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Abstract

This paper aims to provide a robust grounding for

the additive increase factor used in the ‘TCP-Friendly’

mode of the CUBIC congestion control algorithm.

1 Introduction

The first IETF RFC to define the CUBIC [RXH+18]
congestion control algorithm (CCA) was based on
the original paper introducing CUBIC [HRX08].
For ‘TCP-friendly’ mode, both draw on an equation
in an ACIRI technical report [FHP00] when they
specify the additive increase factor. The derivation
of the equation in that technical report has been
called into question. So this report aims to more
rigorously derive and evaluate the required additive
increase factor. The ACIRI report assumes a deter-
ministic dropping (or ECN-marking) algorithm at
the bottleneck, which limits its applicability. Also
it attempts to validate the theoretical formula em-
pirically by simulation using a RED gateway at the
bottleneck, but it results in flow rates that are in-
explicably different (by a factor of more than 2×)
when they should be the same.

Below, an equation for the additive increase factor
is derived without the assumption of determinis-
tic dropping. Instead it is assumed that drops are
synchronized between flows, which is typically the
case for tail-drop queues. The resulting equation
turns out to be the same as that in the technical
report [FHP00]. However, the derivation here is
different. It has a straightforward geometric inter-
pretation and it relies on fewer assumptions and no
approximations; it considers variation of the RTT
explicitly and it does not use loss probability at all.

The present paper is not intended to be ambitious
or insightful, just pedestrian and rigorous. [BB01]
is recommended for insight into the wider set of
‘TCP-friendly’ algorithms, but it does not go into
depth on the simple linear cases analysed here.

*research@bobbriscoe.net,
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2 Terminology

Nowadays, CUBIC’s TCP-friendly mode is more
accurately known as Reno-friendly mode, given its
flow rate is intended to match that of the Reno
CCA, and given that it is irrelevant which wire
protocol is used, whether TCP, QUIC, SCTP, etc.
The term C-Reno will be used for CUBIC in Reno-
friendly mode.

This paper uses the variables defined below:

a : Additive increase factor;
b : Multiplicative decrease factor;
j : Round index;
J : Rounds per sawtooth cycle;
R(j) : Round trip time (RTT);
W (j) : Congestion window;

Ŵ : Maximum W ;
r(j) : Packet rate;
Xr : Reno variant of any variable X;
Xc : C-Reno variant of any variable X.

3 AIMD-Friendliness

Consider two types of Additive Increase Multiplica-
tive Decrease (AIMD) flow with parameters (ar, br)
and (ac, bc) competing at a bottleneck, under the
following assumptions:

� The buffer is large enough not to drain com-
pletely, even if all flows reduce simultaneously
(this assumption is relaxed later).

� All other factors of all the flows, particularly
packet size and base RTT, are equal. When
flows sharing the same bottleneck queue all
have the same base RTT, they all have the
same RTT, R(j), at every stage, j, of their
sawtooth cycles.

� The bandwidth-delay product (BDP) is low
enough for all flows to remain in their AIMD
mode throughout the cycle.

� All the flows have run long enough to converge
to a steady state.

� All flows only respond to the presence of loss,
not its extent.
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Figure 1: One synchronized sawtooth cycle of C-Reno and Reno plotted wrt. round trips (left) and wrt.
time (right)

3.1 Synchronized (Tail-Drop) Case

For this case, it is additionally assumed that:

� All the flows are synchronized so that, when-
ever one flow experiences loss the others do
too;

� All flows experience at least one loss at each
congestion event (relaxation of this assumption
is discussed later);

Steady state: For each flow, the additive in-
crease of a cycle balances with its multiplicative
decrease from the max, W̌/b, to the min, W̌ .

arJ = Ŵr − brŴr

= Ŵr(1− br) (1)

acJ = Ŵc(1− bc) (2)

Flow rate equality: Given the parameters
ar, br, bc the aim is to derive ac such that each flow’s
average rate is the same. This is equivalent to each
flow transferring the same number of packets over
a cycle.

As a cycle progresses, the RTT grows. So to derive
the number of packets transferred over a cycle, the
packet rate has to be weighted by the RTT in each

cycle before being summed:

J−1∑
j=0

rc(j)R(j) =

J−1∑
j=0

rr(j)R(j)

J−1∑
j=0

Wc(j) =

J−1∑
j=0

Wr(j) (3)

J−1∑
j=0

bcŴc + acj =

J−1∑
j=0

brŴr + arj

JbcŴc +
J2ac

2
= JbrŴr +

J2ar
2

Dividing through by J and substituting from Equa-
tion 1 & Equation 2:

Ŵc

(
bc +

(1− bc)

2

)
= Ŵr

(
br +

(1− br)

2

)
Ŵc

Ŵr

=
(1 + br)

(1 + bc)
(4)

Returning to the steady state equations, we can
divide Equation 2 by Equation 1, then substitute
from Equation 4:

ac
ar

=
Ŵc

Ŵr

(1− bc)

(1− br)

=
(1− bc)

(1 + bc)

(1 + br)

(1− br)
(5)

Plugging in Reno’s AIMD factors, ar = 1, br = 1/2:

ac =
3(1− bc)

(1 + bc)
(6)

And plugging in the multiplicative decrease factor
of C-Reno recommended in [RXH+18], bc = 0.7:

ac = 9/17

≈ 0.53.
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Figure 2: Similar synchronized sawtooth cycle of C-Reno and Reno to Figure 1, but with a 11 ms buffer
that is too shallow to accommodate both sawteeth at once.

3.1.1 Geometric interpretation

Figure 1 shows one flow each of C-Reno and Reno
competing over one synchronized sawtooth cycle.
Superficially, the whole derivation of ac above can
be derived from simple triangle geometry, by draw-
ing congestion window sawteeth that increase lin-
early wrt. round trips (mid-left) then setting the
mid-points of the two ramps to the same height.
Then Equation 4 gives the ratio between the heights
of the bases of the triangles, and Equation 5 gives
the ratio of the heights of the triangles themselves.

However, it is not enough to merely assert that
the average heights of these sawteeth are equal, as
[FHP00] does.1 Strictly, it is necessary to start
from the goal of equal flow rates averaged over
time, as the above analysis does. Given RTT grows
throughout the cycle, the plots of flow-rate against
time (top right in Figure 1) stretch out more to
the right, forming concave curves. It is not at all
obvious how to equate the averages of these two
curves until they are weighted by round trip dura-
tion, which transforms them into the linear plots of
window wrt. rounds (mid-left), as in Equation 3.

It is also interesting to note from Figure 1 that C-
Reno’s packet rate decreases as its window increases
over the sawtooth. This is because the compet-
ing Reno flow causes the RTT to grow faster than
would be the case with only C-Reno flows.

If the buffer is not deep enough to hold all the
synchronized sawteeth, it will be empty during
the early part of the sawteeth. Then both flows
will under-perform during the early part of the cy-
cle when C-Reno would have achieved its highest

1 It is unlikely that the additional initial steps given here
were implicit but unstated, because a high-level averaging
approach was used.

packet rate and Reno would have achieved its low-
est, as shown in Figure 2. Nonetheless, the rate
of both flows reduces proportionately, so the ratio
between their flow rates remains unaltered.

3.1.2 Synchronized losses?

We will now question the assumption that each flow
always catches at least one loss at each conges-
tion event. We still consider two flows with equal
base RTTs: 1 Reno and 1 C-Reno. Between re-
sponses to losses, the queue grows inexorably by
(ar + ac ≈ 1.53) pkt/RTT. Every time the buffer
fills, one packet has to be dropped, but the queue
continues to grow by 1.53 segments during the next
round trip (until the resulting response reaches the
queue). So it is likely that another packet will have
to be discarded within the same RTT as the first.

The likelihood that a particular flow catches any
one of the losses depends on its packet rate relative
to the other.2 That is,

pr
pc

=
r̂r
r̂c
. (7)

If the flows both have the same average window (the
goal in Figure 1) then, by Equation 4 (or triangle
geometry), the ratio between the packet rates of the
two flows when they both reach their max is

r̂r
r̂c

=
(1 + bc)

(1 + br)

=
1.7

1.5
≈ 1.13. (8)

2 Irrespective of how rapidly the flow’s own window grows.
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When a loss occurs, from Equation 7 & Equation 8,
we can say that:

pr/pc = 17/15 (9)

and pr + pc = 1, (10)

because one or the other flow was hit with certainty.

Therefore

pr = 17/32 ≈ 53%

pc = 15/32 ≈ 47%

Then, for example, if there are two losses during a
congestion event, the probabilities of each combi-
nation of two losses are:

prr = (17/32)2 ≈ 28%

prc ∨ pcr = 17 ∗ 15/322 + 15 ∗ 17/322 ≈ 50%

pcc = (15/32)2 ≈ 22%,

where pij is the probability of a loss from flow i
then j.

When there are two losses in a round and the same
flow is hit twice, it doesn’t reduce any more than if
it’s hit once, but the other flow doesn’t reduce at
all. So C-Reno is somewhat more likely than Reno
to not get hit in some round. In such cases, only
the Reno flow would reduce, then the queue would
continue to grow by (ar + ac ≈ 1.53) pkt/RTT, so
the next cycle would be shorter and the C-Reno
flow would be much more likely to be hit when it
next filled the buffer — and more likely to be hit
twice.

It would be possible to calculate the average rate
of each type of flow by calculating the probabilities
of each chain of events programmatically. However,
such precision is unnecessary. For the case of tail-
drop buffers, it will be sufficient to say:

� either that the AI factor of C-Reno should be
slightly lower than that derived from Equa-
tion 6 to make C-Reno and Reno flow rates
more precisely equal;

� or that the average rate of C-Reno flows will be
slightly higher in comparison with Reno flows,
if Equation 6 is used.

“Slightly” means within 10%, which conservatively
accommodates the difference between prr and pcc.

3.1.3 Empirical Results: Tail Drop

Testbed set-up: A single long-running C-Reno
flow with MD factor bc = 0.7 and AI factor ac =
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Figure 3: Empirical results comparing the flow
rates of CUBIC and Reno competing 1:1 over a
tail-drop queue in a 200 ms (‘bloated’) buffer with
MD factor bc = 0.7 and AI factor ac = 0.53 for
CUBIC’s Reno-friendly algorithm

1.53 (the defaults in Linux derived using Equa-
tion 6) was tested against a single Reno flow over
a tail-drop buffer. The buffer was at the bottle-
neck of a range of 25 different Ethernet paths with
five different link rates and five different RTTs, as
shown on the x-axis of Figure 3.3

Two buffer sizing approaches were evaluated:
‘bloated’ and ‘tuned’. In both the buffer was sized
dependent on the link rate, but in the ‘bloated’ case
it held 200 ms and in the ‘tuned’ case only 25 ms.4

That is, buffer size B [byte] = CR̂/8, where C [b/s]

is the link rate serving the buffer and R̂ is either
0.2 s or 0.025 s.

The ‘bloated’ case represents the outdated rule of
thumb where an operator allows for 1 BDP of buffer
at the maximum feasible RTT, where 200 ms ap-
proximates the RTT in glass fibre around half the
earth’s circumference and back. The ‘tuned’ case
is tailored to CUBIC’s MD factor of 0.7 and to its
slow-start behaviour, on the assumption that the
base RTT of most Internet traffic is under 50 ms.

In all cases the results are displayed as whisker plots
that show 1st %-ile (P1), mean and 99th %-ile (P99)
normalized flow rate. Normalized flow rate is de-
fined as the flow rate relative to 1/N of the capacity,
where N is the total number of flows.

The shaded background of part of the plots indi-
cates those cases where CUBIC is not in it’s Reno-

3 In each run, flow rate measurement was delayed until the
flows had converged, then taken every second for 250 s.
Percentiles were derived from the resulting 250 measure-
ments. The two types of flow were sent from two sending
hosts to two receiving hosts via a bridge and a bottleneck
node. All machines were running Linux kernel v5.10.31.
All CCAs were configured with default parameters.

4 The buffer was not sized to the RTT of each flow. Instead,
to better match operational practice, it was sized to a
worst-case RTT, given the RTT of each flow is hard to
measure in the network. Then two different definitions of
worst-case are compared.
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Figure 4: Empirical results with same set up as
Figure 3 except buffer tuned to 25 ms

friendly mode. Darker shading represents true CU-
BIC mode, while lighter shading indicates where
additive increase transitions from Reno-friendly to
true CUBIC part-way up each saw-tooth. The
switch-over RTT is taken from equation (6) in
[Bri21] and it is assumed that all sawteeth peak
at the tail of the buffer.

Interpretation of Results In the ‘bloated’
buffer case, Figure 3 shows that none of the CUBIC
flows are ever in Reno-friendly mode. This tells us
nothing relevant to the present paper, but it shows
that CUBIC can significantly outcompete Reno (up
to about 15:1 rate ratio) when not in Reno-friendly
mode,5 although at least Reno does not starve at
low link rates.

In the ‘tuned case’, Figure 4 shows that CUBIC is
either in or partly in its Reno-friendly mode over a
larger part of the scenario space (respectively un-
shaded or lightly shaded background). In all such
cases, the mean normalized flow rate of both flows is
close to 1. This validates the model of tail drop be-
hind Equation 6, at least for the case when bc = 0.7.

Outside its Reno-friendly mode, CUBIC increas-
ingly dominates Reno, but that is outside the
AIMD-specific focus of the present paper.

3.2 Desynchronized (AQM) Case

For this case, instead of the assumption of synchro-
nization, it is assumed that:

� As the queue grows, Active Queue Manage-
ment (AQM) at the bottleneck selects single
packets to drop or mark, so that the congestion
responses of each flow tend not to coincide.6

5 These experiments ensured that both flows remained in
steady state, but the argument for CUBIC rests on Reno
being more sensitive to disturbances that knock it out of
its steady state [HLRX07].

6 In desynchronized cases, the RTT varies less than in syn-
chronized cases—on average the amplitude is respectively

The AQM case is harder to analyse than the syn-
chronized case with tail-drop. Superficially, one
could use the transformation from equal average
flow rates (wrt. time) into equal window (wrt.
rounds). However, there is no guarantee that the
number of rounds per cycle, J is the same in each
case.

If we assumed it was, we would end up with
Equation 6 for C-Reno’s additive increase factor
ac. Then, as shown in Figure 5, the phasing be-
tween the sawteeth would evolve so that the queue
reached roughly the same depth before each reduc-
tion, i.e. the tips of the RTT sawteeth will all align
at roughly the same level—the operating point of
the AQM.

However, although Figure 5 shows the sawtooth
reductions alternating Reno – C-Reno – Reno, this
need not be the case. In the cycle after 400 ms in
the top-right plot, the ratio between C-Reno’s and
Reno’s packet rates is about 51:49. So it is nearly
as likely that the AQM will hit a Reno packet as
a C-Reno packet, causing Reno to reduce twice in
a row. If the AQM did hit C-Reno around 400 ms,
at around 600 ms the ratio would be about 42:58,
making Reno more likely to be hit.

The probability of each outcome at each stage could
be derived programmatically (a Markov chain), but
it will suffice to test empirically whether the model
in Equation 6 fits the AQM case. We can at least
suppose that, if ac is set as for the synchronized
case (Equation 6), an AQM is likely to hit Reno
somewhat more often than C-Reno.

3.2.1 Empirical Results: PIE AQM

Testbed set-up: To test the AQM case, similar
experiments to those in § 3.1.3 were run, but this
time with a PIE AQM not a tail-drop buffer.7

Also, various combinations of numbers of each flow
type were tested, as shown along the x-axis of Fig-
ure 7. For instance, in the bottom plot of Fig-
ure 7, A2-B8 means 2 ECN-CUBIC flows vs. 8
(non-ECN) Reno flows. The top plot of the same
figure shows the results of equivalent control exper-
iments where the Reno flows were replaced by non-
ECN CUBIC flows. This served to check that Reno
and C-Reno flows were equally agressive against the
same set of ECN C-Reno flows.

the ECN-capability of the C-Reno flows was not
altering their aggressiveness.

1/
√
n vs. n times that of a single flow, where n is the

number of flows [AKM04]. Therefore, the first assump-
tion listed in § 3 (that the buffer is large enough not to
drain completely) is much more likely to hold in desyn-
chronized cases.

7 On a v5.10.31 Linux kernel with default parameters.
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Figure 5: One desynchronized sawtooth cycle of C-Reno and Reno plotted wrt. round trips (left) and
wrt. time (right)
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Figure 6: Empirical results with set up similar to
Figure 3 except over a PIE AQM

All the different combinations of flow numbers were
run over a path with base RTT 10 ms over a
40 Mb/s bottleneck, which was chosen to keep CU-
BIC in its Reno-friendly mode.

See § 3.1.3 for the meanings of the whiskers on the
plots, the ‘normalized flow rate’ metric and the
shaded regions of the background.8

Interpretation of Results: In the 1 CUBIC vs.
1 Reno tests (Figure 6) over a PIE AQM, it can be
seen that C-Reno and Reno share the bandwidth
roughly equally. However, as BDP increases, CU-
BIC can be seen to start taking a greater share

8 With an AQM, it would seem less straightforward to de-
termine whether CUBIC will have started to transition
from C-Reno to pure CUBIC mode at a particular base
RTT, because it is hard to estimate where the tips of the
sawteeth sit in relation to the 15 ms AQM target (see § 3.3
of [Bri21] for background). However, at the selection of
base RTTs shown, it turned out that using any feasible
estimate didn’t change whether CUBIC was in transition.
In other words, the mode CUBIC is in is fairly insensitive
to this estimate.
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Figure 7: Average flow rates of different numbers of
long-running CUBIC and Reno flows. AQM: PIE;
link capacity: 40 Mb/s; Base RTT: 10 ms.

of capacity, as it increasingly operates beyond its
Reno-friendly mode.9

Thus, in practice, the AI factor derived from the
tail drop model keeps the flow rates roughly equal
whether the bottleneck is tail drop or a PIE AQM.

In the multi-flow tests over the PIE AQM (Fig-
ure 7), it can be seen that C-Reno gives roughly
the same rate as Reno over the full range of tests.
Indeed, if anything, C-Reno seems to be slightly less
aggressive than Reno. However, the discrepancy is
hardly visible, and more than an order of magni-
tude smaller than the range of the ratio’s natural
variability between its P1 and P99.

9 Further discussion of pure CUBIC mode is outside the
scope of the present paper, which focuses on AIMD.
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4 Conclusion

This report provides:

� a formula (Equation 6) for the additive in-
crease parameter of an AIMD algorithm as a
function of its chosen multiplicative decrease
factor that should maintain an equal flow rate
with another AIMD flow, specifically a Reno
flow.

� a derivation of the formula that relies on fewer
assumptions and is more rigorous than that in
Floyd et al [FHP00]. It applies to tail drop
buffers whereas that in Floyd et al relied on an
AQM with deterministic marking. Nonetheless
the formula turns out to be the same.

� a testbed validation of the formula (at least
for the case where the MD factor is 0.7) over
a range of 25 different path characteristics (5
rates and 5 base RTTs) with a tail-drop bot-
tleneck buffer.

� a testbed evaluation of the formula over the
same range of scenarios but with a PIE AQM
at the bottleneck. This shows that the AI
factor works correctly over a PIE AQM, even
though it was derived assuming tail-drop.

These result show that, with the widely deployed
decrease factor of bc = 0.7, the Reno-Friendly mode
in CUBIC is sufficiently well modelled by Equa-
tion 6 that the Additive Increase factor it produces
(ac = 0.53) ensures that TCP CUBIC competes
roughly equally with Reno across its intended op-
erating range, whether with a tail-drop queue or a
single-queue AQM (PIE) at the bottleneck.
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