
Preprint

Under Submission

Until published, please cite as:

De Schepper, K.; Bondarenko, O.; Tsang, I.-J. and
Briscoe, B. “‘Data Centre to the Home’: Ultra-Low La-
tency for All” (Under submission, 2015)

Document history
Version Date Author Details of change

Issue 01 12 Jun 2015 Koen De Schepper Issue for submission

Issue 01A 06 Jul 2015 Bob Briscoe Corrections and Enhancements

Issue 01B 07 Jul 2015 Bob Briscoe Cover page added

Issue 01C 28 Jul 2015 Bob Briscoe Altered L (Figure 3) to match updated ref [2].

c© 2015, the authors.

‘Data Centre to the Home’: Ultra-Low Latency for All

Koen De Schepper† Olga Bondarenko
∗
‡ Ing-Jyh Tsang† Bob Briscoe§

†Alcatel-Lucent, Belgium ‡Simula Research Laboratory, Norway §BT, UK
†{koen.de_schepper|ing-jyh.tsang}@alcatel-lucent.com
‡olgabo@simula.no §research@bobbriscoe.net

ABSTRACT
Data Centre TCP (DCTCP) was designed to provide pre-
dictably low queuing latency, near-zero loss, and throughput
scalability using explicit congestion notification (ECN) and
an extremely simple marking behaviour on switches. How-
ever, DCTCP does not co-exist with existing TCP traffic—
throughput starves. So, until now, DCTCP could only be de-
ployed where a clean-slate environment could be arranged,
such as in private data centres. This paper proposes ‘Cou-
pled Active Queue Management (AQM)’ to allow scalable
congestion controls like DCTCP to safely co-exist with clas-
sic Internet traffic. In extensive tests within the edge gateway
of a realistic broadband access testbed, the Coupled AQM
ensures that a flow runs at about the same rate whether it uses
DCTCP or TCP Reno/Cubic, but without inspecting trans-
port layer flow identifiers. DCTCP achieves sub-millisecond
average queuing delay and zero congestion loss under a wide
range of mixes of DCTCP and ‘classic’ broadband Internet
traffic, without compromising the performance of the classic
traffic. The solution also reduces network complexity and
eliminates network configuration.

1. INTRODUCTION
Latency is becoming the critical performance factor

for many (most?) applications on the public Internet,
e.g. Web, voice, conversational video, gaming and fi-
nance apps. In the developed world, further increases in
access network bit-rate offer diminishing returns, whereas
latency is still a multi-facetted problem. In the last
decade or so, much has been done to reduce propaga-
tion time by placing caches or servers closer to users.
However, queuing remains a major component of la-
tency.

The Diffserv architecture provides Expedited Forward-
ing, so that low latency traffic can jump the queue of
other traffic. However, on access links dedicated to in-
dividual sites (homes, small enterprises or mobile de-
vices), often all traffic at any one time will be latency-
sensitive. Then Diffserv is of little use. Instead, we need
to remove the causes of any unnecessary delay.

∗The first two authors contributed equally

The bufferbloat project has shown that excessively-
large buffering (‘bufferbloat’) has been introducing sig-
nificantly more delay than the underlying propagation
time. These delays appear only intermittently—only
when a capacity-seeking (e.g. TCP) flow is long enough
for the queue to fill the buffer, making every packet in
other flows sharing the buffer sit through the queue.

Active queue management (AQM) was originally de-
veloped to solve this problem (and others). Unlike Diff-
serv, AQM controls latency for all traffic in a class.
In general, AQMs introduce an increasing level of dis-
card from the buffer the longer the queue persists above
a shallow threshold. This gives sufficient signals to
capacity-seeking (aka. greedy) flows to keep the buffer
empty for its intended purpose: absorbing bursts. How-
ever, RED and other algorithms from the 1990s were
sensitive to their configuration and hard to set correctly.
So, AQM was not widely deployed. More recent state-
of-the-art AQMs, e.g. fq CoDel [8], PIE [13], Adaptive
RED, define the threshold in time not bytes, so it is
invariant for different link rates.

It seems that further changes to the network alone
will now yield diminishing returns. Data Centre TCP
(DCTCP [1]) teaches us that a small but radical change
to TCP is needed to cut two major outstanding causes
of queuing delay variability:

1. the ‘sawtooth’ varying rate of TCP itself;
2. the smoothing delay deliberately introduced into

AQMs to permit bursts without triggering losses.
The former causes a flow’s round trip time (RTT) to
vary from about 1 to 2 times the base RTT between the
machines in question. The latter delays the system’s
response to change by a worst-case (transcontinental)
RTT, which could be hundreds of times the actual RTT
of typical traffic from localised CDNs.

Latency is not our only concern.
3. It was known when TCP was first developed that it

would not scale to high bandwidth-delay products.
Given regular broadband bit-rates over WAN distances
are already beyond the scaling range of ’classic‘ TCP
Reno, ‘less unscalable’ Cubic [7] and Compound [15]
variants of TCP have been successfully deployed. How-

1

ever, these are now approaching their scaling limits.
Unfortunately, fully scalable TCPs cause ‘classic’ TCP
to starve itself, which is why they have been confined
to private data centres or research testbeds (until now).

Our contribution is a ‘Coupled AQM’ that solves the
problem of coexistence between DCTCP and classic flows,
without having to inspect flow identifiers. It needs fewer
operations per packet than RED uses. Also, no network
configuration is needed for a wide range of scenarios.

It uses two queues for two services: “Classic” and
”Low-Latency, Low-Loss and Scalable” (L4S), denoted
resp. by subscripts ‘C’ and ‘L’. The ‘Classic’ service is
intended for all the behaviours that currently co-exist
with TCP Reno (TCP Cubic, Compound, SCTP, etc).
The ‘L4S’ service is intended for DCTCP traffic but it
is also more general—it will allow a set of congestion
controls similar to DCTCP (e.g. Relentless) to evolve.

The AQM couples marking and/or dropping across
the two queues such that a flow will get roughly the
same throughput whichever it uses. This enables scal-
able congestion controls like DCTCP to give stunningly
low and predictably low latency, without compromising
the performance of competing ’classic’ Internet traffic.

In our tests, we use DCTCP unmodified, despite its
known deficiencies (listed as further work in Section 10).
Our focus is on getting the network service in place.
Then, without any management intervention, applica-
tions can exploit it by migrating to scalable controls like
DCTCP, which can then evolve while their benefits are
being enjoyed by everyone on the Internet.

We also conducted subjective testing with a demand-
ing panoramic interactive video application run over a
stack with DCTCP enabled and deployed on the testbed.
Each user could pan or zoom their own HD sub-window
of a larger video scene from a football match (Figure 1).
Even though the user was also downloading large amounts
of L4S and Classic data, latency was so low that the pic-
ture appeared to stick to their finger on the touchpad
(all the L4S data achieved the same ultra-low latency).
With an alternative AQM, the video noticeably lagged
behind the finger gestures.

Figure 1: Panoramic interactive video application

Document Outline. Section 2 gives the intuition for our
design choices, deferring the mathematical rationale to
Section 3. We then present our two main contributions:
the ‘Coupled AQM’ that addresses throughput equiv-
alence (Section 4) then a Dual Queue structure that
provides latency separation (Section 5).

To evaluate the new AQM’s performance, we have
built it into the downstream of a realistic end-to-end

broadband testbed (Section 6). Section 7 gives a con-
densed report of thousands of experiments to quantify
its performance against RED, PIE and fq CoDel.

The paper ends with discussion of standardisation as-
pects (Section 8) before the usual tailpieces.

2. RATIONALE

2.1 Intuition: Why DCTCP and ECN?

Figure 2: Data Centre TCP: Intuition

Figure 2 shows how DCTCP resolves the dilemma
caused by TCP’s large sawteeth (problem #1 in the
Introduction). DCTCP’s smaller sawteeth allow both
maximal utilisation of the link (the grey cylinder) and
minimal occupancy of the buffer (above the cylinder).
The size of DCTCP’s sawteeth also remains invariant
with increasing bit-rate, which addresses problem #3.

DCTCP also solves problem #2 above, by requiring
the network to signal congestion immediately, without
any smoothing delay (not illustrated in the figure).

The underlying reason that DCTCP can solve prob-
lems #1 and #2 is that it signals congestion with ex-
plicit congestion notification (ECN [14]). ECN is purely
a signal, whereas drop is both an impairment and a sig-
nal, which compromises signalling flexibility:

1. DCTCP’s finer sawteeth imply a higher signalling
rate, which would be untenable as loss;

2. If the queue grows, an AQM holds back from in-
troducing loss in case it is just a sub-RTT burst,
whereas emitting ECN immediately is harmless.

This last point is most significant, because the sender
knows its own RTT, which DCTCP could use as the
time constant to smooth incoming ECN marks. Whereas,
with drop, the network has to smooth but it does not
know each flow’s RTT, so it has to use a worst-case
(transcontinental) RTT, to avoid instability if a flow
does have such a long RTT.

ECN also offers the obvious latency benefit of near-
zero congestion loss, of most concern to short flows.
This removes retransmission and time-out delays and
the head-of-line blocking that a loss can cause when a

2

single TCP flow carries a multiplex of streams.
To be concrete, in our testbed, we identify classic

traffic by a cleared ECN field in the IP header (not
ECN-capable). In Section 8, we discuss an alternative
but non-preferred compromise that would allow Classic
traffic to use ECN as well.

The coexistence mechanism has nothing to do with
flow identifiers; it solely contrives the two aggregate sig-
nalling levels to compensate for the different responses
to the signals exhibited by flows in each aggregate.

2.2 Delay vs. Drop
Evaluating our Coupled AQM at high load, we no-

ticed that PIE and fq Codel produced unusually high
drop, which took over from queuing as the dominant
cause of delay for short Web flows. Thus, the goal of
AQMs like PIE and fq CoDel—to cap queuing delay at
a fixed target—is misguided. If TCP cannot increase
queuing delay, it will increase drop instead.

Our coupled AQM constrains classic traffic with a
softened delay target, but not as soft as RED. We call
the mechanism Curvy RED. The original RED algo-
rithm increases drop probability linearly with queue
growth. With a curviness parameter of 2, the Curvy
RED algorithm increases drop with the square of the
queue, so it pushes back increasingly aggressively the
more the queue grows. This is implemented by simply
comparing the queue to two random numbers, not one.
It also uses queuing time, not queue length.

Figure 3: The Delay-Loss Dilemma: Sensitivity to Load
for Curvy RED AQMs with Increasing Curviness, u.

The order of the legend follows that of the curves.
Normalised load, L ∝ 1/ bit-rate per Reno flow (top).

Conceptually, as the curviness parameter tends to
infinity (shown by the two pincer arrows in Figure 3
from [2]), it approximates the hard delay target of PIE
or CoDel, shown as a flat step configured at 20 ms.
To clamp delay to a hard constraint, the correspond-
ing dashed drop curve has to increase aggressively with
load. In this paper, we show that intermediate curvi-
ness can still keep queuing delay under control whatever
the load, but without having to introduce so much loss
that loss itself becomes the dominant cause of delay.

2.3 Per-Flow Queuing and Self-Harm
Superficially, it might seem that per-flow queuing (as

in fq CoDel) would address the problems in Section 1;
it is designed to isolate a latency-sensitive flow from
the delays induced by other flows. However, that does
not protect a latency-sensitive flow from saw-toothing,
which the flow still inflicts upon itself.

It might seem that self-inflicted queuing delay should
not count. To avoid delay in a dedicated remote queue,
a sender would have to hold back the data, causing the
same delay, just in a different place. It seems preferable
to release the data into a dedicated network queue; then
it will be ready to go as soon as the queue drains.

However, this logic applies i) if and only if the sender
somehow knows that the bottleneck in question imple-
ments per-flow queuing and ii) only for non-adaptive ap-
plications. Modern Web applications multiplex streams
into a single flow, e.g. SPDY or HTTP/2; then they
alter which stream they prioritise, depending on the
progress of each of the streams already sent. Our panoramic
interactive video app is another example, where the
amount of data sent (the frame rate) at any instant de-
pends on how much prior data was delivered. For such
applications, a remote queue is not useful if their self-
induced queue is remote; once optional data is in flight,
they cannot suppress it. To adapt how much they send,
they need to maintain their send-queue locally.

Per-flow queuing was not an appropriate solution,
given it i) does not solve the self-induced latency prob-
lem; ii) needs to inspect transport layer headers (pre-
venting transport evolution); and iii) requires many more
queues and supporting scheduling structures, whereas
our primary goal was to reduce cost and complexity.

3. STEADY STATE RATE
An L4S congestion controller such as DCTCP achieves

low latency, low loss and low throughput variations by
driving the network to give it a more responsive signal
with a higher resolution. Therefore, a solution must be
found to reduce the congestion signal intensity for Clas-
sic congestion controllers (TCP Cubic and Reno), but
not for L4S (DCTCP).

Our first concern is to support rough equality in terms
of long term throughput (other factors being equal). In
terms of throughput for short flows, we want to allow
differentiation to support lower latency, less loss and
less throughput variation for the improved class.

For our purposes, it is sufficient to ignore dynamic
aspects, and apply the simplified models in (1) and (2)
for TCP Reno and Cubic paket rate as in [12] and [7]:

rreno =
1.22

p1/2T
(1) rcubic =

1.17

p3/4T 1/4
(2)

where p is drop probabillity and T is RTT.
The Cubic implementation in Linux provides a fall-

back to TCP Reno when RTT is small. Due to the

3

different decrease factor, the steady state rate will de-
viate from (1) with a slightly higher constant (3).

The implicit switchover RTT can be derived from (2)
and (3). Pure Cubic behaviour (as defined in (2)) will
become active when (4) is false.

rcubic =
1.68

p1/2T
(3) r ∗ T 5/2 < 3.5 (4)

For typical user access from local data centres (T <
20 ms), pure Cubic behavior can only be expected for
flows faster than 500Mbps. Therefore, at least for AQMs
in access networks, we can focus on the relationship be-
tween Reno and DCTCP and assume that Cubic will
be in Reno mode, or at least not too far outside it.

We have derived a similar model for DCTCP, assum-
ing an idealised uniform deterministic marker, which
marks every 1/p packets. A DCTCP congestion con-
troller has an incremental window increase per RTT
α = 1 and a multiplicative decrease factor β = p/2
(with p being estimated). So, every RTT, W is in-
creased by W ← W + 1, meaning that under steady
state, this must be compensated every RTT by (5). This
decrease is steered by marks, as defined in (6).

W ←
(

1− 1

W

)
W (5) W ←

(
1− p

2

)
W (6)

From (5) and (6), we see that to preserve this balance,
(7) must be true, which determines the window and
therefore the steady state packet rate in (8).
p

2
=

1

W
(7) rdc =

2

pT
(8) rdcth =

2

p2T
(9)

Note that (9) derived in the DCTCP paper [1] has
a different exponent of p compared to (8). The reason
is that (9) is defined for a step threshold, which causes
an on-off marking pattern. When DCTCP marking is
coupled to the drop probability of Classic traffic, it uses
fractional marking probability, so (8) will be applicable.

4. COUPLED AQM FOR EQUAL RATE
Knowing the relation between network congestion sig-

nal, (mark or drop) probability and the flow rate, we
can adjust the feedback from the network to each type
of congestion control. For TCP Reno and DCTCP, we
substitute (1) and (8) in rreno = rdc:

1.22

p
1/2
renoTreno

=
2

pdcTdc
(10)

If the RTTs are equal (they may not be; see Section 5),
we can arrange the rates to be equal using the simple
relation between the probabilities, defined in (11). This
relation could be achieved by a modified AQM in the
network, shown in Figure 4.

preno =
(pdc

1.63

)2

(11)

Probabilistic mark/drop is typically implemented by
comparing the probability p with a pseudo-random gen-

Figure 4: Equal rate AQM for TCP Reno and DCTCP

erated value R per packet. A signal is applied for a
packet when p > R. The advantage of using rela-
tion (11) is that p2 can easily be acquired by com-
paring p with 2 psuedo-random generated values and
signal only if both random values are smaller than p:
p > max(R1, R2).

A square curve is a simple way to emulate the three
piecewise-linear parts of RED. Drop probability hugs
the zero axis, while the queue is shallow. Then, as load
increases, it introduces a growing ‘barrier’ to higher de-
lay, but with only one parameter, not three.

To configure our evaluations, we used DCTCP (8)
and Reno (1) behaviour as the gold standards for the
L4S and Classic classes respectively, so we used (11) as
the main coupling relation.

The approach is encapsulated by the phrase “Think
once to mark, twice to drop”. This concept was first
verified by simulation. The results are not shown due
to space limitations, but confirmed that for any number
of flows with any combination of RTT’s, the steady state
throughput was independent of the congestion controller
(DCTCP or Reno) if the signal probability was coupled,
as in Figure 4, and the window sizes of flows were above
four packets.

In addition, further analysis revealed a different sensi-
tivity to multiple bottlenecks. In worst case (all bottle-
necks signalling the same probability), DCTCP’s through-
put depends on the accumulated probabilities, while
Reno’s by the square root of it. In a realistic situa-
tion with 2 dominant bottlenecks, DCTCP would have
maximum

√
2 times less throughput.

Coupling signals supports rate equalisation, but as
long as there is only one queue, Classic traffic spoils
the consistent low queueing latency of DCTCP traffic
(unless utilization is sacrificed).

5. DUAL QUEUE FOR LOW LATENCY
To achive low latency for L4S traffic in the presence

of Classic traffic, we still use a coupled AQM, but across
two queues as shown in Figure 5. In our experiments,
if the ECN field in the IP header is not cleared, we
classify the packet into the L4S (L) queue, otherwise
into Classic (C). More sophisticated classification might
be necessary (see Section 8).

To minimise latency for L4S traffic, we schedule the

4

Figure 5: Dual Queue Coupled AQM

L4S queue with strict priority, and the Classic queue
only when the L4S queue is empty.

The ECN signal from the L4S queue is coupled to
the queuing time of the Classic queue (also known as
sojourn, waiting or service time). The coupled feed-
back ensures that flows share capacity correctly across
the two queues. The L4S queue size remains low enough
to keep the Classic queue flowing. Policing unrespon-
sive flows is a policy issue that needs to be separate
from a basic AQM, but the scheme does need to handle
overload1.

Whenever there are packets in the Classic queue, the
coupled ECN feedback that the L4S queue emits already
depends on its own utilisation (via the Classic queue).
However, the L4S queue needs to be able to emit ECN
signals if L4S load causes the L4S queue itself to grow,
particularly if there is no Classic traffic to generate any
coupled feedback. For now, in addition to any coupled
feedback, the L4S queue applies a shallow step function
without any smoothing delay, as used for DCTCP in
data centres (see [5, §10] for other possibilities).

When there is traffic in both queues, (11) gives the
desired coupling between the drop and marking prob-
abilities in the two classes that should achieve our ob-
jective of roughly equal flow rates (other factors being
equal). For implementation efficiency, we approximate
the denominator by an integer power of 2, giving:

pC =
(pL

2k

)2

. (12)

The resulting coupled AQM needs just 2 parameters
for each queue. For the Classic queue:
SC To convert the current Classic queue sojourn time

into a dropping probability in the range [0, 1) re-
quires a scaling parameter. To make multiplica-
tion efficient, we use an integer power of two, so
we define the slope of the AQM’s square curve,

1A tradeoff needs to be made between complexity and the
risk harming Classic flows. It is an operator policy to define
what must happen if the service time of the classic queue be-
comes too big. Actions can include delay based scheduling,
common drop, etc...

relating Classic queueing time to drop probability
from the Classic queue as 2SC ;

f To support smoothing the sojourn time of the Clas-
sic queue and make multiplication efficient, we will
use an integer power of two for the EWMA con-
stant, which we define as 2−f .

For the L4S queue:
SL As for the Classic queue, we define the slope of the

AQM’s marking function as 2SL ;
T The queue size at which step threshold marking starts

in the L4S queue.
The average queue sojourn time QC is calculated ev-

ery time a packet is dequeued from any of the queues
for scheduling. The calculation is done according to
(13), with qC the sojourn time of the latest packet in
the Classic queue and f the smoothing exponent.

QC ← 2−fqC + (1− 2−f)QC

← QC + (qC −QC) >> f, (13)

where >> is a right bit shift.
The queuing time of the Classic queue then drives

the marking probability of L4S packets and dropping
probability of Classic packets as follows:

pL = 2SLqC , (14) pC = (2SCQC)2. (15)

For either case, 2−SL or 2−SC represent the queuing
time in the Classic queue at which marking or dropping
probability reaches 100%. Assuming a steady state and
no under-utilisation, QC = qC . So, substituting (14) &
(15) into (12) we have:

k = SL − SC . (16)

Therefore, k represents the strength of coupling between
the two queues, but it is not an additional parameter.

Using the dual queue AQM with coupled feedback
will ensure that the L4S traffic leaves sufficient capac-
ity unused as long as there are packets in the Classic
queue. However, the rate ratio between DCTCP and
Cubic(Reno) traffic in equation (11) was derived assum-
ing the RTTs of the two types of flow were equivalent.
Typically, there would be hardly any delay in the L4S
queue, but substantial delay in the Classic queue. The
resulting increase in a Classic flow’s RTT could be sub-
stantial such that (11) no longer held, then (17) would
have to be used instead.

rreno
rdc

=
1.22

2

pdc

p
1/2
reno

Tdc
Treno

, (17)

with Treno and Tdc being the total RTT composed of
the delay in their respective queue and a common base
RTT T0 for the rest of the network.

Some value has to be chosen for k in (12) to relate the
rates of L4S and Classic flows, given the possible dis-
crepany between their RTTs. This is a policy decision
for the network operator, which could decide to use:

5

• 2k ≈ 1.63 from (11) on the basis that Classic flows
have only themselves to blame if the queue they
build reduces their rate;
• 2k ≈ 1.19 on the same basis, but if it judged that

most Classic traffic would be in Cubic mode.
• 2k ≈ 1.63(T0 +qC)/T0 to compensate for the extra

queue delay qC for exact throughput equality.2

For the first two policies respectively k = 1 and k = 0
would be the closest values. In the the last case, the
Classic queue delay qC depends on the slope of the Clas-
sic AQM SC . For the slope used in our experiments,
qC ≈ 4 ∗T0, therefore 2k ≈ 1.63 ∗ (4 + 1) ≈ 8, which im-
plies k = 3. Of course, given T0 is bigger towards third
party servers, the RTT ratio will become smaller, and
any overcompensated factor will be to the disadvantage
of L4S flows. In our testbed experiments, we adopted
the throughput equality policy to allow an easy com-
parison of the results. However, there is no implication
that this policy is recommended.

The pseudocode below summarises the implementa-
tion of the above analysis used for all experiments.

Algorithm 1 Dequeue for Dual Queue Coupled AQM

1: if lq.dequeue(pkt) then
2: if (lq.len() > T) ∨ ((cq.time() << SL) > rnd())

then
3: mark(pkt)
4: end if
5: return(pkt) . return the packet and stop here
6: end if
7: while cq.dequeue(pkt) do
8: QC += (pkt.time()−QC) >> fC . C EWMA
9: if (QC << SC) > max(rnd(),rnd()) then

10: drop(pkt) . Squared drop, redo loop
11: else
12: return(pkt) . return the packet and stop here
13: end if
14: end while

6. TESTBED SETUP
We have used a testbed to evaluate the proposed

DualQ AQM mechanism in a realistic setting, and to
run repeatable experiments in a controlled environment.
The testbed was assembled from carrier grade equip-
ment used for testing customer solutions. Figure 6 de-
picts the testbed, which consists of a classical residential
service delivery network composed of Residential Gate-
way, xDSL DSLAM (DSL Access Multiplexers), BNG
(Broadband Network Gateway), Service Routers (SR)
and application servers. A residential user’s gateway is
connected by VDSL to a DSLAM, which is connected to
the BNG through an aggregation network, representing
a local ISP or access wholesaler. Traffic is routed to an-
other network representing a global ISP that hosts the
application servers and offers breakout to the Internet.

2Assuming the queueing delay of the L4S queue is negligible
and T0 is the same for Reno and DCTCP flows.

The client computers in the home network and the ap-
plication servers at the global ISP are Linux machines,
which can be configured to use any TCP variant and
start applications and test traffic. The two client-server
pairs (A and B) are respectively configured with the
same TCP variants and applications.

Figure 6: Testbed configuration

Within a BNG, per-customer queues form the leaves
of a hierarchical scheduling tree. In a production ac-
cess network, the BNG is deliberately arranged as the
downstream bottleneck for the per customer queues. A
Linux server (AQM server) is used to create this bot-
tleneck and to configure the different AQMs that were
evaluated. Traffic from the client-server pairs is routed
from the BNG through this Linux box so as to simulate
the function proposed for the BNG. This server also
controls the experiments and captures and analyses the
traffic. In practice it would also be important to de-
ploy AQM in the residential gateway, but to minimise
side-effects we kept upstream traffic below capacity.

The following setup was used for the evaluations (Sec-
tion 7): Two client computers were connected to a
modem using 100Mbps Fast Ethernet; the xDSL line
was configured at 48Mbps downstream and 12Mbps up-
stream; the links between network elements consisted
of at least 1GigE connections. The AQM server at the
BNG created a 40Mbps bottleneck, before the config-
ured AQM for the downstream traffic. No bottlenecks
were explicitly configured for the upstream traffic. All
Linux computers were Ubuntu 14.04 LTS with kernel
3.18.9, which contained the implementation of the TCP
variants and AQMs. The base RTT (T0) between the
clients and servers was 7 ms, which primarily originated
from the xDSL interleaved FEC configuration.

The experiments used DCTCP, Cubic and Reno with
their default values. For ECN-Cubic, we additionally
enabled TCP ECN negotiation on the relevant client
and server. The AQM configurations used the options
as described in Table 1, unless otherwise stated.

All Buffer: 1000 pkt (320ms @40Mbps), ECN
RED Min thres: 80 pkt (24 ms @40Mbps)

Max thres: 240 pkt (72 ms @40Mbps)
Burst: 220 pkt (66 ms @40Mbps)

PIE Target delay: 20 ms, Burst: 100 ms
fq CoDel Target delay: 5 ms, Burst: 100 ms

DualQ SC = 1, f = 5, SL = 4, T = 5

Table 1: Default parameters for the different AQMs.

6

7. EVALUATION
To assess our primary objective (long term through-

put equivalence), we performed experiments on different
AQMs with long-running flows. We used steady flows
not as an example of a realistic Internet traffic mix,
rather as a situation where starvation can typically oc-
cur. We also evaluated the AQMs under dynamic load
to verify the impact of low latency and loss on comple-
tion time of short flows.

Each experiment (lasting 250 s) was performed be-
tween client-server pairs A and B, with a specified TCP
variant configured on each client-server pair and a spec-
ified AQM on the AQM server.

For all long-running flow experiments, each client started
0 to 10 file downloads on its matching server, result-
ing in 120 combinations. To preserve details, including
variability over time, while visualising the overall out-
come, we show flow thoughtput, queue delay, marking
and dropping probability in an overview matrix for all
120 combinations.

The row and column labels indicate the TCP variant
(C:Cubic, E:ECN-Cubic, D:DCTCP) followed by the
number of active flows on the respective client-server
pairs. The left matrix label shows the AQM used and
the X and Y ranges.

For all dynamic behaviour experiments, 25 load com-
binations were tested on each client-server pair. Again,
the row and column labels (X0+L; X0+H, X1; X1+L;
X1+H) indicate TCP variant (X=C,E,D), the number
of long-running flows (0 to 1), and the dynamic load
level which is an exponential arrival process with 100ms
(L=low load) or 10ms (H=high load) average interar-
rival times (or none), requesting a Pareto ditributed
download size α = 0, 9 with a minimum size of 1KB.
Every request opened a new TCP connection, closed by
the server after sending the data.

Plotted values of flow or class throughput and mark-
ing or dropping probabilities are always measured over
each second. Flow completion time plots show a dot
per download size and time between opening the con-
nection and receiving the data. A reference line shows
the completion time that a perfect lone download would
have achieved at full line rate after a 2-RTT handshake.
The Queue delay CDF plots the sojourn time of every
packet for each traffic class. For flow throughput, the Y
range was adapted to locate the expected throughput
of the N dominant flows across the middle of the graph
(80/N Mbps). For example, if 4 Cubic flows compete
over the 40Mbps bottleneck, the number of dominant
flows is 4, the expected throughput is 10Mbps and the
scale 20Mbps. If Cubic flows are starved when 5 Cubic
and 2 DCTCP flows compete, then only N = 2 flows
are dominant, and the upper limit of Y will be 40Mbps.
This results in overall comparable plots, scaling the vi-
sualisation optimally.

7.1 Long term throughput equivalence
To demonstrate the starvation problem that the Du-

alQ aims to solve, the first evaluation uses DCTCP and
Cubic over RED, PIE, fq CoDel and DualQ AQMs.

The results are plotted in Figures 7 & 8. As expected,
the DCTCP flows take most of the available bandwidth
from Cubic on the single Q AQMs (RED and PIE).

The queue delay in the RED AQM is very high, but
with moderate dropping and marking probability. PIE3

dropping probability exceeded the 10% limit at which
it switches to dropping ECN traffic, and the DCTCP
response to drop was incorrectly implemented (see [3]
for details).

fq CoDel seems to handle DCTCP quite well, provid-
ing every flow with an almost perfectly stable and equal
rate, except when the statistical buffer assignment fails
to use a unique buffer per flow. If flows of the same class
land in the same Q, the throughput deviation from the
equal rate is only 50%. If flows of different classes are
assigned to the same buffer, the Cubic flow starves (as
in Figure 7 D:8-C:7). This behaviour results in sporadic
and hard to reproduce random failure of applications,
with potential frustration for users and service support.
From a queuing delay perspective, unlike PIE, fq CoDel
is not able to keep the DCTCP flows at its (smaller) tar-
get delay, but delay is still low. However, as predicted,
the drop probability of fq CoDel rises quickly with load.

Our DualQ Coupled AQM is able to guarantee equal
throughput between DCTCP and Cubic flows. It devi-
ates slightly due to the Classic Q size, which grows on
higher load, resulting in less throughput for the Classic
flows, and is smaller at lower load, resulting in a higher
throughput for the Classic flows. The queuing delay for
the L4S traffic is stunningly low—so low that the CDF
plots are nearly perfect step functions. In the D:10-
C:10 combination, the marking probability approaches
100%. Combinations with larger number of flows re-
vealed a previously unnoticed limit to TCP’s ability to
scale to low queuing delays, which needs to be fixed,
at least in DCTCP. We have explained this in a sepa-
rate technical report [3]. Essentially, DCTCP or TCP
will override any AQM and increase queuing delay to
keep at least 2 segments in flight. For Classic traffic,
compared to fq CoDel, loss levels are kept to reason-
able levels by relaxing the delay constraint somewhat
(see Section 2.2).

Further experiments with adding a 10 or 20 Mbps
unresponsive UDP CBR flow3 also showed an impor-
tant difference beween fq CoDel and DualQ. fq CoDel
assumes that capping the CBR flow rate to an equal
share is always the correct policy. Whereas the Du-
alQ AQM allows applications to determine their flow
rate and the responsive flows to share the remaining

3See complementary technical report [3] for these plots.

7

30 or 20 Mbps evenly. For instance, DualQ would sup-
port unresponsive multicast TV up to the link capac-
ity whereas fq CoDel would divide this by the current
number of large flows. Further fq CoDel treats a VPN
tunnel containing many flows as one, and can prevent
background/delay-based flows from yielding their through-
put to others. Worth noting that unfortunately, in our
fq CoDel D:1-C:1 combination, the 20Mbps flow got
classified in the same buffer as the CBR flow, resulting
in a starving DCTCP flow. fq CoDel’s buffer collisions
were more frequent than expected.

7.2 Evaluation under dynamic load
Figure 9 shows the results for 6 dynamic experiments.

We did the (ECN) Cubic experiments as a benchmark
to distinguish how much improvement was due to ECN,
DCTCP or DualQ. RED3 and PIE show similar results.
fq CoDel approximates the perfectly equal share for
completion times. The small queuing delay (5 ms) just
accomodates Cubic’s needs preventing underutilization.

In completion time results for Cubic, we see 2 levels of
timeouts: at 1 s (due to lost SYN) and 300 ms (due to
lost FIN). Using ECN-Cubic does not reduce the num-
ber of lost SYN/ACK/FIN packets, since they don’t
carry the ECN capability in the IP header, the first two
in compliance with the ECN standard (and see below
regarding FINs). Interpreting the results, we found an
anomaly in the Linux implementation. Flows with 1 or
2 packets of data (below 3KB of data) keep experienc-
ing lost packet timeouts of 200ms. The reason is that 2
packets are sent without delay, and a later close connec-
tion call results in a separate FIN packet sent without
ECN. The current DCTCP implementation uses ECN
flags in the IP header of all packets.

In Experiment 4 (PIE), the dots at 300ms (due to
drop of final packets) indicate that burst allowance is
not effective if other long flows are present. The results
for RED3 were almost identical. Using ECN clearly has
an advantage, resulting in shorter completion times as
drop is partially avoided. fq CoDel’s burst allowance
is effective as it works per flow, and ECN provides no
significant improvement (Experiment 5). Sporadic oc-
curances can be attributed to queue collision with an
ongoing flow. Also, lower completion times for ECN-
Cubic due to less retransmissions of other dropped pack-
ets can be identified. ECN has no significant impact on
queuing delay.

In Experiment 6 we configured the DualQ AQM with
parameters adapted to ECN-Cubic. We halved the L4S
slope, additionally applying a squared probability to the
ECN-Cubic. As a result, we see significant improvement
for the completion times, similar to fq CoDel. Also, we
see near zero queuing delay for the L4S traffic,

but as a downside, a significant reduction in utilisa-
tion when competing with many short flows.

Comparing Experiment 5 to 7, Cubic has more com-
pletion time outliers when a long running DCTCP flow
is active, probably due to fq CoDel’s buffer collisions.
Additionally, long running DCTCP flows have a much
larger queue, explaining the full utilisation.

Comparing Experiments 5, 7 with 6, 8, we can again
conclude that our DualQ AQM very much approximates
the fq CoDel AQM without the need for flow identi-
fication and more complex processing. The main ad-
vantage is DualQ’s lower queuing delay for L4S traffic.
Compared to Cubic, DCTCP improves utilisation, as it
reduces the throughput more appropriately on conges-
tion signals, but can only regain the available capacity
incrementally when a short flow ends. One issue with
DCTCP also becomes apparent for flows bigger than
the initial windows size of 10. As marking probablity
is much higher, slow start will get consistently prema-
turely interrupted. A good result is that no slow start
overshoot is detected (zero Q delay), but it leads to
unnecessarily longer completion times. The outcome
suggests that a gradual slow start exit scheme is possi-
ble. Again, Dual Q queuing delay is nearly perfect for
DCTP traffic, and even for Classic traffic its delay is
nearly as good as fq CoDel.

8. STANDARDISATION REQUIREMENTS
An identifier will need to be standardised to distin-

guish L4S and C packets. In our tests we used a cleared
ECN field to indicate C packets and L4S otherwise.

The ECN standard [14] currently defines a mark as
equivalent to a drop, but discussions have started at
the IETF on changing its meaning [16, § 5]. It is be-
ing questioned whether merely preventing drop offers
enough performance improvement for an operator to
countenance the cost and risk of deployment.

For those who have managed to get classic ECN widely
deployed on servers, moving the goalposts at this stage
would be harsh. However, despite widespread server
deployment there is no evidence that any public net-
work operator is considering or has deployed ECN, even
though it was standardised in 2001. Whereas private
data centre operators do redefine the ECN field for the
predictable latency of DCTCP.

If the meaning of ECN cannot be changed from“equiv-
alent to drop”, it would be possible to identify the L4S
service in another way, e.g. a combination of ECN and
Diffserv, or the ECT(1) codepoint. However, the Diff-
serv codepoint is not preserved end-to-end and it may
be argued that the last ECN codepoint should not be
burned when the current one is not being used.

The square relationship between L4S marking and
Classic drop (Eqn. (12)) would need to be standard-
ised, but it would be better to recommend rather than
standardise a value for k, given differences would not
prevent interoperability.

8

9. RELATED WORK
In 2002, Gibbens and Kelly [6] developed a scheme to

mark ECN in a priority queue based on the combined
length of both queues. However, they were not trying
to serve different congestion controllers as in the present
work. In 2005 Kuzmanovic [11, §5] presaged the main
elements of DCTCP showing that ECN should enable a
näıve unsmoothed threshold marking scheme to outper-
form sophisticated AQMs like the proportional integral
(PI) controller. It assumed smoothing at the sender, as
earlier proposed by Floyd. Wu et al. [17] investigates a
way to incrementally deploy DCTCP within data cen-
tres, marking ECN when the temporal queue exceeds a
shallow threshold but using standard [14] ECN on end-
systems. Kuhlewind et al. [10] showed that DCTCP
and Reno could co-exist in the same queue configured
with a form of WRED classifying on ECN not Diff-
serv. Judd [9] uses Diffserv scheduling to partition data
centre switches between DCTCP and classic traffic in
a financial data centre scenario. The technical report
complementing this paper gives fuller reviews of each of
these sources and more [5].

10. CONCLUSION
Extensive tests of our novel Coupled Dual Queue AQM

within the edge gateway of a broadband access testbed
have verfied that it elegantly solves the problem of co-
existence between traffic like Data Centre TCP (DCTCP)
and classic TCP traffic. This means that ISPs can offer
a new form of unmanaged Internet service that we call
Low Latency Low Loss and Scalable (L4S) without ex-
isting ‘Classic’ traffic losing per-flow throughput. In our
tests the 99th %-ile queuing delay of L4S was 1 ms; more
than an order of magnitude lower than that of PIE or
fq CoDel. We identified self-delay as a new concern for
a novel breed of rapidly adaptive applications. L4S will
also allow TCP throughput to scale indefinitely, which
will otherwise soon become problematic.

In the Linux implementation of our AQM, L4S and
Classic together consume fewer instructions per packet
than even the simplest form of RED. No flow-ID inspec-
tion or per-flow queuing is needed.

Further work is needed to verify the parameter in-
sensitivity of Dual Queue in a wide range of settings
and to determine the best AQM for Classic traffic that
drops with the square of the probability of L4S traffic.
Curvy RED shows promise, and we plan to explore it
more fully, particularly with more convexity, but taking
care with stability. We will also determine whether a
PI controller might be better.

DCTCP needs numerous improvements: fall-back to
Reno on loss; loss-resilient feedback [4]; smoothing in-
coming feedback over the flow’s own RTT estimate;
smoothing the exit from slow-start; faster than addi-
tive increase; and pacing a fractional window [3].

11. REFERENCES
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data center tcp (dctcp). In Proceedings
of the ACM SIGCOMM 2010 Conference, SIGCOMM
’10, pages 63–74, New York, NY, USA, 2010. ACM.

[2] B. Briscoe. Insights from Curvy RED (Random Early
Detection). Technical report TR-TUB8-2015-003, BT,
May 2015. http://riteproject.eu/publications/.

[3] B. Briscoe and K. de Schepper. Scaling TCP’s
Congestion Window for Small Round Trip Times.
Technical report TR-TUB8-2015-002, BT, May 2015.
http://riteproject.eu/publications/.

[4] B. Briscoe, R. Scheffenegger, and M. Kuehlewind.
More accurate ECN feedback in TCP. IETF Internet
Draft draft-kuehlewind-tcpm-accurate-ecn-03, work in
progress, July 2014.

[5] K. de Schepper, O. Bondarenko, I. Tsang, and
B. Briscoe. Data Center to the Home. Technical
report, RITE Project, June 2015.
http://riteproject.eu/publications/.

[6] R. J. Gibbens and F. P. Kelly. On Packet Marking at
Priority Queues. IEEE Transactions on Automatic
Control, 47(6):1016–1020, June 2002.

[7] S. Ha, I. Rhee, and L. Xu. CUBIC: a new
TCP-friendly high-speed TCP variant. SIGOPS
Operating Systems Review, 42(5):64–74, July 2008.

[8] T. Hoeiland-Joergensen, P. McKenney, D. Täht,
J. Gettys, and E. Dumazet. Flowqueue-codel. Internet
Draft draft-hoeiland-joergensen-aqm-fq-codel, work in
progress, June 2014.

[9] G. Judd. Attaining the Promise and Avoiding the
Pitfalls of TCP in the Datacenter. In 12th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 145–157, Oakland,
CA, May 2015. USENIX Association.

[10] M. Kühlewind, D. Wagner, J. Espinosa, and
B. Briscoe. Using data center TCP (DCTCP) in the
Internet. In Globecom Workshops (GC Wkshps), 2014,
pages 583–588, Dec 2014.

[11] A. Kuzmanovic. The Power of Explicit Congestion
Notification. Proc. ACM SIGCOMM’05, Computer
Communication Review, 35(4), 2005.

[12] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the TCP Congestion
Avoidance algorithm. Computer Communication
Review, 27(3), July 1997.

[13] R. Pan et al. PIE: A lightweight control scheme to
address the bufferbloat problem. In Proc. IEEE Int’l
Conf. on High Performance Switching and Routing
(HPSR), pages 148–155, 2013.

[14] K. Ramakrishnan, S. Floyd, and D. Black. The
addition of explicit congestion notification (ECN) to
IP. RFC 3168 (Proposed Standard), Sept. 2001.

[15] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A
Compound TCP approach for high-speed and long
distance networks. In Proc. IEEE Conference on
Computer Communications, pages 1–12, 2006.

[16] M. Welzl and G. Fairhurst. The Benefits to
Applications of using Explicit Congestion Notification
(ECN). Internet Draft draft-welzl-ecn-benefits-02,
IETF, Mar. 2015. (Work in Progress).

[17] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang.
Tuning ECN for Data Center Networks. In Proceedings
of the 8th International Conference on Emerging
Networking Experiments and Technologies, CoNEXT
’12, pages 25–36, New York, NY, USA, 2012. ACM.

9

Figure 7: AQM comparison for long flows
Showing the coexistence problem (Exp 1) and potential solutions (Exps 2 & 3).
D: Number of DCTCP flows (blue), C: Number of Cubic flows (red), N: the number of expected dominant flows.

Note: With Dual Q, the queue delay CDFs for DCTCP (blue) are hard to see, because they are all nearly
perfect step-functions.

10

Figure 8: AQM comparison for long flows (cont.)
D: Number of DCTCP flows (blue), C: Number of Cubic flows (red).

11

Figure 9: Dynamic load for different AQMs for ECN-Cubic & Cubic (Exps 4–6) or DCTCP & Cubic (Exps 7 & 8).
E: Number of ECN-Cubic flows (purple), D: Number of DCTCP flows (blue), C: Number of Cubic flows (red), Green
= total throughput, showing utilisation. L: 100 ms exponential load, H: 10 ms exponential load.
Note: With Dual Q, the queue delay CDFs for DCTCP (blue) are hard to see, because they are all nearly perfect
step-functions. 12

	Introduction
	Rationale
	Intuition: Why DCTCP and ECN?
	Delay vs. Drop
	Per-Flow Queuing and Self-Harm

	Steady state rate
	Coupled AQM for Equal Rate
	Dual Queue for Low Latency
	Testbed Setup
	Evaluation
	Long term throughput equivalence
	Evaluation under dynamic load

	Standardisation Requirements
	Related Work
	Conclusion
	References

