
Preprint.

To appear in Proc. Third IEEE Workshop on Telecommunications Standards: From Research to Standards.
Part of IEEE Globecom 2014

<http://www.research2standards.org/>

Until published, please cite as:

M. Kühlewind, D. P. Wagner, J. M. R. Espinosa, and B. Briscoe,
“Using Data Center TCP (DCTCP) in the Internet,” in Proc.
Third IEEE Workshop on Telecommunications Standards: From
Research to Standards, Dec. 2014, (To appear).

c⃝ 2014 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Using Data Center TCP (DCTCP) in the Internet

Mirja Kühlewind∗, David P. Wagner†, Juan Manuel Reyes Espinosa†, Bob Briscoe‡
∗Communication Systems Group, ETH Zurich, Switzerland

mirja.kuehlewind@tik.ee.ethz.ch
†Institute of Communication Networks and Computer Engineering, University of Stuttgart, Germany

david.wagner@ikr.uni-stuttgart.de
‡BT Research, Ipswich, UK

bob.briscoe@bt.com

Abstract

Data Center TCP (DCTCP) is an Explicit Congestion
Notification (ECN)-based congestion control and Active Queue
Management (AQM) scheme. It has provoked widespread
interest because it keeps queuing delay and delay variance
very low. There is no theoretical reason why Data Center TCP
(DCTCP) cannot scale to the size of the Internet, resulting
in greater absolute reductions in delay than achieved in data
centres. However, no way has yet been found for DCTCP
traffic to coexist with conventional TCP without being starved.
This paper introduces a way to deploy DCTCP incremen-
tally on the public Internet that could solve this coexistence
problem. Using the widely deployed Weighted Random Early
Detection (WRED) scheme, we configure a second AQM that
is applied solely to ECN-capable packets. We focus solely
on long-running flows, not because they are realistic, but as
the critical gating test for whether starvation can occur. For
the non-ECN traffic we use TCP New Reno; again not to
seek realism, but to check for safety against the prevalent
reference. We report the promising result that, not only does
the proposed AQM always avoid starvation, but it can also
achieve equal rates. We even derived how the sharing ratio
between DCTCP and conventional TCP traffic depends on the
various AQM parameters. The next step beyond this gating test
will be to quantify the reduction in queuing delay and variance
in dynamic scenarios. This will support the standardization
process needed to define new ECN semantics for DCTCP
deployment that the authors have started at the IETF.

I. INTRODUCTION

Data Center TCP (DCTCP) [1] has provoked widespread
interest because it keeps queuing delay and delay variance very
low relative to the propagation delay across the data centre.
Alizadeh [2] shows that the DCTCP approach can scale to
networks with much larger propagation delay. Queuing delay
and delay variance grow proportionately in absolute terms.
Nonetheless they remain low relative to the propagation delay.
However, DCTCP requires changes to all three main parts of
the system: network buffers, receivers and senders. Therefore
DCTCP deployments have been confined to environments like
private data centers where a single administration can upgrade
all the parts at once.

The reason for the need to change all three parts is a
different interpretation of the network’s congestion signals than
the usual one. The difference concerns both the amount of

congestion signaled in one round of feedback and the conges-
tion’s extent in time: DCTCP’s design is based on signaling
congestion immediately when a rather small queue builds up,
leaving smoothing to the sender. In contrast, today’s Internet
is based on smoothing in the network and then signaling only
when a severe queue has already built up. Based on the interest
in DCTCP as well as other congestion management system,
current standardization activity to change the semantics of
Explicit Congestion Notification (ECN) is under way in the
Internet Engineering Task Force (IETF) [3], [4]. This change
to congestion semantics allows DCTCP to provide low latency
even at large buffers, if all involved players respect these new
semantics. This is feasible given there has been no effective
ECN deployment on the public Internet.

While it is straightforward to coordinate senders and re-
ceivers [4] even in mixed environments such as the Internet,
network nodes need to cope with heterogeneous traffic. This
paper introduces a way to configure existing switches and
routers that allows DCTCP and non-DCTCP to share a queue.
The Active Queue Management (AQM) of this queue must
support both congestion semantics, the fast and fine-grained
feedback needed by DCTCP and the more coarse-grained and
slower signal needed by conventional Transmission Control
Protocol (TCP) traffic. Since both types of traffic fill the shared
queue, low delay and high throughput can only be achieved,
if the traffic is dominated by DCTCP. We aimed at finding
configurations, that allow an evolution from today’s 100%
conventional TCP traffic to DCTCP dominated traffic. Network
operators may initially configure the dual AQM close to the
ideal for loss-based congestion control, but they can shift closer
to the ideal of low delay as the proportion of DCTCP traffic
grows.

So we target three main questions: First, how do Random
Early Detection (RED)-based AQM configurations influence
the sharing between Reno and DCTCP flows; can starvation
always be avoided; and can at least roughly equal sharing
be achieved? Second, for which Internet scenarios and con-
figurations do DCTCP users benefit in terms of low delay?
And third: which utilization can be achieved for the promising
configurations?

We evaluated these questions by simulations integrating
patched Linux kernels under constant conditions in simple
scenarios. Next, since this initial ‘gating test’ shows promise,
we plan to evaluate the idea in a wide range of more realistic
scenarios. In this paper we show the general feasibility of
our approach and give hints for how to evolve configuration



control assuming the benefits lead to an increasing proportion
of DCTCP flows in the future Internet.

We give an overview on DCTCP in Section II. In Sec-
tion III we present modifications to algorithm and imple-
mentation of DCTCP and introduce our proposed dual AQM
scheme. In Section IV we present our results and show that a
stable operation with lower latency including equal sharing, if
desired, is possible. We also derived rules for defining AQM
parameters in order to achieve both, lower latency and equal
sharing.

II. OVERVIEW OF DCTCP

DCTCP is a combination of a congestion control scheme
and AQM scheme that is based on new semantics of congestion
notification using ECN signaling. DCTCP implements three
changes: a different reaction to congestion in the sender, a
specific RED configuration in the network nodes, and a more
accurate congestion feedback mechanism from the receiver to
the sender.

A. Simple Marking Scheme

The AQM scheme for DCTCP operation is deceptively
simple: if the current instant queue occupancy is larger than a
certain threshold K, every arriving packet will be marked. This
mechanism can be implemented as a specific parameterization
of RED [5]. RED probabilistically decides about the marking
of arriving packets based on the average queue occupancy,
calculated as a weighted moving average with the weighting
factor w. Only above a minimum threshold (Min Thresh)
arriving packets will be marked with linearly increasing proba-
bility, as also displayed in Figure 3, reaching up to a maximum
marking probability (Max Prob) at the maximum threshold
(Max Thresh) and a probability of 1 above. The proposed
AQM scheme for DCTCP can be realized by using RED with
Min Thresh = Max Thresh = K and w = 1.

B. Congestion Control Algorithm

A TCP sender maintains a congestion window (cwnd),
giving the allowed number of packets in flight during one
Round Trip Time (RTT). With DCTCP, when an ECN-Echo
arrives, cwnd is updated to reflect not just the existence of
some congestion within a round trip, but the exact proportion
of congestion marks. This is achieved according to the follow-
ing equation

cwnd← (1− α/2) ∗ cwnd (1)

where α is the moving average of the fraction of marked
packets in the last RTT. Its calculation is given by

α← (1− g) ∗ α+ g ∗ F (2)

where F is the fraction of the marked packets in the last
RTT and g is a weighting factor. g is recommendationed
to be set to 1/24 in [1]. α is updated once per RTT. This
congestion control algorithm allows the sender to gently reduce
its congestion windows in case of low fraction of markings,
whereas strong reductions are performed in case of a high
degree of congestion.

C. Enhanced ECN Feedback

ECN allows network nodes to notify of congestion by
setting a flag in the Internet Protocol (IP) header (Congestion
Experienced (CE) codepoint), with no need to drop packets.
A host receiving a CE-marked packet will send ECN-Echoes
(ECE) in every TCP acknowledgement until it receives a
Congestion Window Reduced (CWR)-flagged TCP packet. By
this mechanism only one congestion feedback can be sent per
RTT which is appropriate for conventional TCP congestion
control but not for DCTCP. Thus DCTCP changes the ECN
feedback mechanism. It aims to get exactly one ECN-Echo
for each CE-marked packet. However, to be able to use
delayed acknowledgements, Alizadeh et al. define in [1] a
two state machine for handling ECN feedback. Note that
there is no negotiation as DCTCP assumes that the receiver
is DCTCP-enabled. For wider use in the Internet, the authors
are standardizing a negotiation phase [3].

III. MODIFICATIONS

Our evaluation is based on a Linux patch provided by
the University of Stanford [6] applied to the Linux kernel
version 3.2.18. In the initial phase of our investigations we
observed unexpected and undesired behavior of that imple-
mentation which we fixed by minor modifications described
in the following section. Furthermore, we implemented two
algorithmic modifications to provide a faster adaptation to the
current congestion level. Finally, we present our dual AQM
scheme in Subsection III-C.

A. Implementation in Linux

a) Finer resolution for α value: In the provided im-
plementation [6] the resolution of α was limited to minimum
value of 1/210. Because of this, in our simulation scenario the
congestion window converged to a fixed value in a situation
with very few ECN markings. For our investigations we
changed the minimum resolution to 1/220. It should be noted
that for large congestion windows and very low marking rates,
an even finer resolution might be necessary.

Setting of the Slow Start threshold: In the provided
DCTCP implementation the Slow Start threshold (ssthresh)
is incorrectly set to the current cwnd value after a reduction.
In our implementation we correctly reset the ssthresh to the
cwnd − 1 instead. With the original patch a DCTCP sender
was in Slow Start (cwnd <= ssthresh) after each decrease
and thus immediately increases (by one packet) on arrival of
the first ACK, then leaving Slow Start and correctly entering
Congestion Avoidance. As with DCTCP not every window
recalculation causes a window reduction, therefore this error
caused a non-linear increase in a noticeable range.

b) Allow the congestion window to grow in CWR state:
While the Linux congestion control implementation in general
does not allow any further window increases during roughly
one RTT after the reception of a congestion signal, this
does not seem to be appropriate for DCTCP. Thus in our
implementation we allow the congestion window to grow even
during this so-called CWR state. Moreover, if no reduction was
performed, we do not reset snd cwnd cnt, which maintains
when to increase the window next, to preserve the linear
increase behavior.



0 2 4 6 8 10 12 14

Time (seconds)

0

20

40

60

80

100
C
o
n
g
e
s
ti
o
n

w
in

d
o
w

(M
S
S
)

DCTCP

Modified DCTCP

TCP Reno

Fig. 1. Congestion window of single flows

5 10 15 20 25

Time (seconds)

0

10

20

30

40

50

C
o
n
g
e
s
ti
o
n

w
in

d
o
w

(M
S
S
)

TCP Reno

DCTCP

TCP Reno drops

DCTCP markings

Fig. 2. Congestion window and mark/drop events for one TCP Reno and
one DCTCP host sharing an accordingly configured queue

B. Algorithmic Modifications

c) Continuous update of α: As mentioned in Section
II-B, α is updated only once per RTT. With such a periodic
update scheme, α might not catch the maximum congestion
level and, even worse, might still reflect an old value when
the congestion window reduction is performed. To avoid this,
we update α on the reception of each acknowledgement. It
must be mentioned that for with the modificaion also the
weighting factor g must be chosen differently because α
is recalculated more often. Therfore we set g to be 1/28

instead of 1/24 to compensate for this effect, thus making the
behavior similar to the original DCTCP patch in our rather
static evaluation scenarios. However, the right choice of g
depends on the absolute number of markings, and thus number
of recalculations performed, and therefore actually depends on
the current number of packets in flight. This dependency could
be compensated by normalizing the fraction of marked packets
F with the current number of packets in flight, or simply the
current congestion window value.

d) Progressive congestion window reduction: In the
original implementation the congestion window is recalculated
as soon as the CWR state is entered. But, as explained above,
the actual congestion level would need to be determined over
the following RTT in which further congestion signal are
expected to be received. We cannot wait one whole RTT to
perform any window reductions, as this would cause further
unnecessary congestion. Thus we decrease the congestion win-
dow progressively on reception of each ECN-Echo. For each
recalculation we use the congestion window value cwnd max
from the start of the CWR state and reset the congestion
window only if the resulting value is lower than the current
value.

Figure 1 shows the congestion window of one DCTCP
flow either using the original patch or our modification in
comparison to one TCP Reno flow. It can be seen that after
the Slow Start phase our implementation adapts faster but
otherwise the behavior is similar, as desired.

Fig. 3. Packet mark probability calculation

C. Dual AQM Scheme

The packets of DCTCP and other TCP flows need to be
handled differently in the AQM scheme of the bottleneck
network node according to the different congestion signal
semantics. We propose an AQM scheme based on one shared
queue but applying two differently parameterized instances of
the RED algorithm, one for non-ECN traffic and one for ECN
traffic. Our scheme classifies the traffic based on the ECN-
capability, thus packets will respectively be marked or dropped
to notify of congestion. This approach would probably result
in low throughput for ECN-enabled end-systems that still use
conventional congestion control such as Reno. However, given
this ECN standard was defined in 2001 and has hardly seen
any active use, it is unlikely this is an important factor.

Instead we propose to standardize an ECN signal that
signals congestion immediately, allowing the end hosts to dis-
tinguish between smoothed and immediate congestion notifi-
cation. DCTCP together with more accurate ECN feedback, as
already under standardization [3], [4], could be re-implemented
and turned on after ECN capability negotiation with the server.
The much greater performance benefits of DCTCP, could then
incentivize OS developers to deploy DCTCP with ECN turned
on by default.

Figure 2 shows exemplarily the resulting congestion sig-
nals along with the congestion window of one Reno and
one DCTCP flow equally sharing the bandwidth. The used
parameter set is derived from our investigations described later
on in the second part of Section IV-C.

IV. PRELIMINARY EVALUATION

In this evaluation we investigated DCTCP with the pro-
posed dual AQM scheme in a simplified scenario to show
feasibility. Our parameter study shows that a large range of
configuration can be used to achieve different operation points
in link utilization, queue occupancy (and thus latency) and
bandwidth sharing between multiple flows. We investigated the
two approaches of RED parameterization for the DCTCP traf-
fic as illustrated in Figure 3: i) (left) a degenerate configuration
with Min Thresh DCTCP = Max Thresh DCTCP =
K creating a simple marking threshold as originally proposed
for DCTCP or ii) (right) with Min Thresh DCTCP <
Max Thresh DCTCP as in standard RED configurations
as described in III-C, i.e. either using a marking threshold K
or a marking slope. The selected parameterization covers only



Fig. 4. Simulation scenario (only forward direction)

a limited range of the large parameter set but presents the two
most interesting cases. Other scenarios need to be investigated
before applying our approach to the Internet to cover corner
cases.

A. Simulation Environment and Scenario

We evaluated our approach based on simulations using the
IKR SimLib [7], an event-driven simulation library with an
extension to integrate virtual machines [8] running a Linux
kernel with our modified DCTCP implementation.

As shown in Figure 4, the simulation scenario consists
of four hosts, two senders and two receivers, connected by a
shared link of 10 Mbps with a single bottleneck queue plus the
corresponding return path and an RTT of 25 ms, resulting in a
Bandwidth Delay Product (BDP) of 31250 bytes. One pair of
hosts uses DCTCP with ECN, while the others use TCP Reno
without ECN support. Each sender has data to send at any
time and uses one or more long-lived connections. The queue
implements the dual AQM scheme described in Section III-C.

To limit the parameter space, we fixed most of the RED
parameters for non-ECN traffic to the recommended values
in [9]; using a weighting factor w Reno of 0.002 and set-
ting Max Prob Reno to 0.1. Moreover, we configured the
maximum threshold to three times the minimum threshold:
Max Thresh Reno = 3 ∗Min Thresh Reno.
Min Thresh Reno is the parameter we vary because it
determines the queuing-induced latency (if non-DCTCP traffic
exists).

B. Using a Marking Threshold

For this approach both DCTCP thresholds are set to
the same value K and smoothing is turned off by setting
w DCTCP = 1, as was originally proposed for DCTCP. We
vary the step threshold K in relation to Min Thresh Reno
for several values of Min Thresh Reno smaller or equal
than the BDP. Note that the buffer size needed by one Reno
flow to fully utilize the link is one BDP. K must be between
the minimum and maximum threshold of the Reno traffic
to avoid that only one flow gets almost all capacity, thus

TABLE I. (M)IN THRESH RENO (IN BDPS), K/M AT MAXIMUM
FAIRNESS, LINK (U)TILIZATION AND QUEUE (O)CCUPANCY OF (D)CTCP

AND (R)ENO

M K/M UDR ODR U2R O2R

1/8 2.3 0.98 0.207 0.946 0.216
1/4 1.73 0.987 0.335 0.968 0.336
1/2 1.34 0.996 0.548 0.986 0.524

1/
√

2 1.26 0.999 0.724 0.995 0.679
1 1.16 1.000 0.99 0.999 0.914

0.01

0.1

1

10

T
h
r
o
u
g
h
p
u
t

r
a
t
io

R
e
n
o

/
D

C
T
C
P

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

U
ti
li
z
a
ti
o
n

1.0 1.5 2.0 2.5 3.0

K / Min Thresh Reno

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
u
e
u
e

o
c
c
u
p
a
n
c
y

(B
D
P
s
)

Min Thresh Reno

BDP/8

BDP/4

BDP/2

BDP/
√

2

BDP

Fig. 5. Results when using marking threshold

K/Min Thresh Reno is varied between 1 and 3. We aim
at equal shares of DCTCP and non-DCTCP at high utilization
and lower delay, so in Figure 5 we plot the ratio between
Reno and DCTCP traffic, the utilization of the bottleneck
link and the average queue occupancy. The steps that can
be seen for the smaller thresholds, most prominently for
Min Thresh Reno = BDP/8, are a consequence of the
fixed Maximum Transmission Unit (MTU) and the small
marking threshold: if all packets are 1500 Bytes, it makes no
difference if the marking threshold is 7812B = 2 ∗ BDP/8
or 8203B = 2.1 ∗ BDP/8, both are able to hold 5 packets
without marking.

As it can be seen in the throughput plot of Figure 5, for
any Min Thresh Reno there is a K that results in equal
bandwidth sharing (dotted line) between the DCTCP and the
Reno flow. Table IV-A lists these values and the respective
utilization and queue occupancy for either one DCTCP and
one Reno flow competing or, for comparison, two Reno flows
only. Especially, when the minimum threshold is chosen very
low to 1/8∗BDP, it can be seen that DCTCP increases the
utilization (up to 4 %) while the average queue remains about
the same.

These results show that with this configuration scheme a
lower delay can be traded for a only slightly lower utilization
while sharing equally with Reno flows. More specifically,
the queue occupancy can be reduced by a factor of four
while maintaining equal bandwidth sharing and high (98 %)
utilization.

Several DCTCP flows: We also investigated the effect
of increased proportion of DCTCP traffic on the utilization for
a Min Thresh Reno as low as BDP/8. For that purpose,
we ran experiments where one Reno flow competes with
N DCTCP flows. In Figure 6 the throughput ratio between
Reno and the average of the N DCTCP flows is shown for
N = 1...5, along with the corresponding utilization and queue
occupancy. As expected the utilization increases with the num-
ber of DCTCP flows. Equal sharing can only be achieved for



0.1

1

10

T
h
r
o
u
g
h
p
u
t

r
a
t
io

R
e
n
o

/
(
D

C
T
C
P
/
N

)

N = 1

N = 2

N = 3

N = 4

N = 5

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

U
ti
li
z
a
ti
o
n

1.0 1.5 2.0 2.5 3.0

K / Min Thresh Reno

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Q
u
e
u
e

o
c
c
u
p
a
n
c
y

(
B
D

P
s
)

Fig. 6. Results with multiple DCTCP flows for Min Thresh Reno =
1/8 ∗BDP

0.01

0.1

1

10

T
h
r
o
u
g
h
p
u
t

r
a
t
io

R
e
n
o

/
D

C
T
C
P

0.2 0.4 0.6 0.8 1.0

Max Prob DCTCP

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Q
u
e
u
e

o
c
c
u
p
a
n
c
y

(
B
D

P
s
)

Min Thresh DCTCP

BDP/8

BDP/4

BDP/2

BDP/
√

2

BDP

TCP Reno

Fig. 7. Results when using marking slope

settings with large values of K/Min Thresh Reno which
also increases the average queue occupancy. Thus with a larger
proportion of DCTCP in a (future) traffic mix, the AQM
thresholds could be lowered while maintaining high utilization.

C. Using a Marking Slope

The alternative parameterization for the DCTCP traffic
uses a conventional RED configuration forming a slope of
increasing marking probability depending on the average queue
occupancy (in contrast to using a step function of instantaneous
queue length). We also studied the influence of the weighting
factor w DCTCP . As expected for a non-dynamic scenario
with just long-running flows, we found that it has only minor
influence on bandwidth sharing and thus chose the same
value for w DCTCP as for w Reno of 0.002. For this
study we fixed Min Thresh Reno to BDP , resulting in
Max Thresh Reno = 3 ∗ BDP . We investigate values
for Min Thresh DCTCP smaller than BDP and shifted
Max Thresh DCTCP to Min Thresh DCTCP + 2 ∗
BDP to keep the same distance between the thresholds and
thus the same slope which again is a simplification to narrow

Max
Pro

b DCTCP

0.0

0.2

0.4

0.6

0.8

1.0

M
in

T
hresh

D
C
T
C
P
(B
D
P
s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

J
a
in
’s

in
d
e
x

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 8. Jain’s fairness index

1 2 3 4 5 6 7 8 9

Max Prob DCTCP /
Max Prob Reno

1

2

3

4

5

6

7

8

9

M
in

T
h
r
e
s
h

R
e
n
o

/
M

in
T
h
r
e
s
h

D
C
T
C
P Experimental

y = x/(x − 1)

Fig. 9. Maximum fairness

our parameter set. Figure 7 shows the throughput ratio between
Reno and DCTCP and the queue occupancy when varying
Max prob DCTCP from 0 to 1. The plot shows equal
sharing is possible for many parameterizations, except for the
Min Thresh DCTCP = BDP . This is expected since
both flows get the same feedback rate but Reno reacts by
halving the sending rate while DCTCP usually will decrease
less (depending on the number of markings). Figure 8 shows a
3-dimensional plot of the Jain’s fairness index [10] depending
on Min Thresh DCTCP and Max Prob DCTCP on
the left. The highlighted ridge marks a fairness index of
one. Figure 9 shows the parameter combinations of maximum
fairness. The function y = x/(x − 1) is overlaid to illustrate
that it fits quite closely to the measured maximum fairness
configurations. These results suggest that we can achieve equal
sharing for a parameterization according to the following rule:

Min Thresh DCTCP

Min Thresh Reno
=

Max Prob DCTCP
Max Prob Reno − 1
Max Prob DCTCP
Max Prob Reno

(3)

That means for a given configuration for Reno, there is
just one parameter to choose, Min Thresh DCTCP or
Max Prob DCTCP .

Equal Sharing Configurations: Since this formula
provides configurations that implement (about) equal shar-
ing, we scale the maximum marking probability by
Min Thresh DCTCP and altered only the minimum



0.0

0.2

0.4

0.6

0.8

1.0

O
c
c
u
p
a
n
c
y

(B
D
P
s
)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
J
a
in

’s
in

d
e
x
,

u
ti
li
z
a
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

Min Thresh Reno (BDPs)

Jain’s index

Utilization

Occupancy

Fig. 10. Equal Sharing

threshold for Reno traffic in this evaluation. That means we set
Max Prob Reno to 0.1/(Min Thresh Reno/BDP ) and
Max Prob DCTCP to 0.2/(Min Thresh Reno/BDP ).
We show results for Min Thresh DCTCP = 1/2 ∗
Min Thresh Reno.

Figure 10 shows Jain’s fairness index, utilization and
queue occupancy. As it can be seen, such configurations
achieve almost maximum fairness in terms of equal shar-
ing and the queue occupancy depends about linearly on
Min Thresh Reno. The achieved utilization is close to
100 % with a Min Thresh Reno of only 0.3*BDP. For the
very simple scenario considered, this finding allows to define
a trade off between delay and utilization while keeping the
sharing equal thus being “TCP-friendly”.

V. CONCLUSIONS

In this paper we propose a new dual AQM scheme that
can be implemented based on Weighted RED (WRED) to
incrementally deploy DCTCP with its different congestion
semantics in the public Internet. Today ECN sees only min-
imal deployment, but activities in standardization are under
way to re-define the congestion feedback mechanism and its
meanings. We argue that a classification solely based on the
ECN-capability of the traffic provides an opportunity for actual
DCTCP deployment in the Internet. Therefore, we evaluated
the possibility of concurrent usage of DCTCP with other
conventional TCP congestion control. We evaluated two RED
configurations for providing ECN-based feedback for DCTCP
traffic: i) a marking threshold K as proposed by the original
DCTCP approach and ii) a marking slope as in standard
RED configurations. We showed that both approaches can
be configured for stable operation, where the proportions of
DCTCP and Reno traffic converge to a certain ratio or even
to an equal rate, if desired. Moreover, we found a formula for
RED parameters that always results in equal sharing between
DCTCP and non-DCTCP. This relation allows high utilization
to be traded off against low delay. We showed that, even with
the minimum threshold set very low to maintain low latency,
utilization increases with a larger fraction of DCTCP traffic.

This study is only a first step to show that the way
proposed to deploy DCTCP in the Internet would at least
give a reasonable share of capacity to long-running flows;
while still reducing latency and maintaining high utilization.
Further evaluation is needed using scenarios with all kinds
of traffic models, e.g. with more and not only long-running
flows and different shares of DCTCP and conventional TCP
flows. Our interest lies also in a wider parameter study focusing
on scenarios with ECN marking based on the instantaneous
queue length only, as DCTCP already implements smoothing

itself. We expect further advantages from DCTCP’s reaction to
congestion when flows with very small and very large RTTs
are sharing the same bottleneck. We also need to show that
endpoints and network nodes with the new semantics can
safely coexist with any legacy ECN endpoints or network
nodes, in case they are deployed without update.

The proposed way to deploy DCTCP in the Internet re-
quires instantaneous and more accurate ECN feedback. Today
ECN is defined as a “drop equivalent” and therefore provides
only small performance gains and consequently has not seen
wide deployment. With a change in semantics, ECN could
be used as an enabler for new low latency services also
implementing a different response to congestion, similar to
DCTCP.

Apart from a more accurate ECN signal, where a proposal
by the authors has already been adopted onto the IETF’s
agenda, we also see a need to standardize a change to the
semantics of ECN to provide immediate congestion informa-
tion without any further delays in the network. This work
provides further input on the needs for a future, immediate,
and therefore more beneficial ECN-based congestion control
loop and proposes an approach for how congestion control
could react to such signal.

VI. ACKNOWLEDGMENTS

This work was performed while the first author was still
with IKR, University of Stuttgart, Germany This work is
part-funded by the European Community under its Seventh
Framework Programme through the ETICS project and the
Reducing Internet Transport Latency (RITE) project (ICT-
317700). The views expressed here are solely those of the
authors.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “DCTCP: Efficient packet
transport for the commoditized data center,” in Microsoft Research
publications, January 2010.

[2] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
stability, convergence, and fairness.” in SIGMETRICS. ACM, 2011.

[3] B. Briscoe, R. Scheffenegger, and M. Kuehlewind, “More Accurate
ECN Feedback in TCP: draft-kuehlewind-tcpm-accurate-ecn-03,” IETF,
Internet-Draft, Jul. 2014, (Work in Progress).

[4] M. Kühlewind, R. Scheffeneger, and B. Briscoe, “Problem Statement
and Requirements for a More Accurate ECN Feedback: draft-ietf-tcpm-
accecn-reqs-06,” IETF, Internet-Draft, Jul. 2014, (Work in Progress).

[5] S. Floyd and V. Jacobson, “Random Early Detection gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, pp.
397–413, Aug. 1993.

[6] “DCTCP patch for linux 3.2,” https://github.com/mininet/mininet-
tests/blob/master/dctcp/0001-Updated-DCTCP-patch-for-3.2-
kernels.patch, 2014.

[7] “Ikr simulation library,” http://www.ikr.uni-
stuttgart.de/Content/IKRSimLib/, 2014.

[8] T. Werthmann, M. Kaschub, M. Kühlewind, S. Scholz, and D. Wag-
ner, “Vmsimint: A network simulation tool supporting integration of
arbitrary kernels and applications,” in Proceedings of the 7th ICST
Conference on Simulation Tools and Techniques (SIMUTools), 2014.

[9] S. Floyd, “RED: Discussions of setting parameters,”
http://www.icir.org/floyd/REDparameters.txt, November 1997.

[10] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
DEC Research Report TR-301, September 1984.


