure space.

6. Keying system sets packet counter to zero.

7. Keying system deciphers enca(p, v) using se-
cret key s.

8. Keying system initialises sequence generator
with v.

For multicast key management the sender will also
send some information to limit the production of
keys, such as a limit on the maximum number of
keys.

This describes a simple scenario where a single se-
quence generator can create an unlimited sequence
of numbers and create a single delivery note type.
More realistically the session information would in-
clude:

Sent in plain:

• Session Key

Sent encrypted:

• Seed value

• Sequence generator type

• Delivery note type (for non-repudiation)

• Maximum number of keys to generate (for mul-
ticast key management)

In this scenario there are a limited number of se-
quence generators and delivery note types that can
be used as it is identifiers that are being sent over as
part of the session information. Alternatively a se-
cure class loader could be implemented that would
allow new sequence generators and delivery note
types to be uploaded into the encryption system.
This would offer the most future-proofing.

Another aspect of session set-up is session amend-
ment. The user may pay to receive a certain
amount of data and then later on pay for some
more. This would ideally be handled by updat-
ing the session information (probably just increas-
ing the maximum number of keys to be generated)
while the session is active.

5.3 Session Tear-down

Ending sessions isn’t a big issue with this system:
sessions will end when the sender stops sending
data or the key generator stops generating keys.
In the case of non-repudiation though there is a
need to retrieve the delivery note from the secure
environment. The following steps allow this.

1. Receiver requests delivery note for session key
k from keying system.

2. Keying system generates delivery note for ses-
sion key k, ck.

3. Keying system signs ck with private key s giv-
ing sign(s, ck).

4. Keying system returns sign(s, ck) to receiver.

5. Receiver sends sign(s, ck) to sender.

6. Sender checks sign(s, ck) against public key p
of keying system known to be used by the re-
ceiver (database lookup).

7. Sender refunds if necessary.
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5.4 Access Revocation

It may be desirable for a session controller to be
able to modify or revoke a receiver’s membership
of a session. Detailed below are two methods of
adding such control. Both solutions assume that
each member of the session has an ID (or several
IDs) within the session, although this ID does not
have to be unique to the member (if it is not unique
then the ID obviously represents a group). The
solutions also assume that control data is passed
into the secure processing environment.

5.4.1 Separate Control Stream

This approach is the more heavyweight of the two
methods but allows the sender to guarantee that
receivers can receive no more data. When an ADU
arrives the secure space is sent an encrypted block
as well as a key ID. It decrypts the data. If the
secure space ID(s) contained in the encrypted block
refer to this particular space then it checks the flags.
If the stop flag is set then no more keys are passed
out. If the contact sender flag is set then the secure
space does a remote procedure call to the sender
(or the sender’s representative) and gets a new key
generation policy.

ADU format:

1. Signature of Hash (2)

2. Hash of 3, 4, 5, 6

3. ADU ID

4. Stop flag (y/n) (encrypted)

5. Contact sender flag (y/n) (encrypted)

6. secure space IDs (encrypted)

7. ADU data (encrypted)

The stack passes 1, 2, 3, 4, 5 and 6 into the secure
space to receive the key for 7.

If the length of the control message and number
of secure space IDs is variable then there needs to
be an unencrypted field before the control message
stating the total length of the control message and
secure space IDs.

5.4.2 Poison Pill

This is a probabilistic approach. Every time an
ADU is sent it contains an encrypted control mes-
sage and secure space ID which must be passed into
the secure space along with the key ID to obtain the

key. The control message may be a code represent-
ing the command “commit suicide”. If the secure
space receives this and the secure space ID(s) relate
to it, it executes the command.

If several users need to be thrown out of the session
then their secure space IDs will be rotated through
different packets.

ADU format:

1. Signature of hash (2) (signed with sender’s
public key)

2. Hash of 3, 4, and 5

3. ADU ID

4. Control message (encrypted)

5. secure space ID(s) (encrypted)

6. ADU data (encrypted)

The stack passes 1, 2, 3, 4 and 5 into the secure
space to receive the key for 6.

If the length of the control message and number
of secure space IDs is variable then there needs to
be an unencrypted field before the control message
stating the total length of the control message and
secure space IDs.

6 Key Generation

We consider the key generation algorithms to be
of two classes: ordered key generation and out-of-
order key generation.

6.1 Ordered Key Generation

Ordered key generation involves using some se-
quence that can only generate numbers in a par-
ticular order, i.e. we cannot generate a number at
position n in the sequence if we have generated the
number at position m where m > n, unless we store
all numbers in the sequence up to the mth term or
regenerate the sequence. We consider storing num-
bers in the sequence or regenerating the sequence
impractical for devices that are as limited as smart-
cards.

Examples of ordered sequences are chaotic se-
quences.
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6.2 Out-of-Order Key Generation

Out-of-order key generation involves having some
mapping that can map any valid ID to a number.
The order that the IDs arrive now becomes irrele-
vant.

An example of out-of-order key generation is as
follows. Use the seed to generate three numbers, all
the same number of bits as the number required.
One of these numbers in a new seed, s, and the
other two we’ll refer to as a and b. To generate a
new number from an ID we go through each bit in
the ID in turn. If the bit is a 0 we XOR s with
a and left-shift the bits of the result, otherwise it
is XORed with b and right-shifted. The resulting
number is returned.

7 Implementation

An implementation of this system was created for
demonstration purposes. It was written in Java 1.1
and used the Cryptix 3.0.3 [11] library for cryptog-
raphy. Aspects of the system can be easily changed:
the formula used to generate keys (one based on
the logistic mapping [16] has been implemented);
the policy for limiting keys (policies for producing
fixed numbers of keys and keys for a range of IDs
have been implemented); the cryptographic system
(DES was implemented); the receipt type (one sim-
ple receipt was implemented). The system did not
use any smartcards but those aspects of the de-
sign are cleanly separated from the rest of the sys-
tem. Simple graphical applications were written to
demonstrate the sender and receiver roles.

8 Limitations and further
work

Our approach relies on the tamper-resistance of
smartcards. Products are continually being pro-
duced with improved tamper-resistance features,
but there will always be attrition between the de-
signers of tampering techniques [1] and the design-
ers of resistance to them. The need to regularly
replace the smartcard is therefore an inherent weak-
ness in our scheme. Indeed, the fact that a smart-
card is needed at all, is in itself a major impediment
to take up of the scheme. We have tried to miti-
gate this barrier by designing for a generic trusted
third party card (e.g. a Java card), rather than one
tailored to a specific service provider.

The non-repudiation aspect of this work is only
useful in a commercial model where there is an

incentive for the receiver to volunteer the delivery
note to the information provider. Such scenarios
are easy to create (a couple are given as examples
in the introduction), but this means the capability
is not universally useful. For instance, it would not
be possible to give away the stream of information
then ask each receiver to volunteer their delivery
note to calculate how much they should pay. The
good corollary of this is that it is difficult to get the
smartcard to give out thousands of keys off-line in
order to break the seed. The smart card won’t give
out any keys if it doesn’t have a key limiter policy
and if it does have a policy, it will only give out
keys the user has paid for.

This paper contains no formal security analysis of
the strength of the schemes employed. A number of
questions are left unanswered, such as whether the
seed of a pseudo-random sequence becomes easier
to predict, the more values from the sequence are
revealed.

We must also admit to the standard limitations
that apply to most other work on copyright protec-
tion. A watermark-based audit trail is only proof
against small numbers in collusion and it only helps
detection not prevention. Also, traitor tracing re-
lies on finding the watermarked data in the first
place; a problem that this paper and others on the
subject invariably leave unresolved.

Regarding further work, we claimed in the abstract
that this approach could be applied to other means
of bulk data distribution than multicast, such as
DVD (digital video/versatile disk). We envisage
a scenario where data on the DVD would be en-
crypted with a stream cipher such that it would be
indistinguishable from a multicast stream once it
was read from the disk. As long as the initial set up
with the smartcard had occurred on-line, the rest
of the DVD could be played off-line, only requiring
interaction with the smartcard, not the network.
Any final ‘delivery note’ of exactly what had been
accessed would then be available to present to the
provider of the DVD. In a similar vein, policies and
seeds to load into the smart card could be supplied
on various media other than over the Internet. All
these scenarios and more are introduced in [8], but
we have done no specific design or implementation
work on them.

9 Conclusion

We have presented a number of modular mecha-
nisms to enable secure sessions tailored to each in-
dividual multicast receiver while at the same time
not compromising the inherent scalability of Inter-
net multicast, achieved through loose coupling be-
tween senders and receivers. Unlike other schemes,
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we typically require absolutely no coupling at all
from receivers back to senders but still create a se-
curity relationship between each receiver and a key
manager replica. The key managers can be highly
replicated as they require no coupling back to the
sender. As long as a stateless commercial model is
required (e.g. pre-payment rather than credit), key
manager replication is limitless. Further, as mem-
bers join and leave, there are absolutely no side-
effects on other receivers, unlike traditional multi-
cast key management schemes.

All this loose coupling is made possible by a sim-
ple technique where multicast senders systemati-
cally change the group encryption key rather than
only changing it whenever there is a change to the
group membership. This innovation is driven by
the insight that there will always be a minimum
application data unit (ADU) granularity, within
which there is no commercial advantage to chang-
ing the group key. The traditional approach has
been to group together membership change events
within the time-span of an ADU and then drive key
changes dependent on whether none or some events
have occurred within each time-slot. Instead, by
systematically changing group keys whether or not
it is necessary, the whole system can rely on the key
changes and not require tight coupling back to the
senders. A further advantage of this approach is
that there is no need to send any control messages
over the multicast channel itself. Thus no reliable
multicast mechanism is assumed or required and
no complexity is involved when messages are lost.
The only exception is the rare need to send a ‘poi-
son pill’, which merely requires statistical delivery.

In order to distribute the load of key management
further, we require each receiver to operate a smart-
card, into which the information provider can in-
stall a key generator capable of mirroring the sys-
tematic key generation of the senders. We prefer
generic smartcards certified by trusted third par-
ties, so that any key generator can be installed at
session set-up. This mitigates the barrier created
by the need for each receiver to obtain a card, as
it can be re-used for multiple services. A policy is
installed into the smart card at session set up to
control which keys it will give out to its receiver.
The details depend on the specifics of the wider
application.

Further, we have shown by implementation that it
is even possible to prove timely reception of real-
time data units using this arrangement. The smart
card records which keys it has been asked for and
if a packet arrives late, the receiver simply refrains
from asking for the key. Thus, the smartcard gen-
erates a delivery note that can later be used by the
receiver to prove that only a certain number of data
units were usefully decrypted.

We have also described how it would be possible
to combine the above approach with a key water-
marking scheme such as ‘Chameleon’. This pro-
vides a small but significant deterrent against a re-
ceiver giving away or re-selling either the keys or
the decrypted data, because both are watermarked
in such a way as to trace that receiver.

We believe these mechanisms (combined with
sender authentication approaches described else-
where) provide a soundly engineered basis for a
number of very large scale commercial applica-
tions built over Internet multicast. We have also
briefly described how the same techniques could
be usefully applied to other bulk data distribution
mechanisms, such as DVDs. Applications of the
techniques have also been discussed where protec-
tion of information security rather than value is
required.
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