
1

Draft

‘Data Centre to the Home’:
Deployable Ultra-Low Queuing Delay for All

Koen De Schepper† Olga Albisser‡ Olivier Tilmans† and Bob Briscoe‡

Abstract—Traditionally, ultra-low queueing delay and
capacity-seeking are considered mutually exclusive. We
introduce a service that offers both: Low Latency Low Loss
Scalable throughput (L4S). Therefore, it can incrementally
replace best efforts as the default Internet service. It exploits
the properties of ‘Scalable’ congestion controls (defined later,
but Data Centre TCP is a well-known example). Under a wide
range of conditions emulated on a testbed using real residential
broadband equipment, it proved hard not to get remarkably
low (sub-millisecond) average queuing delay, zero congestion
loss and full utilization. To realize these benefits we had to
solve a hard problem: how to incrementally deploy scalable
congestion controls on the public Internet. The solution uses
a ’DualQ Coupled Active Queue Management’ structure at
the access link bottleneck. The coupled AQM enables balance
(window ‘fairness’) between Scalable and Classic (Reno, Cubic,
etc.) flows, without inspecting deeper than the IP header. It
counterbalances the more aggressive response of Scalable flows
with more aggressive marking. It identifies L4S packets using the
last Explicit Congestion Notification codepoint in the IP header,
which the IETF is in the process of allocating. The DualQ
structure has been implemented as a Linux queuing discipline.
It acts like a semi-permeable membrane, isolating the latency of
Scalable and ‘Classic’ traffic, but coupling their capacity into
a single bandwidth pool. This paper justifies the design and
implementation choices, and visualizes a representative selection
of millions of experiment runs designed to test our claims.

I. INTRODUCTION

With increases in bandwidth, latency is becoming the
critical performance factor for many, if not most, applica-
tions, e.g. Web, voice, conversational and interactive video,
interactive remote presence, finance apps, instant messaging,
online gaming, cloud-based apps, remote desktop and video-
assisted remote control of machinery and industrial processes.
Latency is a multi-faceted problem that has to be tackled on
many different fronts [10] and in all the different stages of
application delivery—from data centres to access links and
within end systems.

The aspect this paper addresses is the variable delay due to
queuing. Queuing is intermittent, only occurring when a suffi-
ciently long-running ‘greedy’ (capacity-seeking or TCP-like)
flow happens to coincide with interactive traffic [25]. However,
intermittent delays dominate experience, and many real-time
apps adapt their buffering to these intermittent episodes.

†Nokia Bell Labs, Belgium, koen.de schepper|olivier.tilmans}@nokia.com
‡Simula Research, Norway, olga@albisser.org, research@bobbriscoe.net
The first two authors contributed equally

Even state-of-the art Active Queue Management
(AQM) [41], [24] can only bring queuing delay down
to roughly the same order as a typical base round-trip
delay. This is because bottlenecks are typically in the most
geographically dispersed edge access links where statistical
flow multiplexing is lowest. And, without multiplexing, a
TCP flow will underutilize a link unless it can buffer about a
round trip flight of data.

Our main contribution is to keep queueing delay ex-
tremely low and consistently low for all of a user’s Inter-
net applications. As will be seen later, this typically means
sub-millisecond queueing at the 99%-ile, and an order of
magnitude lower queuing than state-of-the-art AQMs at any
percentile.

A differentiated service (Diffserv) class such as EF [16]
can only provide low delay if it is limited to a fraction of
a link’s capacity. Instead, the new service that we propose
accommodates capacity-seeking applications that want both
full link utilization and low queuing delay. Because low delay
no longer involves a throughput sacrifice, it is expected that
this new service will incrementally replace the default best
efforts service.

The new service is called Low Latency, Low Loss, Scalable
throughput (L4S), because it effectively removes congestion
loss as well as queuing delay. L4S works because senders
use one of the family of ‘Scalable’ congestion controls (see
§ II-A for definition and rationale). In contrast, we use the
term ‘Classic’ for controls like TCP Reno and Cubic, where
control becomes slacker as rate scales.

For evaluation we configure the host OS to use Data Centre
TCP (DCTCP [2], [3]), which is a widely available scalable
control. We emphasize that the L4S service is not just intended
for DCTCP, but also for a range of Scalable controls, e.g.
Relentless TCP [35] and scalable variants of QUIC, SCTP,
real-time protocols, etc. In order to test one change at a time,
we focus this paper on network-only changes, and use DCTCP,
‘as is’, except for the ECN codepoint it uses.

Our extensive experiments over a testbed using real data-
centre and broadband access equipment and models of realistic
traffic strengthen confidence that DCTCP would work very
well over the public Internet. However, DCTCP will need
some safety (and performance) enhancements for production
use over the public Internet. In 2015, a large group of DCTCP
developers informally agreed the ‘Prague L4S requirements’
(§ V-B). A variant of DCTCP called TCP Prague is being
developed to satisfy them, which will avoid the otherwise

2

confusing name.
Our second contribution is a solution to the deployability

of Scalable controls like DCTCP, in coexistence with other
traffic on the public Internet.

It is a common misconception that DCTCP is tailored for
data centres, but the name merely emphasizes that it should
not be deployed outside a controlled environment; it is too
aggressive to coexist with existing ‘Classic’ traffic. DCTCP is
only applicable where a single admin can upgrade all senders,
receivers and bottlenecks at once,... until now.

We propose the ‘Dual Queue Coupled AQM’ that can be
incrementally added at path bottlenecks to solve this ‘coex-
istence’ problem. It acts like a semi-permeable membrane.
For delay it uses a second queue to isolate L4S traffic from
Classic. But for throughput, it couples the queues to appear as
a single bandwidth pool. Briefly this means that the L4S queue
emits congestion signals more aggressively to counterbalance
the more aggressive response of L4S sources. Then, for n
aggressive L4S flows and m TCP-friendly Classic flows, each
flow takes roughly 1/(n+m) of the aggregate capacity.

The two queues are for transition, not bandwidth priority. So
i) low L4S delay is not at the expense of Classic performance;
and ii) even if a high load of solely L4S traffic fills the link
delay remains low.

Balance between microflows can also be achieved with
per-flow queuing, but that involves potential compromises of
privacy, neutrality, evolvability and complexity (§ II-C). The
DualQ Coupled AQM side-steps all these dilemmas by not
inspecting flows (no deeper than the IP layer) and by enabling
but not enforcing coexistence.

L4S faces a very similar multi-party deployment problem to
classic Explicit Congestion Notification (ECN [42]). However,
we have learned from the ECN experience. To overcome the
risk a first mover faces in kick-starting a multi-party deploy-
ment, we have attempted to ensure that the performance gain
is dramatic enough to enable valuable new applications [8],
not just a marginal performance improvement.

Given access networks are invariably designed to bottleneck
in one known location, the AQM does not have to be deployed
in every buffer. Most of the benefit can be gained by deploy-
ment at the downstream queue into the access link, and home
gateway deployment addresses the upstream.

§ V discusses wider deployment considerations, including
how a Scalable control should fall back to Reno-Friendly
if it encounters a non-L4S bottleneck and other deployment
scenarios such as coexistence between DCTCP and Classic
TCP in heterogeneous or interconnected data centres.

Our third contribution is to ensure that the low queuing
delay of L4S packets is preserved during overload from either
L4S or Classic traffic, and neither can harm the other more
than they would in a single queue.

We have also tested that the L4S service can cope with
a reasonable proportion of unresponsive traffic, just as best
efforts copes with reasonable levels of unresponsive streaming,
VoIP, DNS etc.

Our fourth contribution is to ensure that the AQM can
be deployed in any public Internet access network with zero
configuration.

Our fifth contribution is extensive quantitative evaluation
of the above claims (see § IV): i) dramatically reduced delay
and variability without increasing other impairments; ii) ‘do
no harm’ to Classic traffic; iii) window balance between com-
peting Scalable and Classic flows; and iv) overload handling.

II. RATIONALE

A. Why a Scalable Congestion Control?

A congestion control is defined as Scalable if it satisfies an
average and a dynamic condition: as packet rate per round trip
scales i) the average rate of congestion signals per round trip
does not decrease; and ii) the doubling time of the flow rate
does not decrease [30]. This paper primarily focuses on the
first condition, which concerns coexistence with other flows
and interoperability with network signalling.

TCP Cubic scales better than Reno, but it is still not
fully scalable. For instance, for every 8-fold rate increase
the average Cubic sawtooth duration between losses or ECN
marks doubles while its amplitude in bytes increases 8-fold.
For instance, for an example base RTT=20 ms, between 100
and 800 Mb/s, Cubic’s sawtooth recovery time expands from
250 to 500 round trips. In contrast, DCTCP averages one ECN
mark every half a round trip, which remains invariant whatever
the rate.

We use a Scalable congestion control because, unlike Clas-
sic TCP algorithms, this implies:

1) control does not slacken as the window scales;
2) variation of queuing and/or under-utilization, need not

increase with scale (Figure 1).

Fig. 1: Data Centre TCP: Intuition

In the steady state, the number of signals per round, v, is the
product of segments per round W and the probability p that a
segment carries a signal, i.e. v = pW . Formulas for the steady-
state window, W , can be derived for each congestion controller
(see § III-B). Each formula is of the form W ∝ 1/pB , where B
is a characteristic constant of the algorithm [5] (e.g. B = 1/2
for TCP Reno). So it is straightforward to state the above
scalability condition in terms of B by first substituting for p
in the above formula for v:

v ∝W (1 − 1/B).

3

Then, B ≥ 1 defines a control as Scalable.
For DCTCP, B ≥ 1, and DCTCP with probabilistic marking

has B = 1 (see § III-B) so the steady-state signalling rate is
scale-invariant.

The dynamic behaviour of DCTCP is not scalable [30]
because it uses the same addition of one segment per RTT as
Reno to increase its window. However, the L4S queue supports
any control with a steady state that is scalable, so we can be
confident that solutions to DCTCP’s dynamic problems (see
§ V-B) will be able to evolve and co-exist with today’s DCTCP,
without a need for further network changes.

B. Why ECN?

L4S uses the same protocol fields as Explicit Congestion
Notification (ECN [42]), but defines new semantics for an
ECN mark, breaking away from the standardized equivalence
to loss [42], [7]. This allows L4S to break away from the
compromises that are inherent in using drop as a congestion
signal. This is because drop is also an impairment, so it cannot
be signalled too frequently or too immediately. Specifically,
L4S exploits ECN to reduce delay in three respects:

1) ECN allows more frequent signalling, which would be
untenable as loss, particularly during high load. This
allows the smaller sawteeth of scalable controllers, which
reduce delay as already explained.

2) When a queue starts to grow, a drop-based AQM holds
back from introducing loss in case it is just a sub-RTT
burst, whereas it can emit ECN immediately, because it
is harmless:
• With drop, an AQM has to hold back from drop for

about 1 RTT. But it does not know each flow’s RTT, so
it has to hold back for a worst-case (inter-continental)
RTT, to avoid cuasing instability to worst-case RTT
flows.

• With ECN, the AQM can signal immediately, and the
sender can smooth the signals—it knows its own RTT,
which it can use as the appropriate time constant [3]
and it can choose to respond without smoothing, e.g.
at flow start.

3) ECN also offers the obvious latency benefit of near-
zero congestion loss, which is of most concern to short
flows [43]. This removes retransmission and time-out
delays and the head-of-line blocking that a loss can cause
when a single TCP flow carries a multiplex of streams.

Because L4S requires Scalable traffic to be ECN-capable, it
uses the ECN field to classify Scalable packets into the L4S
queue (see § III).

C. Why Not Per-Flow Queues?

Per-flow queuing (as in FQ-CoDel [24]) is intended to
isolate a latency-sensitive flow from the delays induced by
others. However, FQ alone does not protect a latency-sensitive
flow from the saw-toothing queue that a Classic TCP flow

still inflicts upon itself.1 This is important for the growing
trend of interactive video-based apps that are both extremely
latency-sensitive and capacity-hungry, e.g. interactive or con-
versational video, remote presence.

As we have explained, scalable congestion control is needed
to address the self-inflicted delay problem. FQ can play a
role in this by solving the coexistence problem; by enforc-
ing throughput balance between Scalable and Classic flows.
Indeed, an FQ classifier could be modified to detect that a
flow is only using L4S-ECN packets and instantiate a shallow
immediate ECN threshold.

However, per-flow scheduling involves compromises:
• It does not know whether i) a flow using more, or less,

than an equal share of a user’s own capacity is inten-
tional, or even mission-critical; ii) whether short-term
flow rate variations are deliberate, e.g. a more complex
video scene; iii) whether a real time congestion control
is deliberately adapting slowly to changing numbers of
competing flows, in case they are transient.

• it needs to inspect transport layer headers, compromising
transport evolution and privacy.

• It requires more complex classification, queuing and
scheduling structures.

The DualQ Coupled AQM has been developed so that an
operator can offer low delay service without having to swallow
these compromises.

An operator could still enforce equal flow-rates, but that
would be its own independent policy choice, not an inseparable
side-effect of reducing delay.

III. SOLUTION DESIGN

The solution will be explained in two passes. The first pass
introduces the overall structure (§ III-A). Then details of each
aspect are given in a second pass, specifically: how coexistence
between L4S and Classic flows is achieved (§ III-B); how
the low latency of the L4S service is isolated from Classic
(§ III-C); how overload is handled (§ III-D); and an overview
of the whole implementation in pseudocode (§ III-E).

A. Solution Structure

L4S and Classic traffic have opposing delay requirements.
The first design goal of L4S traffic is ultra-low queuing
delay. In contrast Classic congestion controllers (CCs) need
a significant queue to avoid under-utilization (at least they
do whenever the number of flows at the bottleneck is small).
One queue cannot satisfy these opposing goals, so we use two
separate buffers.

Packets are classified between the two queues based on
the 2-bit ECN field in the IP header. Classic sources set
the codepoints ‘ECT(0)’ or ‘Not-ECT’ depending on whether
they do or do not support standard (‘Classic’) ECN [42]. L4S

1It might seem preferable to release data into a dedicated network queue,
then: a) it would be ready to go as soon as there was capacity; and b) otherwise
the sender would have to hold back the data instead, causing the same delay,
just in a different place. However, modern applications, e.g. HTTP/2 [6] or
interactive video, need to maintain any self-induced send-queue locally in
order to adapt how much they send. They cannot suppress lower priority data
dependent on progress, if it is already in flight.

4

Fig. 2: Dual Queue Coupled AQM

sources ensure their packets are classified into the L4S queue
by setting ‘ECT(1)’, which is an experimental ECN codepoint
being redefined for L4S (see § V-A).

An L4S CC such as DCTCP achieves low latency, low
loss and low rate variations by driving the network to give it
frequent ECN marks. A Classic CC (TCP Reno, Cubic, etc.)
would starve itself if confronted with such frequent signals.

So the second design goal is coexistence between Classic
and L4S congestion controllers [27], meaning rough bal-
ance between their steady-state packet rates per RTT (a.k.a.
window-fairness or TCP-friendliness). Therefore, we couple
the congestion signals of the two queues and reduce the signal
intensity for Classic traffic to compensate for its stronger
response to each signal, in a similar way to the single-queue
coupled AQM in [17].

Introducing two queues creates a new problem: how often
to schedule each queue. We do not want to schedule based
on the number of flows in each, which would introduce all
the problems of per-flow queuing (§ II-C). Instead, we allow
the end-systems to ‘schedule’ themselves in response to the
congestion signals from each queue. However, whenever there
is contention we give the L4S queue priority, because L4S
sources can tightly control their own delay. Nonetheless, to
prevent Classic starving, priority is conditional not strict.

The schematic in Figure 2 shows the whole DualQ Coupled
AQM. with the classifier and scheduler as the first and last
stages. In the middle, each queue has its own native AQM
that determines dropping or marking even if the other queue
is empty.

B. Coupled AQM for Window Balance

To support co-existence between the Classic (C) and L4S
(L) congestion control families, we start with the equations
that characterize the steady-state window, W , of each as a
function of the loss or ECN-marking probability p. Then, like
[17], we set the windows to be equal to derive the coupling
relationship between the congestion signals for C and L.

We use Reno and DCTCP for C and L. We use Reno
because it is the worst case (weakest). We can ignore dynam-
ics, so we use the simplified Reno equation from [36]. For
L4S, we do not use the equation from the DCTCP paper [2],
which is only appropriate for step marking. Instead, we use
the DCTCP equation that is appropriate to our coupled AQM,

where marking is probabilistic, as derived in Appendix A of
[17]. For balance between the windows, Wreno =Wdc, which
becomes (1) by substituting from each window equation.
Then we rearrange into a generalized relationship for coupling
congestion signals in the network (2):√

3

2preno
=

2

pdc
(1) pC =

(pCL
k

)2
, (2)

where pCL is the signal coupled from C to L and coupling
factor k = 2

√
2/3 = 1.64 for Reno.

Appendix A of [17] shows that TCP Cubic [23] will be
comfortably within its Reno compatibility mode for the ‘Data
Centre to the Home’ scenarios that are the focus of this paper.
The coupling formula in (2) also applies when the Classic
traffic is TCP Cubic in Reno mode (‘CReno’), except it should
use k = 2/1.68 = 1.19.

To avoid floating point division in the kernel we round to
k = 2. In all our experiments this proves to be a sufficiently
accurate compromise for any Reno-friendly CC. It gives a
slight window advantage to Reno, and a little more to CReno.
However, any L4S source gives itself a counter-advantage by
virtue of its shallower queue. So L4S achieves a higher packet
rate with the same window because of it lower RTT. We do not
expend effort countering this rate imbalance in the network—
the proper place to address this is to ensure L4S sources will
be less RTT-dependent (see § V-B).

The coupling is implemented by structuring the AQM in two
stages (Figure 2). First what we call a ‘Base AQM’ outputs the
internal probability p′. Then p′ is transformed depending on
which traffic it is applied to. For Classic traffic it is squared,
pC = (p′)2. Whereas for L4S traffic it is applied linearly,
pCL = k ∗ p′. Substituting for p′ from the latter to the former
proves that pCL and pC will be coupled by equation (2) as
required.

Diversity of Base AQMs is possible and encouraged. Two
have been implemented and tested [18]: a variant of RED
and a proportional integral (PI) AQM. Both control queuing
time not queue size, given the rate of each queue varies
considerably [34], [40]. This paper uses the latter, because
it performs better.

[17] also couples two AQMs to enable coexistence of
different CCs, but within one queue, so there is not delay
isolation. It proves theoretically and experimentally that a PI
controller is a robust base AQM. It directly controls a scalable
control like DCTCP (rate proportional to 1/p′). And it shows
that squaring the output of a PI controller is a more effective,
more principled and simpler way of controlling TCP Reno
(rate proportional to 1/

√
p′) than PI Enhanced (PIE [41]). It

shows that the piecewise lookup table of scaling values used
by PIE was just a heuristic way of achieving the same effect
as squaring.

C. Dual Queue for Low Latency

Often, there will only be traffic in one queue, so each queue
needs its own native AQM. The L4S queue keeps delay low
using a shallow marking threshold (T), which has already
been proven for DCTCP. Because the dequeue rate varies

5

considerably, T is set in units of time [34], [4] with a floor
of two packets. The queue to compare against the threshold is
also measured in time units. On-off marking may [14] or may
not [33, §5] be prone to instability. But to test one change at
a time we deferred investigation of this to future research.

If there is traffic in both queues, an L4S packet can be
marked either by its native AQM or by the coupled AQM,
whichever outputs higher probability (see the max() function
in Figure 2). The coupling generally ensures that L4S traffic
only touches the threshold when it is bursty or if there is
insufficient Classic traffic.

Note that the L4S AQM emits ECN marks immediately and
the sender is expected to do any necessary smoothing. Whereas
the Classic AQM smooths its output, which introduces delay,
then Classic sources respond without delay.

To decide between the head packets of the two queues, we
have found that a weighted round robin (WRR) scheduler with
a high weight in favour of the L queue (e.g. 15/16) works
well. The actual weight is not critical, because classic traffic
gets L4S traffic to make space for it via the coupling, not
the scheduler. It is only necessary to ensure Classic packets
cannot be starved by unresponsive L4S traffic or long L4S
bursts. This also ensures that a new Classic flow can break
into a standing L4S queue.

We have also tried what we call a Time-Shifted FIFO
scheduler [37]. It selects the packet with the earliest arrival
timestamp, after subtracting a constant time-shift to favour
L4S packets. It performs nearly as well as WRR despite its
simplicity. However, it tends to allow long bursts of delay to
leak from the C to the L queue, so it is not used further in
this paper.

D. Overload Handling

Having introduced a priority scheduler, during overload we
must at least ensure that it gives unresponsive traffic no more
power to harm lower priority traffic than a single queue would.

Unresponsive traffic below the link rate just subtracts from
the overall capacity, irrespective of whether it classifies itself
as low (L4S) delay or regular (Classic) delay. Then the coupled
AQM still enables other responsive flows to share out the
remaining capacity by inducing the same balanced drop/mark
probability as they would in a single queue with the same
capacity subtracted.

To handle excessive unresponsive traffic, we simply switch
the AQM over to using the Classic drop probability for both
queues once the L4S marking probability saturates at 100%.
By equation (2) this occurs once drop probability reaches
(100%/k)2, which is 25% if k = 2. When a DCTCP source
detects a drop, it already falls back to classic behaviour, so
balance between flow rates is preserved.

The native L4S AQM also continues to ECN-mark packets
whenever its queue exceeds the threshold, so any responsive
L4S traffic maintains the ultra-low queuing delay of the L4S
service.

If there are no packets in the Classic queue, the base AQM
continues to evolve p′ using the L4S queue. As soon as
something starts to overload the L4S queue, this ensures the

correct level of drop, given L4S sources fall back to a Classic
response on detecting a drop. Nonetheless, with solely normal
L4S sources, the L4S queue will stay shallow and drive the
contribution from the base AQM (k ∗ p′) to zero.

E. Linux qdisc Implementation

Algorithm 1 Enqueue for Dual Queue Coupled AQM
1: STAMP(pkt) . Attach arrival time to packet
2: if LQ.LEN() + CQ.LEN() >L then
3: DROP(pkt) . Drop packet if Q is full
4: else
5: if LSB(ECN(pkt))==0 then . Not ECT or ECT(0)
6: CQ.ENQUEUE(pkt) . Classic
7: else . ECT(1) or CE
8: LQ.ENQUEUE(pkt) . L4S

Algorithm 2 Dequeue for Dual Queue Coupled AQM
1: while LQ.LEN() + CQ.LEN() >0 do
2: if SCHEDULER() == LQ then
3: LQ.DEQUEUE(pkt) . L4S
4: p′L = LAQM(LQ.TIME())
5: pL = MAX(p′L, pCL)
6: if pL > RAND() then
7: MARK(pkt)
8: else
9: CQ.DEQUEUE(pkt) . Classic

10: if pC > RAND() then
11: if ECN(pkt)==0 then . Not ECT
12: DROP(pkt) . Squared drop
13: continue . Redo loop
14: else . ECT(0)
15: MARK(pkt) . Squared mark
16: RETURN(pkt) . return the packet, stop here

Algorithms 1 & 2 summarize the per packet enqueue and
dequeue implementations of DualPI2 as pseudocode. The
AQMs are applied at dequeue to minimize signalling delay.
For clarity, overload and saturation logic are omitted, but they
can be found in the full open-sourced implementation of the
DualPI2 Linux qdisc [1].

On enqueue, packets are time-stamped and classified. The
function LEN() returns the the queue in bytes, while TIME()
returns the duration since a packet was time-stamped (its
sojourn or service time).

On dequeue, line 2 determines which head packet to take.
For this paper we use WRR as already explained, but the
pseudocode is generalized for any scheduler.

If an L4S packet is scheduled, line 4 runs the native L4S
AQM to output probability p′L dependent on the delay of the L
queue. This is a generalization for whatever native L4S AQM
is used, but for the present paper we use a simple [0,1] step
function at delay threshold T . Line 6 marks the packet if a
random marking decision is drawn according to the probability
pL, which the previous line has taken as the max of the outputs
of the native L4S AQM and the coupling.

If a Classic packet is scheduled, line 10 decides whether
to emit a congestion signal with probability pC . Then line
11 checks whether the Classic packet is not ECN-capable, in
which case it uses drop as the signal, otherwise it uses ECN.

The internal base signalling probability (p′) is kept up to
date by the core PI Algorithm (3) which only needs occasional
execution [26]. The change in queuing time is multiplied by
the proportional gain factor β. The integral gain factor α is

6

typically smaller, to restore any persistent standing queue to
the target delay. These expressions, which can be negative, are
added to the previous p′ every Tupdate (default 16 ms). Then
the Coupled and Classic signalling probabilities, pCL and pC
are derived from p′.

Algorithm 3 PI core: Every Tupdate p is updated
1: curq = CQ.TIME()
2: p′ = p′ + α ∗ (curq − TARGET) + β ∗ (curq − prevq)
3: pCL = k ∗ p′
4: pC = (p′)2

5: prevq = curq

IV. EVALUATION

A. Testbed Setup

We used a testbed to evaluate the proposed DualPI2 AQM
mechanism in a realistic setting, and to run repeatable experi-
ments in a controlled environment. The testbed was assembled
using carrier grade equipment in the same enviroment as
for testing customer solutions. Figure 11 depicts the testbed,
which consists of a classical residential service delivery net-
work composed of Residential Gateway, xDSL DSLAM (DSL
Access Multiplexer), BNG (Broadband Network Gateway),
Service Routers (SR) and application servers. The Residen-
tial Gateway is connected by VDSL to a DSLAM, which
is connected to the BNG through an aggregation network,
representing a local ISP or access wholesaler. Traffic is routed
to another network representing a global ISP that hosts the
application servers and offers breakout to the Internet. The
client computers in the home network and the application
servers at the global ISP are Linux machines, which can be
configured to use any TCP variant, start applications and test
traffic. The two client-server pairs (A and B) are respectively
configured with the same TCP variants and applications.

Fig. 11: Testbed configuration

In a production access network, per-customer queues form
the leaves of a hierarchical scheduling tree and they are
deliberately arranged as the downstream bottleneck for each
customer. Traffic from the client-server pairs is routed from the
BNG through a Linux box (‘AQM server’), which acts as the
rate bottleneck where we configure the different AQMs being
evaluated for the BNG. This server also emulates extra delay,
controls the experiments, captures the traffic and analyses it.
In practice it would also be important to deploy an AQM in
the home gateway, but in our experiments the ACK traffic was
below the upstream capacity.

The two client computers were connected to a modem
using 100 Mbps Fast Ethernet; the xDSL line was configured
at 48 Mbps downstream and 12 Mbps upstream; the links

between network elements consisted of at least 1GigE con-
nections. The base RTT (T0) between the clients and servers
was 7ms, which was primarily due to the interleaved Forward
Error Correction (FEC) configured for xDSL. We configured
the different bottlenecks on the AQM server at the BNG on the
downstream interface where the AQM was configured. Extra
delay was configured on the upstream interface using a netem
qdisc, to compose the total base RTTs tested.

To support higher bottleneck rates and lower RTTs all ex-
periments were performed with the clients connected directly
to the BNG with 1GigE connections. Those experiments fitting
within xDSL limits were validated on the full testbed and
compared, showing near identical results. All Linux computers
were Ubuntu 14.04 LTS with kernel 3.18.9, which contained
the implementations of the TCP variants and AQMs.

We used DCTCP for the Scalable congestion control and
Cubic for Classic. Cubic was used with default configuration,
while for DCTCP, we used the implementation delivered with
Linux kernel 3.19. We used an older version of DCTCP to
avoid bugs introduced in later versions. Since this version of
DCTCP did not correctly respond to drops, we patched it to
align its drop response with Reno. We also modeified it to use
the ECT(1) codepoint. For ECN-Cubic, we enabled TCP ECN
negotiation. We compared DualPI2 with PIE and FQ-CoDel,
all configured as in Table I. The α: and β values for PIE are
equivalent to those used for DualPI2, but PIE scales the input
parameters internally.

All Buffer: 40,000 pkt, ECN enabled
PIE Target delay: 15 ms, Burst: 100 ms, TUpdate: 16 ms, α: 1/16, β:

10/16, ECN drop: 25%
FQ-CoDel Target delay: 5 ms, Burst: 100 ms
DualPI2 Target delay: 15 ms, TUpdate: 16 ms, L4S T: 1 ms, WRR C

weight: 10%, α: 0.16, β: 3.2, k: 2, Classic ECN drop: 25%

TABLE I: Default parameters for the different AQMs.

B. Experimental Approach

For traffic load we used long-running flows
(§§ IV-C & IV-D) and/or dynamic short flows (§ IV-C).
We used long flows, not as an example of a realistic Internet
traffic mix, rather to aid interpretation of various effects, such
as starvation.

The set of experiments was constructed to evaluate our two
main performance goals: queuing delay and window balance.
We also show rate balance, link utilization and drop/mark
probability, as well as flow completion times in short flow
experiments. More details about which metrics we use for
the evaluation are presented in § IV-F. Heavy load scenarios
predominate in our setup of experiments, again not because
they are typical, but because they do occur and they are the
worst case.

We mixed different number of flows, evaluated flows with
different congestion controls (CCs) and RTTs, and to verify
behaviour on overload (§ IV-E), we injected unresponsive UDP
load, both ECN and Not-ECN capable.

In this paper we present those combinations of CC and
AQM that each AQM is intended to support: DCTCP with
Cubic on DualPI2 and FQ-CoDel and ECN-Cubic with Cubic
on PIE.

7

We configured PIE with ECN and used a modified version
of FQ-CoDel, where L4S support was added byusing a shallow
ECN marking threshold for any ECT(1) packet, with an
additional check to ensure that the threshold is only applied
if there is more than 1 packet in the queue. The queue length
check was added to prevent 100% marking at lower link rates,
considering that packet serialisation in such cases takes longer.

Each experiment (lasting 250 s) was performed with a
specified TCP variant configured on each client-server pair A
and B and a specified AQM, bottleneck link speed and RTT
on the AQM server.

C. Experiments with equal RTT

We performed a set of experiments to evaluate the perfor-
mance of the AQMs in a scenario where all competing flows
in each experiment had equal RTTs. We used 4 scenarios: 1)
1-1: 1 long running flow for each CC; 2) 1h:1h: 1 long running
flow with added dynamic flows (high load) for each CC; 3)
different combinations of flows for each CC in the range of
0-10; 4) 1h-1h + 1l-1l: 1 long running flow for each CC with
high and low intensity of dynamic short flows respectively.

The first two scenarios were evaluated with 25 combinations
of 5 RTTs (5, 10, 20, 50 and 100 ms) and 5 link speeds (4,
12, 40, 120 and 200 Mbps).

In some scenarios, on top of the long flow experiments,
we added emulated web traffic load patterns between each
client-server pair, to evaluate the dynamic behaviour of the
AQMs with their congestion controllers. For this we used an
exponential arrival process with an average of 1 (low load) or
10 (high load) requested items per second for the 4 Mbps link
capacity, scaled for the higher link speeds up to 50 (low) or 500
(high) requests for the 200 Mbps links. Every request opened
a new TCP connection, closed by the server after sending data
with a size according to a Pareto distribution with α = 0.9
and a minimum size of 1 KB and maximum 1 MB.

To differentiate between experiments with low and high
dynamic traffic load, we denote them as ’1h-1h’ and ’1l-1l’
cases respectively, where ’1’ stands for one long running flow,
’h’ for high and ’l’ for low web traffic intensity.

For experiments with different flow combinations (third
scenario, presented in Figure 6), the X-axis shows how many
A and B flows were competing in each combination, while the
legend states which congestion control was used for A and B
flows.

D. Experiments with different RTTs

To evaluate the RTT-dependence of the windows and rates
of different CCs, we conducted additional experiments with
one flow per client server pair, each having different base
RTTs. In addition, we added experiments where ECN-capable
flows with shortest and longest RTTs were running alone. We
used different combinations of the same RTTs we used in
equal RTT experiments (5, 10, 20, 50 and 100 ms). These
experiments were repeated for the 5 link speeds, but in this
paper, we only show results for 40Mbps link speed and 10ms
RTT as a representative example. In Figure 8 and Figure 9,
the X-axis denotes the RTT used for each of the two flows (A

and B), while the legend states which congestion control was
used for each of the A and B flows respectively.

E. Overload experiments

To validate the correct overload behaviour, we added an
unresponsive UDP flow to 5 long-running flows of each
congestion control type (ECN and non-ECN) over a 100 Mbps
bottleneck link with 10 ms base RTT. For each AQM we ran 2
sets of tests with the UDP traffic marked as either ECN/L4S or
non-ECN. Each set tested 5 different UDP rates (50, 70, 100,
140 and 200 Mbps. Both UDP class (ECN/L4S or non-ECN)
and UDP rate are shown on X-axis in Figure 10)

F. Evaluation metrics

 0.01

 0.1

 1

 10

1 3 9 27 81 243 729

C
o
m

p
le

ti
o
n
 t

im
e

[l
o
g
(s

ec
)]

Transfer size [KB]

minimal completion time

 0.01

 0.1

 1

1 3 9 27 81 243 729

C
o
m

p
le

ti
o
n
 e

ff
ic

ie
n
cy

[l
o
g
(s

ec
/s

ec
)]

Transfer size [KB]

DCTCP Cubic

Fig. 12: Completion time against efficiency representation for
1 long flow and high dynamic load each on a 40 Mbps link
with 10 ms base RTT.

Queuing delay was measured inside the qdiscs per packet,
at dequeue time. All samples were further processed to derive
mean and 99th percentile.

Drop probability was also measured inside the qdiscs by
keeping the counter of dropped packets, while mark probabil-
ity was obtained by inspecting the packet headers and checking
which packets were marked. Both mark and drop probability
are represented as a percentage of all packets that passed the
network interface where the qdisc was installed. All collected
1-second samples per experiment were processed to obtain
mean, 25th and 99th percentiles.

To evaluate the stability of rate and window, we measured
throughput for each long-running flow by capturing all traffic
at the AQM node. Since some experiments had unequal
number of flows for each CC, we sampled average rate per
flow and normalized it by dividing by the fair rate per flow.
Fair rate was calculated by dividing the total link capacity
by total number of competing flows. The same approach
was applied to window measurements. All rate and window
measurements were sampled per second, and all samples were
further processed to derive mean, 1st and 99th percentiles.
Rate and window balance ratio was calculated by diving
average rate/window per flow of ECN-capable CC by average
rate/window per flow of Classic CC for the entire experiment.

Utilisation was measured by comparing all traffic captured
at the interface to the total link capacity in 1-second intervals;
as with other measurements, we derived mean, 1st and 99th

percentiles by processing all obtained samples.

8

For short dynamic flows, the client logged the completion
time and downloaded size. Timing was started just before
opening the TCP socket, and stopped after the connection close
by the server was detected.

The left-hand side of Figure 12 shows a log-log scatter plot
of the completion time to item size relation for the high load
DualPI2 AQM test case on a 40 Mbps link with 10 ms base
RTT. The green line is the theoretically achievable completion
time, taking the RTT into account but downloading at full link
speed from the start.

To better quantify the average and percentiles of the comple-
tion times, we used the Completion Efficiency representation
on the right of Figure 12. To calculate its completion efficiency
for each item we divided actual by theoretical completion time.
We then binned the samples in log scale bins (base 3) and
calculated the average, 1st and 99th percentiles. The green
theoretical completion time is now at 1 (maximum efficiency).

G. Results

{Editorial note: Originally, this paper contained a selection
of plots to fit a page limit. Instead, the full set of results
has been included at the end. The commentary explaining the
selected results has been suppressed to avoid confusion.}

V. DEPLOYMENT CONSIDERATIONS

A. Standardization Requirements

The IETF has taken on L4S standardization work [13]. [19]
considers the pros and cons of various candidate identifiers for
L4S and finds that none are without problems, but proposes
ECT(1) as the least worst. As a consequence, the IETF has
updated the ECN standard at the IP layer (v4 and v6) to make
the ECT(1) codepoint available for experimentation [7].

The main issue is that there is only one spare codepoint. So,
if it is used to distinguish L and C packets, congestion marking
has to use the same Congestion Experienced (CE) codepoint
for both L & C packets. This is not a problem for hosts.
However, in the (unusual) case of multiple ECN bottlenecks
along one path, any packet already marked CE upstream will
have to be classified into the L queue, irrespective of whether
it was originally C or L. This could lead to an unusual
form of reordering where a few packets arrive early. The
IETF considers this acceptable because subsequent packets
still advance the ACK counter [19] so TCP normally handles it
without any spurious retransmissions—except in the unlikely
case where a Classic ECN flow experiences a solid run of CE
marks longer than the reordering window.

The IETF has defined the semantics of the new identifier.
The ‘Classic’ ECN standard [42] defines a CE mark as equiv-
alent to a drop, so queuing delay with Classic ECN cannot
be better than with drop (this may be why operators have
not deployed Classic ECN [45, §5]). The square relationship
between an L4S mark and a drop in this paper (Eqn. (2)) has
been proposed for experimental standardization [19]. It has
been proposed to recommend rather than standardize a value
for the coupling factor, k, given differences would not prevent
interoperability.

The IETF has also specified how operators could classify
L4S on additional identifiers as well as ECN (e.g. address
range or VLAN ID), which they might use for initial exclu-
sivity, without compromising long-term interoperability.

The IETF has also adopted a specification of the dualQ cou-
pled AQM mechanism [18] so that multiple implementations
can be built, tested and compared, possibly using different
base AQMs internally.

B. Congestion Control Roadmap

This paper uses DCTCP unmodified (except for the code-
point)in all experiments i) to focus the parameter space of
our experiments on the network mechanism, without which
end-system performance improvements would be moot; and
ii) to emphasize that the end-system side of the multi-
party deployment is already available (in windows, Linux
and FreeBSD), at least for testing purposes. Nonetheless,
numerous improvements to DCTCP can be envisaged for this
new public Internet scenario. They are listed below in priority
order starting with those necessary for safety, and ending with
performance improvements. They are a summary of the L4S
transport layer behaviours identified by the IETF [19], which
are in turn are adapted from the “Prague L4S requirements”,
named after the meeting in Prague of a large group of DCTCP
developers that informally agreed them [9]. Since, a variant
of DCTCP called TCP Prague has been implemented for
Linux [11] to address them:

1) Fall back to Reno/Cubic on loss;
2) Negotiate altered feedback semantics [31], [12];
3) Use of a standardized packet identifier [19];
4) Handle a window of less than 2, rather than grow the

queue if base RTT is low [11, §3.1.6];
5) Smooth ECN feedback over a timescale measured in the

flow’s own round trips [3, §5];
6) Fall back to Reno/Cubic if increased delay of classic ECN

bottleneck detected;
7) Faster-than-additive increase, e.g. Adaptive Acceleration

(A2DTCP) [48] or Paced Chirping [38];
8) Less drastic exit from slow-start, similar goal to Flow-

Aware (FA-DCTCP) [28] or Paced Chirping [39];
9) Reduce RTT-dependence of rate [3, §5] (see below).
With tail-drop queues, so-called ‘RTT-unfairness’ had never

been a great cause for concern because the RTTs of all long-
running flows included a common queuing delay component
that was no less than worst-case base RTT (due to the historical
rule of thumb for sizing access link buffers2 at 1 worst-
case RTT). So, even where the ratio between base delays
was extreme, the ratio between total RTTs rarely exceeded 2
(e.g. if worst-case base RTT is 100 ms, worst-case total RTT
imbalance tends to (100 + 100)/(0 + 100).

However, Classic AQMs reduce queuing delay to a typical,
rather than worst-case, RTT. For instance, with PIE, the
queuing delay common to each flow is 15 ms. Therefore,
worst-case rate imbalance will be (100 + 15)/(0 + 15) ≈ 8.

2Note that access buffers cannot exploit such high flow aggregation as in
the core [21]

9

Traditionally, because of the cushioning effect of queuing
delay, even when base RTTs are extremely imbalanced rates
are not. But, because L4S all-but eliminates queuing delay, it
exposes the full effect of the ‘RTT-unfairness’ issue.

We do not believe the network needs to be involved in
addressing this problem. RTT-dependence is a feature of end-
to-end congestion controls, so that is where it should be
addressed. Classic CCs will not need to change, because
classic queues will still need to be large to avoid under-
utilization. However, L4S congestion controls will need to be
less RTT-dependent, to avoid starving any L4S and Classic
flows with larger RTTs (hence reduced RTT-dependence has
been added to the Prague L4S requirements above).

As a fortunate side-effect, it will be easier to define the
coupling factor k (see § III-B) to balance throughput between
RTT-independent L4S traffic and large-queued Classic traffic.

C. Deployment Scenarios

The applicability of the DualQ is of course not limited
to fixed public access networks. The DualQ Coupled AQM
should also enable DCTCP to be deployed across multi-
tenant data centres or across community of interest networks
connecting private data centres—anywhere where the lack of
a centralized system-admin makes coordinated deployment of
DCTCP impractical. The most likely DC bottlenecks could
be prioritized for deployment, e.g. at the ingress and egress
of hypervisors or top-of-rack switches depending on topology,
and at WAN access points.

In mobile networks the bottleneck is usually the radio access
where buffering is more complex, but in principle an AQM
similar to the Coupled DualQ ought to work.

VI. RELATED WORK

In 2002, Gibbens and Kelly [22] developed a scheme to
mark ECN in a priority queue based on the combined length
of both queues. However, they were not trying to serve
different congestion controllers as in the present work. In 2005
Kuzmanovic [33, §5] presaged the main elements of DCTCP
showing that ECN should enable a naı̈ve unsmoothed threshold
marking scheme to outperform sophisticated AQMs like the
proportional integral (PI) controller. It assumed smoothing at
the sender, as earlier proposed by Floyd [20].

Wu et al. [46] investigates a way to incrementally deploy
DCTCP within data centres, marking ECN when the tem-
poral queue exceeds a shallow threshold but using standard
ECN [42] on end-systems. Kuhlewind et al. [32] showed that
DCTCP and Reno could co-exist in the same queue configured
with a form of WRED [15] classifying on ECN rather than
Diffserv. Judd [29] uses Diffserv scheduling to partition data
centre switches between DCTCP and classic traffic in a
financial data centre scenario, but as already explained this
relies on management configuration based on prediction of the
traffic matrix and its dynamics, which becomes hard on low
stat-mux links. Fair Low Latency (FaLL) [47] is an AQM for
DC switches building on CoDel [40]. Unlike the DualQ, FaLL
inspects the transport layer of sample packets to focus more
marking onto faster flows while keeping the queue short.

VII. CONCLUSION

Classic TCP induces two impairments: queuing delay and
loss. A good AQM can reduce queuing delay but then TCP
induces higher loss. In a low stat-mux link, there is a limit to
how much an AQM can reduce queuing delay without TCP’s
sawteeth introducing a third impairment: under-utilization.
Thus TCP is like a balloon: when the network squeezes one
impairment, another bulges out.

This paper moves on from debating where the network
should best squeeze the TCP balloon. It recognizes that the
problem is now wholly outside the network: Classic TCP
(the balloon itself) is the problem. But this does not mean
the solution is also wholly outside the network. This paper
has shown that the network plays a crucial role in enabling
hosts to transition away from the Classic TCP balloon. The
‘DualQ Coupled AQM’ detailed in this paper is not notable as
somehow a ‘better’ AQM than others. Rather, it is notable as
a coupling between two AQMs in two queues—as a transition
mechanism to enable hosts to kick out their old TCP balloon.

Hosts will then be able to transition to a member of the
family of scalable congestion controls. This can still be likened
to a balloon. But it is a tiny balloon (near-zero impairments)
and, importantly, it will stay the same tiny size (invariant
impairments as BDP scales). Whereas the Classic TCP balloon
is continuing to grow (worsening impairments) as BDP scales.
This is why we call the new Internet service ‘Low Latency
Low Loss Scalable throughput’ (L4S).

The paper provides not just the mechanism but also the
incentive for transition—the tiny size of all the impairments.
For link rates from 4–200 Mb/s and RTTs from 5–100 ms, our
extensive testbed experiments with a wide range of heavy
load scenarios have shown near-zero congestion loss; sub-
millisecond average queuing delay (roughly 500µs) with tight
variance; and near-full utilization.

We have been careful as far as possible to do no harm to
those still using the Classic service. Also, given the network
splits traffic into two queues, when it merges them back
together, we have taken great care that it does not enforce flow
‘fairness’. Nonetheless, if hosts are aiming for flow ‘fairness’
they will get it, while remaining oblivious to the difference
between Scalable and Classic congestion controls.

We have been careful to handle overload in the same
principled way as normal operation, preserving the same ultra-
low delay for L4S packets, and dropping excess load as if the
two queues were one.

And finally, we have been careful to heed the zero-config
requirement of recent AQM research, not only ensuring the
AQMs inherently auto-tune to link rate, but also shifting RTT-
dependent smoothing to end-systems, which know their own
RTT.

REFERENCES

[1] ALBISSER, O., DE SCHEPPER, K., BRISCOE, B., TILMANS, O., AND
STEEN, H. DUALPI2 - Low Latency, Low Loss and Scalable (L4S)
AQM. In Proc. Netdev 0x13 (Mar. 2019).

[2] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PATEL,
P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M. Data
Center TCP (DCTCP). Proc. ACM SIGCOMM’10, Computer Commu-
nication Review 40, 4 (Oct. 2010), 63–74.

10

[3] ALIZADEH, M., JAVANMARD, A., AND PRABHAKAR, B. Analysis of
DCTCP: Stability, Convergence, and Fairness. Proc. ACM SIGMET-
RICS’11 (2011).

[4] BAI, W., CHEN, K., CHEN, L., KIM, C., AND WU, H. Enabling
ECN over Generic Packet Scheduling. In Proc. Int’l Conf Emerging
Networking EXperiments and Technologies (New York, NY, USA, 2016),
CoNEXT ’16, ACM, pp. 191–204.

[5] BANSAL, D., AND BALAKRISHNAN, H. Binomial Congestion Control
Algorithms. In Proc. IEEE Conference on Computer Communications
(Infocom’01) (Apr. 2001), IEEE, pp. 631–640.

[6] BELSHE, M., PEON, R., AND THOMSON (ED.), M. Hypertext Transfer
Protocol version 2 (HTTP/2). Request for Comments 7540, RFC Editor,
May 2015.

[7] BLACK, D. Relaxing Restrictions on Explicit Congestion Notification
(ECN) Experimentation. Request for Comments RFC8311, RFC Editor,
Jan. 2018.

[8] BONDARENKO, O., DE SCHEPPER, K., TSANG, I.-J., BRISCOE, B.,
PETLUND, A., AND GRIWODZ, C. Ultra-Low Delay for All: Live
Experience, Live Analysis. In Proc. ACM Multimedia Systems; Demo
Session (New York, NY, USA, May 2016), ACM, pp. 33:1–33:4.

[9] BRISCOE, B. [tcpPrague] Notes: DCTCP evolution ’bar
BoF’: Tue 21 Jul 2015, 17:40, Prague. Archived mailing
list posting URL: https://mailarchive.ietf.org/arch/msg/tcpprague/
mwWncQg3egPd15FItYWiEvRDrvA, July 2015.

[10] BRISCOE, B., BRUNSTROM, A., PETLUND, A., HAYES, D., ROS, D.,
TSANG, I.-J., GJESSING, S., FAIRHURST, G., GRIWODZ, C., AND
WELZL, M. Reducing Internet Latency: A Survey of Techniques and
their Merits. IEEE Communications Surveys & Tutorials 18, 3 (Q3
2016), 2149–2196.

[11] BRISCOE, B., DE SCHEPPER, K., ALBISSER, O., MISUND, J.,
TILMANS, O., KÜHLEWIND, M., AND AHMED, A. S. Implementing
the ‘TCP Prague’ Requirements for L4S. In Proc. Netdev 0x13 (Mar.
2019).

[12] BRISCOE, B., KÜHLEWIND, M., AND SCHEFFENEGGER, R. More
Accurate ECN Feedback in TCP. Internet Draft draft-ietf-tcpm-accurate-
ecn-08, Internet Engineering Task Force, Mar. 2019. (Work in Progress).

[13] BRISCOE (ED.), B., DE SCHEPPER, K., AND BAGNULO, M. Low
Latency, Low Loss, Scalable Throughput (L4S) Internet Service: Archi-
tecture. Internet Draft draft-ietf-tsvwg-l4s-arch-03, Internet Engineering
Task Force, Oct. 2018. (Work in Progress).

[14] CHEN, W., CHENG, P., REN, F., SHU, R., AND LIN, C. Ease the
Queue Oscillation: Analysis and Enhancement of DCTCP. In Distributed
Computing Systems (ICDCS), 2013 IEEE 33rd International Conference
on (July 2013), pp. 450–459.

[15] CLARK, D. D., AND FANG, W. Explicit allocation of best-effort packet
delivery service. IEEE/ACM Transactions on Networking 6, 4 (Aug.
1998), 362–373.

[16] DAVIE, B., ET AL. An Expedited Forwarding PHB (Per-Hop Behavior).
Request for Comments 3246, Internet Engineering Task Force, Mar.
2002.

[17] DE SCHEPPER, K., BONDARENKO, O., TSANG, I.-J., AND BRISCOE,
B. PI2 : A Linearized AQM for both Classic and Scalable TCP. In
Proc. ACM CoNEXT 2016 (New York, NY, USA, Dec. 2016), ACM.

[18] DE SCHEPPER, K., BRISCOE (ED.), B., ALBISSER, O., AND TSANG,
I.-J. DualQ Coupled AQM for Low Latency, Low Loss and Scalable
Throughput (L4S). Internet Draft draft-ietf-tsvwg-aqm-dualq-coupled-
08, Internet Engineering Task Force, Nov. 2018. (Work in Progress).

[19] DE SCHEPPER, K., BRISCOE (ED.), B., AND TSANG, I.-J. Identifying
Modified Explicit Congestion Notification (ECN) Semantics for Ultra-
Low Queuing Delay (L4S). Internet Draft draft-ietf-tsvwg-ecn-l4s-id-06,
Internet Engineering Task Force, Mar. 2019. (Work in Progress).

[20] FLOYD, S. TCP and Explicit Congestion Notification. ACM SIGCOMM
Computer Communication Review 24, 5 (Oct. 1994), 10–23. (This issue
of CCR incorrectly has ’1995’ on the cover).

[21] GANJALI, Y., AND MCKEOWN, N. Update on Buffer Sizing in Internet
Routers. ACM SIGCOMM Computer Communication Review 36 (Oct.
2006).

[22] GIBBENS, R. J., AND KELLY, F. P. On Packet Marking at Priority
Queues. IEEE Transactions on Automatic Control 47, 6 (June 2002),
1016–1020.

[23] HA, S., RHEE, I., AND XU, L. CUBIC: a new TCP-friendly high-speed
TCP variant. SIGOPS Operating Systems Review 42, 5 (July 2008),
64–74.

[24] HOEILAND-JOERGENSEN, T., MCKENNEY, P., TÄHT, D., GETTYS, J.,
AND DUMAZET, E. The FlowQueue-CoDel Packet Scheduler and Active
Queue Management Algorithm. Request for Comments RFC8290, RFC
Editor, Jan. 2018.

[25] HOHLFELD, O., PUJOL, E., CIUCU, F., FELDMANN, A., AND BAR-
FORD, P. A QoE Perspective on Sizing Network Buffers. In Proc.
Internet Measurement Conf (IMC’14) (Nov. 2014), ACM, pp. 333–346.

[26] HOLLOT, C. V., MISRA, V., TOWSLEY, D., AND GONG, W. Analysis
and design of controllers for AQM routers supporting TCP flows. IEEE
Transactions on Automatic Control 47, 6 (Jun 2002), 945–959.

[27] IRTEZA, S., AHMED, A., FARRUKH, S., MEMON, B., AND QAZI, I. On
the Coexistence of Transport Protocols in Data Centers. In Proc. IEEE
Int’l Conf. on Communications (ICC 2014) (June 2014), pp. 3203–3208.

[28] JOY, S., AND NAYAK, A. Improving Flow Completion Time for Short
Flows in Datacenter Networks. In Int’l Symposium on Integrated
Network Management (IM 2015) (May 2015), IFIP/IEEE, pp. 700–705.

[29] JUDD, G. Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15) (Oakland, CA, May 2015), USENIX
Association, pp. 145–157.

[30] KELLY, T. Scalable TCP: Improving Performance in Highspeed Wide
Area Networks. ACM SIGCOMM Computer Communication Review 32,
2 (Apr. 2003).

[31] KÜHLEWIND, M., SCHEFFENEGGER, R., AND BRISCOE, B. Problem
Statement and Requirements for Increased Accuracy in Explicit Conges-
tion Notification (ECN) Feedback. Request for Comments 7560, RFC
Editor, Aug. 2015.

[32] KÜHLEWIND, M., WAGNER, D. P., ESPINOSA, J. M. R., AND
BRISCOE, B. Using Data Center TCP (DCTCP) in the Internet. In Proc.
Third IEEE Globecom Workshop on Telecommunications Standards:
From Research to Standards (Dec. 2014), pp. 583–588.

[33] KUZMANOVIC, A. The Power of Explicit Congestion Notification. Proc.
ACM SIGCOMM’05, Computer Communication Review 35, 4 (2005).

[34] KWON, M., AND FAHMY, S. A Comparison of Load-based and Queue-
based Active Queue Management Algorithms. In Proc. Int’l Soc. for
Optical Engineering (SPIE) (2002), vol. 4866, pp. 35–46.

[35] MATHIS, M. Relentless Congestion Control. In Proc. Int’l Wkshp
on Protocols for Future, Large-scale & Diverse Network Transports
(PFLDNeT’09) (May 2009).

[36] MATHIS, M., SEMKE, J., MAHDAVI, J., AND OTT, T. The macroscopic
behavior of the TCP Congestion Avoidance algorithm. Computer
Communication Review 27, 3 (July 1997).

[37] MENTH, M., SCHMID, M., HEISS, H., AND REIM, T. MEDF - a simple
scheduling algorithm for two real-time transport service classes with
application in the UTRAN. In Proc. IEEE Conference on Computer
Communications (INFOCOM’03) (Mar. 2003), vol. 2, pp. 1116–1122.

[38] MISUND, J., AND BRISCOE, B. Paced Chirping - Rethinking TCP start-
up. In Proc. Netdev 0x13 (Mar. 2019).

[39] MISUND, J., AND BRISCOE, B. Paced Chirping: Rapid flow start with
very low queuing delay. In Proc. IEEE Global Internet Symp. (May
2019), IEEE.

[40] NICHOLS, K., AND JACOBSON, V. Controlling Queue Delay. ACM
Queue 10, 5 (May 2012).

[41] PAN, R., PIGLIONE, P. N. C., PRABHU, M., SUBRAMANIAN, V.,
BAKER, F., AND VER STEEG, B. PIE: A Lightweight Control Scheme
To Address the Bufferbloat Problem. In High Performance Switching
and Routing (HPSR’13) (2013), IEEE.

[42] RAMAKRISHNAN, K. K., FLOYD, S., AND BLACK, D. The Addition of
Explicit Congestion Notification (ECN) to IP. Request for Comments
3168, RFC Editor, Sept. 2001.

[43] SALIM, J. H., AND AHMED, U. Performance Evaluation of Explicit
Congestion Notification (ECN) in IP Networks. Request for Comments
2884, RFC Editor, July 2000.

[44] STEEN, H. Destruction Testing: Ultra-Low Delay using Dual Queue
Coupled Active Queue Management. Masters thesis, Department of
Informatics, University of Oslo, Spring 2017.

[45] WELZL, M., AND FAIRHURST, G. The Benefits of using Explicit
Congestion Notification (ECN). Request for Comments RFC8087, RFC
Editor, Mar. 2017.

[46] WU, H., JU, J., LU, G., GUO, C., XIONG, Y., AND ZHANG, Y. Tuning
ECN for Data Center Networks. In Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies
(New York, NY, USA, 2012), CoNEXT ’12, ACM, pp. 25–36.

[47] XUE, L., CHIU, C.-H., KUMAR, S., KONDIKOPPA, P., AND PARK,
S.-J. FaLL: A fair and low latency queuing scheme for data center
networks. In Intl. Conf. on Computing, Networking and Communications
(ICNC 2015) (Feb. 2015), pp. 771–777.

[48] ZHANG, T., WANG, J., HUANG, J., HUANG, Y., CHEN, J., AND PAN,
Y. Adaptive-Acceleration Data Center TCP. IEEE Transactions on
Computers 64, 6 (June 2015), 1522–1533.

https://mailarchive.ietf.org/arch/msg/tcpprague/mwWncQg3egPd15FItYWiEvRDrvA
https://mailarchive.ietf.org/arch/msg/tcpprague/mwWncQg3egPd15FItYWiEvRDrvA

11

 0.01

 0.1

 1

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

1 3 9 2
7

8
1

2
4
3

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

C
o
m

p
le

ti
o
n
 e

ff
ic

ie
n
cy

 [
lo

g
(s

ec
/s

ec
)]

RTT[ms]: 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

ECN-Cubic Cubic DCTCP

Bin start[KB]:

(a) 4Mbps link capacity

 0.01

 0.1

 1

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

C
o
m

p
le

ti
o
n
 e

ff
ic

ie
n
cy

 [
lo

g
(s

ec
/s

ec
)]

RTT[ms]: 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

ECN-Cubic Cubic DCTCP

Bin start[KB]:

(b) 12Mbps link capacity

 0.01

 0.1

 1

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

C
o
m

p
le

ti
o
n
 e

ff
ic

ie
n
cy

 [
lo

g
(s

ec
/s

ec
)]

RTT[ms]: 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

ECN-Cubic Cubic DCTCP

Bin start[KB]:

(c) 40Mbps link capacity

 0.01

 0.1

 1

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

C
o
m

p
le

ti
o
n
 e

ff
ic

ie
n
cy

 [
lo

g
(s

ec
/s

ec
)]

RTT[ms]: 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

ECN-Cubic Cubic DCTCP

Bin start[KB]:

(d) 120 Mbps link capacity

 0.01

 0.1

 1

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

1 3 9 2
7

8
1

2
4
3

7
2
9

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

C
o
m

p
le

ti
o
n
 e

ff
ic

ie
n
cy

 [
lo

g
(s

ec
/s

ec
)]

RTT[ms]: 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

ECN-Cubic Cubic DCTCP

Bin start[KB]:

(e) 200 Mbps link capacity

Fig. 3: Equal RTT (1h-1h)

12

 0.01

 0.1

 1

 10

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

R
at

e
b
al

an
ce

 [
ra

ti
o
]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic/Cubic ratio DCTCP/Cubic ratio

RTT[ms]:

 0.01

 0.1

 1

 10

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

W
in

d
o
w

 b
al

an
ce

 [
ra

ti
o
]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic/Cubic ratio DCTCP/Cubic ratio

RTT[ms]:

 0
 20
 40
 60
 80

 100
 120
 140

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

Q
u
eu

e
d
el

ay
 [

m
s]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic mean, P99 Cubic mean, P99 DCTCP mean, P99

RTT[ms]:

 50

 60

 70

 80

 90

 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

L
in

k
 u

ti
li

sa
ti

o
n
 [

%
]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic+Cubic P1, mean, P99 DCTCP+Cubic P1, mean, P99

RTT[ms]:

 0.001

 0.01

 0.1

 1

 10

 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

D
ro

p
/M

ar
k
 p

ro
b
ab

il
it

y
 [

%
]

lo
g
sc

al
e

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

Drops Cubic P25, mean, P99
Drops ECN-Cubic P25, mean, P99

Marks ECN-Cubic P25, mean, P99
Drops DCTCP P25, mean, P99

Marks DCTCP P25, mean, P99

RTT[ms]:

Fig. 4: Equal RTT (1-1)

13

 0.01

 0.1

 1

 10

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

R
at

e
b
al

an
ce

 [
ra

ti
o
]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic/Cubic ratio DCTCP/Cubic ratio

RTT[ms]:

 0.01

 0.1

 1

 10

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

W
in

d
o
w

 b
al

an
ce

 [
ra

ti
o
]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic/Cubic ratio DCTCP/Cubic ratio

RTT[ms]:

 0
 20
 40
 60
 80

 100
 120
 140

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

Q
u
eu

e
d
el

ay
 [

m
s]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic mean, P99 Cubic mean, P99 DCTCP mean, P99

RTT[ms]:

 50

 60

 70

 80

 90

 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

L
in

k
 u

ti
li

sa
ti

o
n
 [

%
]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

ECN-Cubic+Cubic P1, mean, P99 DCTCP+Cubic P1, mean, P99

RTT[ms]:

 0.001

 0.01

 0.1

 1

 10

 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100
5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

D
ro

p
/M

ar
k
 p

ro
b
ab

il
it

y
 [

%
]

lo
g
sc

al
e

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

Drops Cubic P25, mean, P99
Drops ECN-Cubic P25, mean, P99

Marks ECN-Cubic P25, mean, P99
Drops DCTCP P25, mean, P99

Marks DCTCP P25, mean, P99

RTT[ms]:

Fig. 5: Equal RTT (1h-1h)

14

 0.1

 1

 10

A
1
-B

1
A

2
-B

2
A

3
-B

3
A

4
-B

4
A

5
-B

5
A

6
-B

6
A

7
-B

7
A

8
-B

8
A

9
-B

9
A

1
0
-B

1
0

A
0
-B

1
0

A
1
-B

9
A

2
-B

8
A

3
-B

7
A

4
-B

6
A

6
-B

4
A

7
-B

3
A

8
-B

2
A

9
-B

1
A

1
0
-B

0
A

1
-B

1
A

2
-B

2
A

3
-B

3
A

4
-B

4
A

5
-B

5
A

6
-B

6
A

7
-B

7
A

8
-B

8
A

9
-B

9
A

1
0
-B

1
0

A
0
-B

1
0

A
1
-B

9
A

2
-B

8
A

3
-B

7
A

4
-B

6
A

6
-B

4
A

7
-B

3
A

8
-B

2
A

9
-B

1
A

1
0
-B

0
A

1
-B

1
A

2
-B

2
A

3
-B

3
A

4
-B

4
A

5
-B

5
A

6
-B

6
A

7
-B

7
A

8
-B

8
A

9
-B

9
A

1
0
-B

1
0

A
0
-B

1
0

A
1
-B

9
A

2
-B

8
A

3
-B

7
A

4
-B

6
A

6
-B

4
A

7
-B

3
A

8
-B

2
A

9
-B

1
A

1
0
-B

0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

W
in

d
o
w

 p
er

 f
lo

w
 n

o
rm

al
is

ed

Nr of flows

ECN-Cubic(A) P1, mean, P99 Cubic(B) P1, mean, P99 DCTCP(A) P1, mean, P99

 0.1

 1

 10

A
1
-B

1
A

2
-B

2
A

3
-B

3
A

4
-B

4
A

5
-B

5
A

6
-B

6
A

7
-B

7
A

8
-B

8
A

9
-B

9
A

1
0
-B

1
0

A
0
-B

1
0

A
1
-B

9
A

2
-B

8
A

3
-B

7
A

4
-B

6
A

6
-B

4
A

7
-B

3
A

8
-B

2
A

9
-B

1
A

1
0
-B

0
A

1
-B

1
A

2
-B

2
A

3
-B

3
A

4
-B

4
A

5
-B

5
A

6
-B

6
A

7
-B

7
A

8
-B

8
A

9
-B

9
A

1
0
-B

1
0

A
0
-B

1
0

A
1
-B

9
A

2
-B

8
A

3
-B

7
A

4
-B

6
A

6
-B

4
A

7
-B

3
A

8
-B

2
A

9
-B

1
A

1
0
-B

0
A

1
-B

1
A

2
-B

2
A

3
-B

3
A

4
-B

4
A

5
-B

5
A

6
-B

6
A

7
-B

7
A

8
-B

8
A

9
-B

9
A

1
0
-B

1
0

A
0
-B

1
0

A
1
-B

9
A

2
-B

8
A

3
-B

7
A

4
-B

6
A

6
-B

4
A

7
-B

3
A

8
-B

2
A

9
-B

1
A

1
0
-B

0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

N
o
rm

al
is

ed
 r

at
e

p
er

 f
lo

w

Nr of flows

ECN-Cubic(A) P1, mean, P99 Cubic(B) P1, mean, P99 DCTCP(A) P1, mean, P99

Fig. 6: Normalised rate and window size per flow. 40Mbps link capacity, 10ms RTT. Equal RTT

99.999

99.99

99.9

99

90

50

5 0 10 20 30 40 50 60 70 80

H
ig

h
 l

o
ad

 (
1

h
:1

h
):

 P
er

ce
n

ti
le

 [
%

]

PIE (ECN-Cubic+Cubic)

99.999

99.99

99.9

99

90

50

5 0 10 20 30 40 50 60 70 80

Queue delay [ms]

DUALPI2 (DCTCP+Cubic)

99.999

99.99

99.9

99

90

50

5 0 10 20 30 40 50 60 70 80

FQCODEL (DCTCP+Cubic)

99.999

99.99

99.9

99

90

50

5 0 10 20 30 40 50 60 70 80

L
o

w
 l

o
ad

 (
1

l:
1

l)
:

P
er

ce
n

ti
le

 [
%

]

PIE (ECN-Cubic+Cubic)

ECN-Cubic Cubic

99.999

99.99

99.9

99

90

50

5 0 10 20 30 40 50 60 70 80

Queue delay [ms]

DUALPI2 (DCTCP+Cubic)

DCTCP Cubic

99.999

99.99

99.9

99

90

50

5 0 10 20 30 40 50 60 70 80

FQCODEL (DCTCP+Cubic)

DCTCP Cubic

Fig. 7: Queue delay percentiles. 120Mbps link capacity, 10ms RTT. Equal RTT

15

 0.1

 1

 10

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

W
in

d
o
w

 p
er

 f
lo

w
 n

o
rm

al
is

ed

ECN-Cubic(A) P1, mean, P99 Cubic(B) P1, mean, P99 DCTCP(A) P1, mean, P99

RTT (flow A - flow B)[ms]:

 0.01

 0.1

 1

 10

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

W
in

d
o
w

 b
a
la

n
c
e
 [

ra
ti

o
]

ECN-Cubic(A)/Cubic(B) ratio DCTCP(A)/Cubic(B) ratio

RTT (flow A - flow B)[ms]:

 0.01

 0.1

 1

 10

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

N
o
rm

al
is

ed
 r

at
e

p
er

 f
lo

w

ECN-Cubic(A) P1, mean, P99 Cubic(B) P1, mean, P99 DCTCP(A) P1, mean, P99

RTT (flow A - flow B)[ms]:

 0.01

 0.1

 1

 10

 100

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

R
a
te

 r
a
ti

o

ECN-Cubic(A)/Cubic(B) ratio DCTCP(A)/Cubic(B) ratio

RTT (flow A - flow B)[ms]:

Fig. 8: 1 flow for each CC. Mixed RTT

16

 0
 5

 10
 15
 20
 25
 30
 35
 40

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

Q
u
eu

e
d
el

ay
 [

m
s]

ECN-Cubic(A) mean
P99

Cubic(B) mean
P99

DCTCP(A) mean
P99

RTT (flow A - flow B)[ms]:

 60
 65
 70
 75
 80
 85
 90
 95

 100

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

L
in

k
 u

ti
li

sa
ti

o
n
 [

%
]

ECN-Cubic(A)+Cubic(B) P1, mean, P99 DCTCP(A)+Cubic(B) P1, mean, P99

RTT (flow A - flow B)[ms]:

 0.001

 0.01

 0.1

 1

 10

 100

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

M
ar

k
/D

ro
p
 p

ro
b
ab

il
it

y
 [

%
]

Drops Cubic(B) P25, mean, P99

Drops ECN-Cubic(A) P25, mean, P99

Marks ECN-Cubic P25, mean, P99

Drops DCTCP(A) P25, mean, P99

Marks DCTCP P25, mean, P99

RTT (flow A - flow B)[ms]:

Fig. 9: 1 flow for each CC. Mixed RTT

17

 0.01

 0.1

 1

 10

 100

 1000

 10000

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

Q
u
eu

e
d
el

ay
 l

o
g
[m

s]

UDP class: Classic ECN Classic ECN Classic ECN

ECN-Cubic mean, P99 Cubic mean, P99 UDP mean, P99 DCTCP mean, P99

UDP rate:
[Mbps]:

 0.1

 1

 10

 100

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

D
ro

p
/M

ar
k
 p

ro
b
.
[l

o
g
(%

)]

UDP class: Classic ECN Classic ECN Classic ECN

Drops Cubic Drops ECN-Cubic Marks ECN-Cubic Drops DCTCP Marks DCTCP

UDP rate:
[Mbps]:

mean, P25, P99:

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

100.000000

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

W
in

d
o
w

 s
iz

e
p
er

 f
lo

w

UDP class: Classic ECN Classic ECN Classic ECN

ECN-Cubic mean, P99 Cubic mean, P99 DCTCP mean, P99

UDP rate:
[Mbps]:

 0.1

 1

 10

 100

 1000

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

5
0

7
0

1
0
0

1
4
0

2
0
0

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (DCTCP+Cubic)

N
o
rm

al
is

ed
 r

at
e

p
er

 f
lo

w

UDP class: Classic ECN Classic ECN Classic ECN

ECN-Cubic mean, P99 Cubic mean, P99 DCTCP mean, P99

UDP rate:
[Mbps]:

Fig. 10: Overload experiments. 1 flow for each CC

	Introduction
	Rationale
	Why a Scalable Congestion Control?
	Why ECN?
	Why Not Per-Flow Queues?

	Solution design
	Solution Structure
	Coupled AQM for Window Balance
	Dual Queue for Low Latency
	Overload Handling
	Linux qdisc Implementation

	Evaluation
	Testbed Setup
	Experimental Approach
	Experiments with equal RTT
	Experiments with different RTTs
	Overload experiments
	Evaluation metrics
	Results

	Deployment Considerations
	Standardization Requirements
	Congestion Control Roadmap
	Deployment Scenarios

	Related Work
	Conclusion
	References

