
Preprint.

Published in IEEE Communications Surveys & Tutorials
<http://www.comsoc.org/cst>

Manuscript received May 9, 2014; revised September 1, 2014; accepted October 17, 2014.

Please cite as:

Briscoe, B., Brunstrom, A., Petlund, A., Hayes, D., Ros,
D., Tsang, I.-J., Gjessing, S., Fairhurst, G., Griwodz, C. &
Welzl, M., ”Reducing Internet Latency: A Survey of Techniques
and their Merits,” IEEE Communications Surveys & Tutorials
18(3):2149–2196 (Q3 2016) (publication mistakenly delayed
since Dec 2014)

Digital Object Identifier 10.1109/COMST.2014.2375213

This work was supported in part by the European Community under its Seventh Framework Programme through the
Reducing Internet Transport Latency (RITE) Project (ICT-317700). The views expressed are solely those of the authors.

c© 2014 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

http://www.comsoc.org/cst

1

Reducing Internet Latency: A Survey of Techniques and their Merits

Bob Briscoe1, Anna Brunstrom2, Andreas Petlund3, David Hayes4, David Ros5,3, Ing-Jyh Tsang6,
Stein Gjessing4, Gorry Fairhurst7, Carsten Griwodz3, Michael Welzl4

1BT, UK
2Karlstad University, Sweden

3Simula Research Laboratory AS, Norway
4University of Oslo, Norway

5Institut Mines-Télécom / Télécom Bretagne, France
6Alcatel-Lucent Bell-Labs, Belgium

7University of Aberdeen, UK

Latency is increasingly becoming a performance bottleneck for Internet Protocol (IP) networks, but historically networks have
been designed with aims of maximizing throughput and utilization. This article offers a broad survey of techniques aimed at tackling
latency in the literature up to August 2014, and their merits. A goal of this work is to be able to quantify and compare the merits of
the different Internet latency reducing techniques, contrasting their gains in delay reduction versus the pain required to implement
and deploy them. We found that classifying techniques according to the sources of delay they alleviate provided the best insight
into the following issues: 1) the structural arrangement of a network, such as placement of servers and suboptimal routes, can
contribute significantly to latency; 2) each interaction between communicating endpoints adds a Round Trip Time (RTT) to latency,
especially significant for short flows; 3) in addition to base propagation delay, several sources of delay accumulate along transmission
paths, today intermittently dominated by queuing delays; 4) it takes time to sense and use available capacity, with overuse inflicting
latency on other flows sharing the capacity; and 5) within end systems delay sources include operating system buffering, head-of-line
blocking, and hardware interaction. No single source of delay dominates in all cases, and many of these sources are spasmodic and
highly variable. Solutions addressing these sources often both reduce the overall latency and make it more predictable.

Index Terms—Data communication, networks, Internet, performance, protocols, algorithms, standards, cross-layer, comparative
evaluation, taxonomy, congestion control, latency, queuing delay, bufferbloat

I. INTRODUCTION

MANY, if not most, Internet Protocol (IP) networks and
protocols have traditionally been designed with opti-

mization of throughput or link utilization in mind. Such a focus
on “bandwidth” may well be justified for bulk-data transfer, or
more generally for applications that do not require timeliness
in their data delivery. However, nowadays the quality of
experience delivered by many applications depends on the
delay to complete short data transfers or to conduct real-time
conversations, for which adding bandwidth makes little or no
difference. As a result, latency in the current Internet has been
gaining visibility as a truly critical issue that impairs present-
day applications, and that may hinder the deployment of new
ones. It is therefore important to: (a) understand the root causes
of latency, and (b) assess the availability of solutions, deployed
or not, and their expected contribution to lowering end-to-end
latency. This paper seeks to address these questions. We offer a
broad survey of techniques aimed at tackling Internet latency
up to August 2014, classifying the techniques according to
the sources of delay that they address, i.e. where delays
arise along the communications chain. To decide on the best
classification system, we tried a number of alternative systems:
classifying by sources of delay was the easiest to understand
and led to the fewest gaps and least overlap. We also attempt
to quantify the merits of a selection of the most promising
techniques. We decided to focus on reduction in delay and
ease of deployment, which loosely represent the main tradeoff

between benefit and cost (‘gain vs. pain’). The benefits of
any technique are highly scenario-dependent, so we carefully
chose a set of scenario parameters that would be amenable to
visual comparison across an otherwise complex space.

A. Importance of latency to applications

Latency is a measure of the responsiveness of an applica-
tion; how instantaneous and interactive it feels, rather than
sluggish and jerky. In contrast to bandwidth, which is the rate
at which bits can be delivered, latency is the time it takes for
a single critical bit to reach the destination, measured from
when it was first required. This definition may be stretched
for different purposes depending on which bit is ‘critical’ for
different applications, the main categories being:

1) Real-time interaction, where every ‘chunk’ of data pro-
duced by an end-point is unique and of equal importance
and needs to be delivered as soon as possible, for example
an on-line game, or an interactive video conference (the
‘critical bit’ is therefore the last bit of each ‘chunk’).

2) Start-up latency, where the time to begin a service is most
important, as at the start of a video stream (the ‘critical
bit’ is the first bit of data).

3) Message completion time, where the time to complete
a whole (often small) transmission is most important,
for example downloading Javascript code to start an
application (the ‘critical bit’ is the last bit of the message).

2

Fig. 1. Waterfall diagram showing the timing of download of an apparently uncluttered example Web page (ieeexplore.ieee.org), actually comprising over one
hundred objects, transferred over 23 connections needing 10 different DNS look-ups. The horizontal scale is in seconds. This access was from Stockholm,
Sweden, over a 28ms RTT 5 Mb/s down 1 Mb/s up cable access link, using Internet Explorer v8 without any prior cache warming. Source: www.webpagetest.org

An important characteristic of latency is that it is additive
in nature and accumulates over the communication session or
application task. Distributed systems involving machine to ma-
chine interactions, e.g. Web services, consist of long sequences
of automated interactions in between each human intervention.
Therefore even slight unnecessary delay per transfer adds up to
considerable overall delay. For instance, Fig. 1 shows the con-
nections involved in downloading an apparently uncluttered
Web page (ieeexplore.ieee.org). This unremarkable example is
fairly typical of many Web pages. Closer examination shows
that the critical path of serial dependencies consists of about
half a dozen short TCP connections, each starting with a 3-
way handshake and each preceded by a DNS look-up, adding
up to at least six back-and-forth messages each, and totalling
nearly forty transfers in series. It might be considered that
delays up to say 50 ms are so close to the bounds of human
perception that they are not worth removing. However, adding
40 × 50ms would delay completion of this example page
by about 2 seconds. Experiencing such unnecessary delay on
every click during a browsing session makes the experience
unnecessarily intermittent and unnatural.

In 2009 a team from Microsoft found that artificially in-
troducing 500 ms extra delay in the response from the Bing
search engine translated to 1.2% less advertising revenue.
Google experimented with injecting 400 ms delay before they
returned their search page to a subset of their users. Initial
searches declined linearly over time, dropping by 0.76% after
6 weeks and continuing linearly after that. Interestingly, once

the artificially introduced delay was removed, it took a similar
period to linearly regain the original demand. These results
were presented in a joint Microsoft-Google presentation on
the value of reducing Web delay [1]. Google’s VP for search
pointed out that if Google’s experiment had been conducted on
their whole customer base, losing 0.75% of their 2009 revenue
would have lost them $75M for the year [2].

Certain applications suffer more when there is a large varia-
tion in latency (jitter). This includes time-stepped applications
such as voice or applications with real-time interaction, such
as on-line games [3]. In general, latency is characterized by its
distribution function, and the relative importance of the higher
order moments is application dependent.

B. Scope

We restrict our scope to generic techniques that are each
applicable to a wide range of ways the Internet could be
used in its role as a public network. Still, a few promising
techniques currently applicable only in private networks are
included when we see that they may be adapted to, or
inspire solutions for, the public Internet. We also draw a
fairly arbitrary line to rule out more specialist techniques. For
instance, we include the delay that certain applications (e.g.
VoIP) experience when initializing a session through a network
address translator, but we exclude initialization delay for other
more specialist middleboxes and applications.

We restrict our survey to sources of latency when the
Internet is working as it should. This excludes significant

http://www.webpagetest.org/

3

causes of latency such as natural disasters, accidental miscon-
figuration, tolerance of network entities to faults and failures,
and malicious denial of service attacks — such causes can
induce excessive latency in the various sources we discuss,
but they require their own specialized treatment.

C. Paper outline

The remainder of the paper is organized as follows: §§ II–
VI contain the main part of the paper: the survey of available
techniques for reducing communication latency. The organi-
sation of these sections is outlined next. Then §VII illustrates
how several techniques for reducing latency can be combined
into integrated solutions. For instance, this section highlights
the use of WAN accelerators and new protocols, such as SPDY
and QUIC. In §VIII we justify having chosen sources of
delay as the organizing principle of our survey. We briefly
introduce alternative classification systems that we considered,
and outline their pros and cons. In § IX we seek to quantify the
gains offered by some key techniques from the survey, relating
this to a set of representative communication scenarios. We
provide a visualisation of the tradeoff between this gain and the
likely difficulty to deploy each technique. Finally, §X draws
conclusions.

D. Organization of survey

There are clearly many possible ways in which we could
have organized this survey. We have chosen an organization
that presents techniques based on an analysis of the different
sources of delay encountered during a communication session.
As with any classification scheme, not all techniques map
perfectly onto the resulting structure, but we have found this
taxonomy to be the most useful organization for highlighting
the various causes of latency in the Internet and furthering an
understanding of how latency can be reduced.

Fig. 2 illustrates the organization of the main survey part
of this paper. The higher levels in the tree in Fig. 2 represent
sources of delay and the lowest level corresponds to families
of techniques for reducing this delay. The sources of delay
are classified into five main categories: structural delays, in-
teraction between endpoints, delays along transmission paths,
delays related to link capacities, and intra-end-host delays.

Structural delays (§ II) arise from the structure of the
network or the communication path that is used. This, for
instance, includes delays due to a suboptimal placement of
servers or content, and delays due to using suboptimal routes.
Structural delays and techniques to reduce them are illustrated
in yellow in Fig. 2.

Delays resulting from the interaction between endpoints
(§ III) include delays due to transport initialization and secure
session initialization, as well as delays from recovering lost
packets and from message-aggregation techniques. Delays
from the interaction between endpoints and techniques to
reduce them are illustrated in light orange in Fig. 2.

Delays along transmission paths (§ IV) captures the delays
that may be encountered as data travels between a sender and
a receiver. This, for instance, includes propagation delay and

delay due to queuing in network nodes. Delays along trans-
mission paths and techniques to reduce them are illustrated in
green in Fig. 2.

Delays related to link capacities (§V) include both delays
resulting from sharing limited capacity and delays from pro-
tocol inefficiencies that under-utilize capacity and therefore
communication takes longer than necessary. Delays related to
link capacities and techniques to reduce them are illustrated
in blue in Fig. 2.

Intra-end-host delays (§VI) are delays that occur internally
within host endpoints. This includes delays due to buffering
in the transport protocol stack and delays within the operating
system. Intra-end-host delays are illustrated in red in Fig. 2.

While we have organized the presentation based on sources
of delay, it should be noted that similar principles can be
shared by solutions that address different sources of delay and
are applied at different layers. For instance, principles and
solutions used to reduce queuing delay along a transmission
path can also be used to reduce the delay due to buffering
within an endpoint.

II. STRUCTURAL DELAYS

Internet communication relies on interactions between a set
of endpoint systems. The placement of the software com-
ponents, such as servers, caches, databases and proxies in
relation to a client endpoint can have a significant impact on
the application latency experienced by the client. The type of
application also imposes restrictions on the set of methods a
systems architect can use to minimize delay. Finally, when
a systems architect has chosen a placement scheme for the
components, the strategies used for accessing data need to
be wisely chosen to minimize delays. Given client-server is
a common arrangement, this section mostly focuses on ways
to minimize latency by optimizing the placement of services
and the use of data access techniques between Internet hosts
that reduce the delay experienced by a user (client) accessing
a server or a server backend system.

A. Sub-optimal routes/paths

As illustrated in Fig. 3, the path used by the user endpoint
to receive a particular service may utilize a range of routers,
layer 2 communications services, servers, caches, and proxies.
When a packet travels between two of these entities, the total
latency is the sum of the propagation latencies of the links that
form the path, plus the latency inside all the network devices
(switches, routers, or network middleboxes) along the path.
This path latency is discussed in § IV.

The selected path is usually determined by a routing
protocol—implemented by methods such as Multiprotocol
Label Switching (MPLS [4]), Border Gateway Protocol
(BGP [5]) or Open Shortest Path First (OSPF [6]). These
routing protocols are typically configured with policies to
optimize the choice of path, dynamically exchange information
to determine the best path, or use a combination of the two to
optimize a metric (such as number of hops, or lowest “cost”,
often expressed as the inverse of the maximum link capacity).

4

Sources of delay
and techniques for

reducing latency

Structural delays § II

Sub-optimal routes/paths § II-A

Name resolution § II-B

Content placement § II-C

Network proxies and caches § II-C1

Client caches § II-C2

Prediction and latency-hiding § II-C3

Service architecture § II-D

Structured peer-to-peer § II-D1

Cloud server placement § II-D2

Cloud cache placement § II-D3

Virtualizing chains of network functions § II-D4

Interaction between endpoints § III

Transport Initialization § III-A

Parallel option negotiation § III-A1

Reducing NAT setup delay § III-A2

Fast opening of TCP connections § III-A3

Application pipelining § III-A4

Path MTU discovery § III-A5

Secure session initialization § III-B

Faster transport security negotiation § III-B1

Building encryption into TCP § III-B2

Bootstrapping security from the DNS § III-B3

Packet loss recovery delays § III-C

Application tolerance to loss § III-C1

Reduce packet loss detection times § III-C2

Combining redundancy and retransmission § III-C3

Explicit congestion notification § III-C4

Message aggregation delays § III-D

Delays along transmission paths § IV

Signal propagation delay § IV-A

Straighter cable paths § IV-A1

Higher signal velocity § IV-A2

Higher velocity with straighter routes § IV-A3

Medium acquisition delays § IV-B

Serialization delay § IV-C

Link error recovery delays § IV-D

Switching/forwarding delay § IV-E

Queuing delay § IV-F

Flow and circuit scheduling § IV-F1

Reducing MAC buffering § IV-F2

Smaller network buffers § IV-F3

Packet scheduling § IV-F4

Traffic shaping and policing § IV-F5

Queue management § IV-F6

Transport-based queue control § IV-F7

Delays related to link capacities §V

Insufficient capacity §V-A Leveraging multiple links / interfaces §V-A1

Redundant information §V-B

Under-utilized capacity §V-C
More aggressive congestion control §V-C1

Rapidly sensing available capacity §V-C2

Collateral damage §V-D

Low priority congestion control §V-D1

Congestion window validation §V-D2

Avoiding slow start overshoot §V-D3

Intra-end-host delays §VI

Transport protocol stack buffering §VI-A

Transport head-of-line (HOL) blocking §VI-B

Operating system delays §VI-C

Fig. 2. Techniques for reducing latency organized by sources of delay.

5

EJEC
T

DVD
-RWDVD
-RW

USB

SATA

PH
ON

E
MI
C

LIN
E-
IN

AUD
IO

POWERPOWER

CAR
D

REA
DER

LCD-ProLCD-ProLCD-ProLCD-ProLCD-Pro

SELECT

MENU

-
+

NumLock
CapsLock

ScrollLock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-
+ScrollLock

ScrnPrint
SysRq

Pause
Break

Home
End

PageDown
PageUp

Insert

Delete
Enter

End

Home
PgUp

PgDn
Del.

Ins

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Esc
1 2 3 4 5 6 7 8 9 0()

*&^%$#@!
`~

-_ =+ \|

Ctrl

Ctrl
Alt

A S D F G H J K L

CapsLock

;: '"

Z X C V B N M

Shift

Shift

/?
.>

,< Alt Gr

Q W E R T Y U I O P [{]}

Tab

Cabled client

Content server

Proxy cache

Wireless
client

ISP

Middlebox

Home
gateway

ISPISPISP

Middlebox

POWERPOWERPOWERPOWERPOWER

DVD
-RWDVD
-RW

DVD
-RWDVD
-RW

DVD
-RW

USB

Fig. 3. Example of clients connecting to a server over the Internet. When a client requests a service over the Internet the connection may have to traverse a
wide range of different systems. Different access network technologies have different requirements and limitations, and network routing decisions based on
peering agreements may lead to sub-optimal routes from a latency perspective. Although transparent to the user, the connection might actually be intercepted
by a middlebox or served by a proxy cache. At any intermediate node, there may be buffering or processing delays that impacts the latency experienced by
the user.

Routing methods typically offer robustness to link failure,
but protocols that take congestion into account are confined to
the research domain [7], probably due to unresolved concerns
over stability. Hence, a minimal cost route based on link
capacities or link lengths might not be the path with the current
shortest latency, especially if this path is shared with other
traffic that adds queuing delay. Although methods such as
Equal Cost Multipath Routing (ECMP [8]) allow simultaneous
use of more than one path—enabling the latency to be reduced
by sharing the capacity of multiple parallel links—a single
flow is typically assigned to only one path, which can result
in two different flows between the same pair of endpoints
encountering very different latency.

In Multi Topology Routing (MTR), each router has multiple
forwarding tables, one for each class of service [9]. If link
latency is one cost metric, then one class of service may
forward along the path with the lowest delay. A solution
may be offered by a multi-path routing protocol that can find
several paths between source and destination [10], dynamically
routing latency-sensitive traffic over the lowest delay path.

Paths may also be controlled at the transport layer. In
Multipath TCP (MPTCP [11, 12]), several paths are created
between the sender and the receiver, and a sender can then
choose which path (or subflow) to use for sending. Unlike
network-based techniques, the stability bounds of MPTCP
have been derived [13]. The RTT of each subflow is known by
the congestion control protocol on the sender side, which could
be used by MPTCP to select the lowest latency path. Apple’s
natural speech support service, Siri, uses MPTCP mainly for
resilience, but it is also hard-coded to prefer WiFi over cellular
given the likelihood of lower latency [14]. A future MPTCP
API is envisioned to give the application the ability to choose
a path with low latency and low jitter [15]. MPTCP is further
described in §V-A.

Since routing decisions between networks are often con-
strained by the economic guidelines of peering agreements

between Internet Service Providers (ISP), the final chosen path
may not have the shortest latency, even when using a routing
latency metric. When a system architect wants to ensure that a
certain path is used so that latency for the service is reduced,
they can buy a dedicated tunnelling service from their ISP,
reducing the chance of incurring extra latency from routing.
Another option is to use overlay hosts [16] to dynamically
identify alternative routes to endpoints.

B. Name resolution

Most applications do not directly use the Internet addresses
that are used for routing, but instead rely on a name resolution
step, at least once before a client can request the actual service
for the first time. In name resolution, a client process called
the resolver retrieves addresses for a given domain name by
requesting a record from the Domain Name Service (DNS).
An earlier DNS response is usually cached by a resolver for
a period of time. If the record is not cached, a request adds a
latency of at least the RTT between the requesting end-systems
and the local DNS server. This local DNS server also usually
caches responses from the DNS system. When a record cannot
be resolved locally, a referral is forwarded upwards along the
DNS hierarchy, and potentially down again along the chain of
authoritative DNS servers for the specific name.

Jung et al. [17] surveyed the literature and studied DNS
resolution from the US and South Korea. They found that
roughly 85% of all requests were served from local DNS
servers. For 10% of all incoming TCP connections, servers
would additionally perform a reverse DNS lookup before
allowing a connection. Approximately 10% (US) and 25%
(South Korea) of all name lookups took more than 1 s, with
more than 5% of all lookups from South Korea taking more
than 10 s. There can therefore be a significant variation in
lookup time. The time for a local DNS server to resolve a
request required more than 1 s in 8% of cases, while more

6

than 45% of DNS lookups took more than 1 s if 2 referrals
were required.

Jung et al. found that names were Zipf-distributed across
all requests. This implies that an arbitrary enlargement of
the caches would not significantly increase the hit rate of
the local DNS server, because a DNS record expires after
timeout. Although timeout values are lowest for highly popular
sites (5 min are typical for websites that use DNS-based load-
leveling strategies), most cache misses are still due to lookup
operations for infrequently requested names. Ager et al. [18]
presented further analysis of load-levelled local DNS servers.
Some ISPs use random load-leveling, which then loses the
benefits of caching.

DNS pre-fetching is a method that can reduce latency
by attempting to resolve domain names before they are re-
quested [19, 20]. For example, a web browser may attempt
to resolve names when a web page is received and before
a user chooses to follow a specific URL. This is based
on analysing the content or using explicit “pre-fetch” meta
tags. This method can also be used to fill the cache of a
DNS proxy when a web proxy is used and the web page
is not encrypted. The cost of DNS pre-fetching is that it
generates additional network traffic, thus consuming resources
and potentially contributing to latency due to contention.

Reducing DNS lookup latency is only one possible gain.
Often the DNS is used to direct the following data connections
of a client to a preferred server, which may be geographically
or topologically closer, have lower estimated latency to the
client, or be less heavily loaded than others. An example of a
system that provides such context-specific DNS responses is
Akamai’s Global Traffic Manager [21]. This can significantly
reduce latency. Otto et al. [22] found that the benefit depends
on the distance between the resolver and the local DNS
server. They found that 27% of ISPs clients’ resolvers were
topologically distant “far-away” DNS servers, increasing the
median time for starting a TCP connection, for example by
50% accessing Akamai content. This optimization relies on
locating the client’s resolver. However, a current trend is to
anonymize the client location by bypassing the local ISP’s
DNS server and using open DNS resolvers with arbitrary
physical locations. Ager et al. [18] found that such resolvers
fail to resolve to servers in the local network, preventing
optimization. Otto et al. [22] clarify that the effect of using
open DNS resolvers is identical to using a far-away local DNS
server assigned by an ISP, i.e. a 50% median increase in the
DNS latency.

C. Content placement
The proximity of the content to the consumer is one of the

most important factors determining the experienced latency.
Services confined to run at a single location may experience
high loads. This can increase the server response time, and/or
result in increased queuing delay on the path to the server,
leading to high finishing times (§ IV). Also, a well-built
hierarchy of content may be necessary to make a popular
service scale to the demand. Considering which strategies to
use for placing the content to be served is therefore important
to anyone providing applications over the Internet.

1) Network proxies and caches
The caching techniques used by the DNS (§ II-B) may also

be used for application data, allowing replicas of content to be
served from other network devices to reduce the completion
time of transfers.

The simplest method is passive caching. This distributes
a replica of the content to a node closer to the client. All
caches have a limited storage and typically implement a
content-agnostic object replacement scheme. Although this
will reduce the access time for data available at the cache, it
will sometimes be necessary to contact the data source when
there is a cache miss, or content is uncachable. A cache miss
increases the response time, although the additional time is
often small compared to the RTT between the server and client.
Caches may be organized in tiers or layers and cache subtypes
can be identified (e.g. in the context of Web caching [23]).

A proxy cache is a network device that is typically located
close to a population of clients. It can be either a transparent or
a non-transparent (configured) proxy, and requires application-
level processing of each request. Proxy caches can reduce all
sources of latency, but they offload the content providers in an
unpredictable manner. Podlipnig and Böszörmenyi surveyed
object replacement strategies for web objects [25] and for
dedicated caching strategies for layered video [24].

The more static the content, the more the benefit from
placing a cache/proxy closer to a client. Such caching methods
are unsuitable when data is generated in real time (e.g. games,
dynamic content, remote control operations or financial data
updates).

Kroeger et al. [26] investigated the limits of latency reduc-
tion for web caching, and observed only an average 22%-26%
reduction, even for cache hit ratios of 47%-52%. This implies
that larger objects were less frequently cacheable than small
ones.

A reverse proxy cache (see Fig. 4a) is a popular form of
proxy that is typically located close to a content provider’s
servers. This can reduce response times by holding replicas
of a specific subset of the server’s content. A reverse proxy
cache may also be implemented in an ISP’s network to
handle requests to popular content providers, adding a small
processing delay to offer the benefits of a “normal” proxy
cache.

A load balancer (see Fig. 4c) is an alternative to a reverse
proxy. It redirects incoming requests to a server farm to one of
a pool of servers that hold either a subset or active replicas of
the content. Proactive replication in a server pool can better
spread server load and keep response times low; a classical
technique is Dynamic Segment Replication (DSR [27]). An
example is the Google web query architecture [28], where
the www.google.com address is first mapped using DNS to a
server farm, where a front-end web-server balances the load to
index servers, document servers, spell checkers, ad servers, etc.
This requires local processing and data-centre communication
(see later) to distribute and forward operation requests, each
adding small amounts of delay before a response reaches the
user.

Push caching is a type of caching with active replication.
A content provider uses information about usage and regional

7

Web server Backend servers

Reverse proxy

Forward proxy

Clients

[...]

EJEC
T

DVD
-RWDVD
-RW

USB

SATA

PH
ON

E
MI
C

LIN
E-I

N

AUDI
O

POWERPOWER

CARD

READ
ER

LCD-ProLCD-Pro

SELECT

MENU

-
+

NumLock
Caps

Lock
Scroll

Lock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-

+Scroll
Lock

ScrnPrint
SysRq

Pause
Break

Home

End
Page

Down

Page
Up

Insert

Delete
Enter

End

Home
PgUp

PgDn

Del.

Ins

F1 F2 F3 F4
F5 F6 F7 F8

F9 F10 F11 F12

Esc
1 2 3 4 5 6 7 8 9 0(

)
*

&
^

%
$

#
@

!
`~

-_ =+ \|

Ctrl

Ctrl
Alt

A S D F G H J K L

Caps
Lock

;: '"

Z X C V B N M

Shift

Shift

/?
.>

,< Alt Gr

Q W E R T Y U I O P [{]}

Tab

EJEC
T

DVD
-RWDVD
-RW

USB

SATA

PH
ON

E
MI
C

LIN
E-I

N

AUDI
O

POWERPOWER

CARD

READ
ER

LCD-ProLCD-Pro

SELECT

MENU

-
+

NumLock
Caps

Lock
Scroll

Lock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-

+Scroll
Lock

ScrnPrint
SysRq

Pause
Break

Home

End
Page

Down

Page
Up

Insert

Delete
Enter

End

Home
PgUp

PgDn

Del.

Ins

F1 F2 F3 F4
F5 F6 F7 F8

F9 F10 F11 F12

Esc
1 2 3 4 5 6 7 8 9 0(

)
*

&
^

%
$

#
@

!
`~

-_ =+ \|

Ctrl

Ctrl
Alt

A S D F G H J K L

Caps
Lock

;: '"

Z X C V B N M

Shift

Shift

/?
.>

,< Alt Gr

Q W E R T Y U I O P [{]}

Tab

EJEC
T

DVD
-RWDVD
-RW

USB

SATA

PH
ON

E
MI
C

LIN
E-I

N

AUDI
O

POWERPOWER

CARD

READ
ER

LCD-ProLCD-Pro

SELECT

MENU

-
+

NumLock
Caps

Lock
Scroll

Lock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-

+Scroll
Lock

ScrnPrint
SysRq

Pause
Break

Home

End
Page

Down

Page
Up

Insert

Delete
Enter

End

Home
PgUp

PgDn

Del.

Ins

F1 F2 F3 F4
F5 F6 F7 F8

F9 F10 F11 F12

Esc
1 2 3 4 5 6 7 8 9 0(

)
*

&
^

%
$

#
@

!
`~

-_ =+ \|

Ctrl

Ctrl
Alt

A S D F G H J K L

Caps
Lock

;: '"

Z X C V B N M

Shift

Shift

/?
.>

,< Alt Gr

Q W E R T Y U I O P [{]}

Tab

Internet

(a) Placement of forward and reverse proxy.

Source server

Local instances
(b) Content delivery network.

Internet

Incoming connections

Load balancer

(c) Load balancing.

Fig. 4. Examples of solutions for content placement to reduce latency and improve scalability.

interest to send replicated objects to specific remote caches to
optimize response and finishing times.

Methods such as push caching and active replication have
been largely replaced by Content Delivery Networks (CDNs)
(see Fig. 4b). A CDN can manage replication and distribu-
tion across multiple content providers, providing a multiplex-
ing gain that reduces hardware costs (e.g. the sophisticated
edge caching network used for YouTube content and live
video [29]).

Measurements by Chen et al. [30] distinguished and com-
pared the times to retrieve the small static and dynamic ele-
ments of Bing and Google searches from their CDN’s frontend
and backend nodes. They provided a variety of visualizations
of their results, including one that showed that most clients
with a small RTT to a frontend node benefit from the CDN
(halving retrieval times and better), while clients with larger
RTTs benefit mostly from reduced jitter.

Caching approaches are also used for streaming services,
and with the current trend of using adaptive segmented HTTP
streaming for progressive download of a sequence of video
segments, caching infrastructures have become an important
means of latency reduction. Creating a streaming experience
requires both short finishing times and stable response times
for the download of video segments. YouTube has received the
most attention of all CDN services. In 2008, Saxena et al. [31]
distinguished between videos delivered from YouTube servers
and YouTube videos delivered from Google’s CDN (YouTube
has since been integrated into Google). This found that nearly
50% of segments received from the Google CDN had a sub-

second finishing time, while YouTube’s own servers delivered
only 5% of segments with a finishing time below 1 s. By 2012,
Google’s CDN served all YouTube traffic, using a three-layer
caching system that supports conditional caching with a 90%
hit rate.

Network proxies may also perform operations and ser-
vices on behalf of an origin server for other applications. In
interactive multi-user applications, collaborative applications
or networked virtual environments, well-chosen placement of
proxies can reduce the average latency, by migrating appli-
cation state to a dynamically selected server depending on
location and time of the day [32].

2) Client caches

A local cache at a client can also be used, e.g. Web client
caching can reduce latency for repeated requests for the same
object. In contrast, data pre-fetching in HTML5 allows a web
application to control the set of objects that are cached and
allows a user to interact with cached content when offline.

The responsiveness of many modern web applications that
execute on a client may be increased by enabling them
to automatically receive (“pushed”) content [20, 33]. This
requires a server to maintain a (persistent) channel to send
data, rather than using a separate transport connection for
each object. In many cases pushed content can reduce access
latency, but when the content competes for limited network
resources (e.g. over capacity-limited mobile/wireless links), it
can add to network queuing and induce latency for other flows.

8

3) Prediction and latency-hiding
If an application has data transfers that follow strict rules,

like physical laws or predictable patterns, it may be able to
ask for data to be delivered before the time when the data is
actually needed.

Predicting the need for application data relies on recog-
nizing specific application patterns, such as user behaviour
in an on-line game. When the prediction is correct, such an
approach may save the time needed to request and deliver the
data (1 RTT + delivery completion time). A cost incurred by
such schemes is unnecessary data transfers caused by failed
predictions. In many cases, it may be difficult to provide
predictions of a quality that is good enough for practical
use [34].

Another kind of commonly used prediction, is to hide
network latency by enabling the client to predict the expected
continued interaction behaviour and display the prediction to
the user, e.g. dead-reckoning in gaming [35, 36]. Client-side
latency hiding does not reduce the actual latency, but can
greatly increase the quality of experience for the user. A
high degree of wrong predictions may however reduce the
experienced quality by inducing extra jitter.

A latency-reducing technique is also known from stream-
ing of virtual scenes. While view interpolation on the re-
ceiver side is the essence of image based rendering [37], it
does usually not involve latency hiding. Model-based view-
extrapolation [38, 39] is a variant that avoids interaction
delay from interactive camera movement by interpolating the
currently viewed scene of a virtual world based on views
that were previously received from a server. The server sends
difference images to correct these estimates in retrospect and
suppress drift.

D. Service architecture

The client-server model is a frequently used architecture for
distributed systems. A single server endpoint can be replaced
by a (dedicated or shared) server cluster or a server farm.
Replication of itself does not improve latency, it only increases
capacity, because latency is solely influenced by the distance
to the server. With replication, servers are still placed at a fixed
(static) location and all client communication is still with one
of the servers. Users in different geographical locations will
experience different latencies for the same service, influencing
fairness e.g. of an online game or a trading market. The
following sections outline various ways to re-arrange the basic
replicated server architecture to improve latency.

1) Structured peer-to-peer
The Peer-to-Peer (P2P) model has become popular because

of its scalability and because it facilitates moving costs from
the provider to an ISP and the user, thus reducing the de-
ployment cost for the service provider, but at a higher overall
cost for everyone involved due to the overhead of setup
and management of the P2P topology. While unstructured
P2P networks can be encumbered by large overall latency,
structured P2P networks can avoid much of this delay.

A system developed by Kumar et al. [40], for example,
reduced access latency to 25% of the well-known Chord P2P

system by optimizing the overlay structure. Small et al. [41]
proposed construction of a structured overlay topology to
minimize the average global latency.

One major issue with the P2P model is that it can present
users with a large latency variance if the selection of peers
and tree topology is not carefully chosen. Wisely choosing
central “super-peers” and optimizing the construction of the
overlay can significantly influence the path latency [42]. The
tradeoff for optimizing the topology is that time must be
spent calculating optimal topologies, increasing the time it
takes before a topology for lower latency is established. Also,
the forwarding latency for P2P networks is often higher than
when using network-layer routing, because application layer
processing is not so likely to be optimised for forwarding. The
overhead of management and control in P2P networks tends
to increase complexity relative to a central control server with
global knowledge. Hybrid client-server/P2P solutions can ease
management of such scenarios and help maintain more stable
routes for application forwarding where delay variance must
be kept low. Standardisation by the IETF ALTO working group
aims for increased efficiency of cooperative networks with P2P
overlays [43].

2) Cloud server placement
Cloud-based service architectures move the

backend/infrastructure to reside with a provider of
Infrastructure as a Service (IaaS), as offered by Amazon
Cloud [44], Microsoft Azure [45], Google Compute
Engine [46], and others. This placement provides the
opportunity to migrate the service between data centres
around the world, and offers flexibility to dynamically scale
server resources up or down to reflect fluctuating application
demand.

By dividing user workloads over several servers placed
locally, processing delay may be significantly reduced, and
by moving the physical location of the server, the transport
latency can be dynamically optimized to meet the demands
of the average user of a system at any given time [47, 48].
The latency gain from relocating a server has to be traded
against the migration latency. Migration latency depends on
the propagation delay between the two locations plus the time
to complete movement of operational state. This operational
state continually changes (as opposed to the software image
and configuration state that can be run and configured in
a remote location before arrival of the operational state).
Stateless services do not require dynamic operational state,
eliminating migration delay, because the service can ‘make
before break’.

Mobile devices are good candidates for needing resource-
intensive applications offloaded to the cloud, but high WAN
latencies (and/or relatively low link capacities) may hinder
this. Cloudlets [49] push the idea of datacentre relocation
further by placing resources very close to wireless terminals
to facilitate, for instance, cognitive-augmentation applications
such as natural language translation or face recognition.

A downside of IaaS is that it may lead to larger variance in
processing time due to time-slicing of the hardware resources.
If an application has strict processing deadlines, the need for
direct hardware control and predictable processing time may

9

switch switch

��

��

��

��

��

��

serialisation

propagation

processing

(a) A workload divided over 2 chains of 6 physical network appliances.

vSwitch vSwitch

general-purpose
server

general-purpose
server

vSwitch

general-purpose
server

f1

f2

f3

f4

f5

f6

(b) The same workload divided over 3 general-purpose servers running virtualized chains of the same functions.

Fig. 5. Removal of repeated serialization delay using network functions virtualization.

outweigh the flexibility of the IaaS model. Still, research on
using IaaS for real-time services indicates that the solutions
deployed today are able to meet the requirements for some
real-time services [50, 51].

3) Cloud cache placement
Another approach is to allow caches (see § II-C) to be

spawned dynamically at a location close to a user group. Since
IaaS allows resources to be scaled to meet the demands of an
application, optimizations may be implemented to dynamically
adjust the content needed and cache size to adapt to the local
needs.

Globe-spanning Cloud services like Amazon EC2 can now
compete with P2P services for many latency-sensitive appli-
cations, since they reduce costs for service providers, offer
scalability and provide low response times. However, using
the clients as intermediate nodes for a hybrid client-server/P2P
model may yield latency benefits when combined with caching
and prediction mechanisms (see § II-C).

4) Virtualizing chains of network functions
In certain scenarios it is common for traffic to be passed

through numerous network functions, e.g. each wide-area link
in an enterprise may include a firewall, an intrusion detection
system, a WAN accelerator, a voice-gateway, an application-
layer-proxy and an edge-router; mobile networks contain long
function chains too.

If each function is deployed as a separate physical box
(Fig. 5a), in the worst case the data would have to be
serialized or de-serialized four times per function—out of an
intermediate switch, into and out of the function and back
into the switch. All serialization delay can be removed by

executing the whole chain as virtualized network functions in
the memory address space of a single general-purpose server
(Fig. 5b). Comparison of the block diagrams on the right
of the figures illustrates this point. If modern virtualization
techniques such as single root I/O virtualization (SR-IOV [52])
are used, processing and switching latency (see § IV-E) can
match dedicated hardware. And, in the virtualized case, bits
can move between functions in parallel over the memory bus,
rather than in series over network links.

Note that, in the hardware case, cut-through switching can
bypass the two serialisation delays into and out of the switch,
at least for the payload (see § IV-C). However, most of the
functions chained together in the above enterprise example
act on the payload, so cut-through cannot bypass any of the
serialisation delay into or out of these functions. Also note that
serialization delay is typically small (e.g. 12µs for a 1500 B
packet at 1 Gb/s) relative to wide-area propagation delays of
milliseconds. So the sub-millisecond improvement from saving
even repeated serializations may only be significant for short
paths.

Fig. 5 illustrates how a) physical appliances dedicate com-
puting resources to each function, whereas b) the virtualized
approach dedicates computing resources to subsets of the
users’ workload. Thus, if one server is not powerful enough to
execute the whole chain of virtualized functions, the workload
(not the chain) can be divided over more servers. In the
original physical case, the workload is often divided over at
least two chains for resilience anyway (as shown in Fig. 5a).

10

TABLE I
NUMBER OF RTTS REQUIRED BEFORE DATA TRANSMISSION CAN START

(ADAPTED FROM TABLE 1 IN [54]). RESUMED SESSIONS OVER TCP
CONNECTIONS ARE SHOWN WITHOUT AND WITH TCP FAST OPEN (TFO).

Number of RTTs

Protocol First
connection

Resumed
session

Resumed
session

with
TFO [55]

IPsec [56] ≥ 3 1 n/a
TCP [57] 1 1 0
TCP then TLS [53] 3 2 or 2.5 1 or 1.5
TCP then TLS False Start [58] 2 2 or 1.5 1 or 0.5
TCP then TLS Snap Start [59] 2 (poss. 1) 1 0
Tcpcrypt [60] 2 1 TBA
MinimaLT [54] 0 0 n/a

III. INTERACTION BETWEEN ENDPOINTS

This section examines the latency introduced by end-to-end
protocols. Transport protocols operate over the network path
between a pair of transport endpoints. These transports may
be datagram-based (e.g. UDP) or connection-oriented (e.g.
TCP). These protocols can incur multiple control interactions
between the endpoints before data communication may start.
End-to-end protocol setup can also be needed at high layers
(e.g. for security).

An end-to-end protocol can also trigger control interactions
during a session, for instance to recover lost packets to provide
reliable transfer, or to assess the characteristics of a path
(e.g. available capacity, support for network features). Each
interaction incurs at least 1 RTT to communicate over the path
to the remote endpoint and receive a response. Reducing such
interactions can have a dramatic impact on latency, especially
for short data transactions.

Finally, an end-to-end protocol may merge messages (ei-
ther carrying application data, or only protocol signals) for
optimisation purposes. Such optimisations, which reduce the
number of packets sent on the wire, may in some cases result
in additional latency.

Table I shows the number of RTTs required by certain pro-
tocols before data can be transferred. If the host is unknown,
a DNS lookup (≤ 1 RTT to a remote resolver) is first required
(not shown in the table). If the DNS information is cached,
this RTT is avoided in future connection attempts. The column
marked ‘Resumed session’ shows how some protocols cache
connection state to speed-up subsequent communications that
use the same protocol to connect to the same host. Note that
the second alternative figure shown in Table I against Transport
Layer Security (TLS v1.2 [53]) is for the case where the server,
not the client, resumes sending data first. This makes one flight
(half a round trip) difference as illustrated in Fig. 9.

The remainder of the section examines how endpoint in-
teraction latency can be reduced by improvements to the
initialization of the transport mechanisms, security sessions or
middlebox traversal, by choice of end-to-end packet loss re-
covery mechanisms, or by improving (or disabling altogether)
message-aggregation mechanisms.

time
Server

Client

Fig. 6. Happy Eyeballs technique applied to the setting up of transport-layer
connections.

A. Transport Initialization

Startup latency arises from the time to complete a protocol
handshake (e.g. at the start of a TCP [57], SCTP [61] or
DCCP [62] connection). At least one RTT of delay is incurred
for each sequentially completed handshake. In practice this
delay can be larger when there is loss (due to congestion, or
to unsupported features in the network and/or a middlebox),
requiring a timeout to restart the exchange. Communication
options, even latency reducing options, may need to be nego-
tiated at the start of the session. These can include: selection
of alternate transport protocols, features such as Explicit
Congestion Notification (ECN [63]), use of relays to overcome
the limitations of middleboxes, etc. Each feature that requires
negotiation can potentially add further startup latency.

The impact of startup latency can be mitigated by reducing
the number of sequential protocol exchanges, and by multi-
plexing data over an existing session or by persistent use of
a session (rather than opening and closing a session for each
transfer).

1) Parallel option negotiation
Parallelizing option negotiation can significantly reduce pro-

tocol initialization latency. Happy Eyeballs (RFC 6555 [64])
allows simultaneous attempts to connect using IPv4 and IPv6.
This appears to double the number of connection attempts, but
by using a caching strategy to store previous successful con-
nectivity, the algorithm can minimize the number of attempts
and offer substantial delay improvement. Most modern web
browsers, i.e. Chrome, Firefox, Safari and Opera, support this
algorithm.

This idea could be extended to other communication op-
tions. For instance, many middleboxes inadvertently block the
Stream Control Transmission Protocol (SCTP) from end-users
even though it is usefully employed within the interior of
networks. Therefore, it would be desirable for end-users to try
to use SCTP if available, otherwise to fall back to TCP. [65]
describes this approach, which is illustrated in Fig. 6; the client
attempts to simultaneously open both a TCP connection and an
SCTP association and, if the latter succeeds within a short time
interval, the former is aborted then the application continues
using SCTP. This may allow the application to benefit from
SCTP’s latency reduction mechanisms, e.g. reliable out-of-
order delivery without head-of-line (HOL) latency (§VI-B).

2) Reducing NAT setup delay
Many home networks employ port-mapping Network Ad-

dress Port Translation (NAPT) to share use of a single as-
signed address. A NAPT performs mapping of addresses and

11

rewriting of packet headers during router forwarding. For data
download to a device behind a NAPT, this has little impact
on latency, but for communication initiated by a device on the
public side of the NAPT (e.g. a VoIP or teleconference media
call), this can incur latency communicating with an off-path
server(s) to discover a viable candidate path between the end-
points, e.g. Session Initiation Protocol (SIP [66]), signalling to
invoke Interactive Connection Establishment (ICE [67]). Once
potential candidates are discovered, connectivity checks are
required to determine that a candidate path is viable. This can
result in appreciable handshaking delay [68]. The delay can
be mitigated by starting ICE connectivity checks before the
signalling completes negotiation to set up the media flow, this
parallel discovery can reduce the overall latency for a flow to
start. Some delays can also be mitigated using P2PSIP, instead
of a central SIP server [69]. When multiple candidate paths
are found, ICE may be used to minimize latency on the media
path (this can incur additional delay, waiting for more potential
candidates to be validated).

In some cases the resultant path requires an off-path relay
using an application layer intermediary, e.g. Traversal Using
Relays around NAT (TURN [70]). A TURN media relay
causes packets to follow a longer than necessary path and
incurs additional latency in the media/data path [68, 69]. Well-
placed media relays (e.g. at network borders) can significantly
reduce the overhead of routing over a longer path. TURN
may also be used to impose a policy, e.g. in a corporate
environment.

3) Fast opening of TCP connections
The current TCP standard requires a TCP connection to

start with a three-way handshake that adds a round trip of
delay before the server can receive any request data.

The traditional three-way handshake serves multiple pur-
poses, not all of which were originally intended:

1) it allows a server to test that the client really is at the
address it claims to be using;

2) it synchronizes use of sequence numbers;
3) it has come to be used by middleboxes (including NATs

and firewalls) to initiate storage of connection state;
4) it allows the two endpoints to agree on the use of protocol

options;
5) it allows both endpoints to estimate the current round trip

time before sending data;
6) it allows a connection to detect congestive loss in each

direction using a minimal size packet;
7) it allows the client to shut down any duplicate connections

the server unwittingly opens in cases when a client’s
opening packet was duplicated.

Transaction TCP (T/TCP [71]) was an early attempt to
reduce latency for short transactional connections by replacing
TCP’s three-way handshake, instead storing a counter per
client at the server. However, once various security flaws were
discovered [72], T/TCP was not pursued further and the IETF
eventually moved its status to Historic [73].

TCP Fast Open (TFO [55]) is a more recent attempt to allow
a TCP connection to circumvent the three-way handshake
when the client opens a connection to a server to which it has

without with TFO
TCP connection initialisation

TCP
1 RTT

TFO
1 RTT

tim
e

TCP
1 RTT

TFO
0 RTT

legend: a loop around multiple arrows represents
messages that can be sent in the same packet

later resumed connection

Fig. 7. TCP Fast Open (TFO) saves a round trip when resuming a connection.

recently connected. The server does not have to hold any state
between connections, which simplifies load balancing in large
server farms. Instead, the server gives the client a TFO cookie
that the client sends when it opens a subsequent connection.
This allows a server to verify that an earlier valid handshake
had been completed. A client that sends an opening (SYN)
packet with a TFO cookie can include application data in that
packet, which the receiving endpoint can pass straight to the
application (represented by the loop1 in Fig. 7 joining the SYN
with the application request). In most cases this will reduce
latency, but it could incur additional delay, e.g. if a middlebox
blocks the cookie option.

A TFO client’s SYN packet and TFO cookie serves the
first four of the above purposes (except it may fail to achieve
the first behind a NAT because then it cannot detect client
address spoofing), but not the last three. Therefore, when TFO
resumes a connection with an initial window of data, if the
data is not received, it will not have a current estimate of
how long it is safe to wait before retrying (item 5), and it
will be too late to discover that it should have sent less (item
6). The lack of duplicate connection detection (item 7) means
that TFO is not a universal replacement for standard TCP,
and must only be used by applications that either test for
duplicate connections themselves or inherently do not care
about duplicate connections (e.g. pure look-up semantics). It
is well-suited to many latency-sensitive applications, such as

1In the case without TFO, an application can tell TCP to combine the
ACK ending the 3-way handshake with the application request. By default
TCP sends the ACK separately, so we have not shown a loop here.

12

web applications. Radhakrishnan et al. [74] provides further
rationale for TFO, and evaluates its merits against alternative
approaches.

Accelerated Secure Association Protocol (ASAP [75]) is a
proposal with goals similar to TFO—to eliminate the RTT
needed to complete the TCP three-way handshake. In contrast
to TFO, ASAP piggybacks transport-connection establishment
on a DNS lookup request. This requires modifications to the
DNS (namely, to the authoritative name server).

4) Application pipelining
The earlier versions of the Web protocols required un-

necessary set-up of connections, with consequent delays, but
they have evolved to meet changing demands and optimize
performance. Web 2.0 has significantly altered the character-
istics of in-line objects, by allowing embedding of additional
services, e.g. for audio/video streaming, or interaction with
an Online Social Network (OSN). HTTP 1.0 [76] relies on
multiple connections for concurrency. This can add latency
due to connection setup/teardown and TCP slow-start. HTTP
1.1 [77] addressed this by allowing persistent connections and
pipelining of HTTP requests. This enabled a client to decide to
pipeline requests, which reduces the delay waiting to request,
but could lead to “Head-Of-Line” (HOL) blocking delay (see
§VI-B) when a single transport is used e.g. when the first in
a series of requests includes dynamically generated content.

SPDY [78] introduces a number of latency-reducing tech-
niques, including a session layer that builds on pipelining in
HTTP 1.1 by supporting multiplexing of concurrent streams
over a single persistent TCP connection. SPDY is described
more fully in §VII-A where protocols that combine numerous
techniques are outlined.

5) Path MTU discovery
Although most Internet links support a Maximum Trans-

mission Unit (MTU) of at least 1500 B, many paths cannot
sustain a Path MTU (PMTU) of this size, due to one or more
links with a lower MTU. Although a lower MTU can reduce
head-of-line latency from other flows sharing a slow link, the
more common reason for a reduced MTU is the use of tunnel
encapsulations. Path MTU discovery is a challenge when
using such paths. The original path MTU discovery (PMTUD)
algorithm [79] had drawbacks that could introduce intermittent
extra delay or even prevent communication [80]. This was
updated in the more robust packetization layer PMTUD [81],
but this still relies on occasional probe packets sent along the
path, which can introduce recovery delay when a probe is
larger than the actual PMTU supported, and hence needs to
be retransmitted. A discussion of PMTUD and issues relating
to use with tunnels is given in [82].

B. Secure session initialization

Security mechanisms have become the norm in Internet
communication. The use of an unmodified security protocol
can add significant latency to setup of an application flow as
illustrated in Table I. This has prompted proposals to update
security protocol interactions to reduce the number of RTTs,
with the potential to provide significant latency gains for short
sessions.

TCP
1 RTT

full
TLSv2
2 RTT

TFO
1 RTT

full
TLSv2

false start
1 RTT

tim
e

Total: 3 RTT

Total: 2 RTT

without with TFO &
false start

session initialisation
client data first

legend: a loop around multiple arrows represents
messages that can be sent in the same packet

� cleartext
ciphertext

Fig. 8. Protocol timing diagram showing handshaking to initialize a transport
layer security session. False Start saves one round trip, but at this initial stage
TCP Fast Open (TFO) saves nothing, although it sets a cookie that may save
time later.

1) Faster transport security negotiation
Transport Layer Security (TLS) is the IETF-standardized

successor to the Secure Sockets Layer (SSL) that is universally
used to authenticate and encrypt HTTP connections (denoted
by the ‘https:’ URL prefix). In TLS up to v1.2 [53] the
handshake adds 2 RTTs to the set-up of a typical connection
where the client sends data first, e.g. HTTP. Here we focus on
TLS over connection-oriented transports (TCP, SCTP, etc.), but
similar approaches could apply to datagram TLS (DTLS [83]).

a) TLS False Start: False Start [58] begins sending
application data 1 RTT earlier than typical for TLS (see
Table I). The initial TLS handshake messages cannot be
encrypted themselves because they negotiate encryption keys
and certificates. Instead, the respective ‘Finished’ messages
that the client and server use to complete the TLS handshake
both include a hash to validate all the previous messages in
the handshake. False Start allows a client to start the stream
of encrypted application data directly after its own ‘Finished’
message (Fig. 8), whereas, in the original TLS, a client waits
1 RTT to receive the corresponding ‘Finished’ message from
the server before transmitting encrypted data.

If a client resumes an earlier session, the original TLS
protocol already permits an abbreviated handshake that takes
only 3 sets of messages (half a round trip each) instead of
4. A client cannot use the False Start approach to improve
on this, because in the abbreviated handshake a regular TLS
client already starts transmitting encrypted data directly after
its ‘Finished’ message (see Fig. 9a), because, in contrast to
the full handshake, the server sends ‘Finished’ first.

On the other hand, if the server resumes the session first,
e.g. it has updates to a previous response, it can use False Start
to save 1 RTT (see Fig. 9b). This is why Table I shows two

13

TCP
1 RTT

abbreviated
TLSv2

client data
first

1 RTT

tim
e

TFO
0 RTT

abbreviated
TLSv2

client data
first

1 RTT

Total: 2 RTT
Total: 1 RTT

resumed session
client data first

without with TFO &
false start

legend: a loop around multiple arrows represents
messages that can be sent in the same packet

� cleartext
ciphertext

(a) Client data sent first. False Start saves no time in this case, but
TFO saves one round trip.

TCP
1 RTT

abbreviated
TLSv2

server data
first

1.5 RTT

TFO
0 RTT

abbreviated
TLSv2

server data
first

0.5 RTT

Total: 2.5 RTT

Total: 0.5 RTT

resumed session
server data first

tim
e

without with TFO &
false start

legend: a loop around multiple arrows represents
messages that can be sent in the same packet

� cleartext
ciphertext

(b) Server data sent first. Both False Start and TFO save one round
trip each in this case.

Fig. 9. Protocol timing diagram showing handshaking to resume a transport layer security session.

alternative delays for a resumed False Start session. Fig. 9
also shows how TCP Fast Open (TFO–see § III-A3) can be
combined with TLS False Start to save an additional RTT.

Google deployed False Start in Autumn 2010, on the
assumption that a unilateral change at the client end would
work with all existing servers. However, an unacceptably large
number of SSL terminator hardware middleboxes occasion-
ally and non-deterministically failed to support the protocol,
probably because of unexpected message timing. Therefore,
since April 2012 False Start has been disabled in Chrome
with one important exception; when a server confirms support
for Next Protocol Negotiation (NPN [84, 85]) or Application
Layer Protocol Negotiation (ALPN [86]). A server farm that
supports NPN or ALPN is assumed to have upgraded any
SSL termination middleboxes. Use of NPN and ALPN allows
a session on a HTTPS port to use any application protocol, not
just HTTP, without additional rounds of negotiation. This en-
ables new protocols such as SPDY (see §VII-A) and HTTP/2
to be used through middleboxes that block ports other than
HTTP and HTTPS. And with False Start these protocols can
be secured in one handshaking round, not two.

b) TLS Snap Start: TLS Snap Start [59] enables a client
to send encrypted and authenticated application data without
waiting for any handshake from the server. The client needs
certain information about the server (its cipher suites, its
public certificate, etc.). Therefore Snap Start is not applicable
for ephemeral key techniques (e.g. Diffie-Hellman), nor for
sessions resumed by the server end.

Because the pre-requisite server information is public and
fairly stable, it can have been retrieved from a directory, e.g.
using the Session Keys protocol [87], or pre-fetched when
opening a referring Web page [88]; the client does not need

TCP
1 RTT

snap start
0 RTT

tim
e

TFO
0 RTT

snap start
0 RTT

Total: 1 RTT

Total: 0 RTT

only if client data first

without TFO with TFO

legend: a loop around multiple arrows represents
messages that can be sent in the same packet

� cleartext
ciphertext

Fig. 10. TLS Snap Start timing diagram, showing it can remove all
handshaking delay from TLS.

a prior session with the server itself. Therefore, Snap Start
is more generally applicable than just session resumption.
Resuming a session could never be better than Snap Start,
because it creates new secrets for each new session without
any handshaking delay. It also does not need to store secrets
between sessions.

The insight of Snap Start is that the random information
that the server provides for TLS does not need to be random;
it only needs to be unique to prevent replay of the whole
session. Therefore, the client suggests a unique value for

14

‘server random’ and timestamps it. It then sends a hash
of the whole handshake it predicts the server would have
used. Without waiting, it then optimistically encrypts its first
message to the server using these cryptographic choices (see
Fig. 10). The server only proceeds if its own hash of the
cryptographic choices matches the client’s prediction and the
value of ‘server random’ is indeed unique. Uniqueness is
checked against the ‘strike-list’ of values used by clients. To
limit storage and look-up overhead, a server can limit the
oldest allowed timestamp (so it could reject clients that are not
at least loosely synchronized). The allowed range of random
numbers may be limited by publishing a well-known ‘orbit’
value that clients must look up along with the other public
information.

Snap Start was developed by Google, and deployed on their
servers and in the Chrome browser in 2010. However on 23rd
June 2011 Google decided to withdraw it, for reasons that
remain unclear. The method exhibits an inherent vulnerability
to downgrade attacks if any cipher suite that was previously
considered secure is found to be compromised. However, that
risk was known before Snap Start was released. A more
plausible reason for withdrawal is the method’s operational
complexity. Nonetheless, the promise held out by Snap Start
inspired the IETF to start work on a new low latency version
of TLS (v1.3) in late 2013 [89]. The focus is on new ways to
ensure session uniqueness against replay attacks.

2) Building encryption into TCP
TCPcrypt [60] is a proposal to allow a client to negotiate

encryption for every connection, but fall-back to traditional
TCP if a server does not support this. TCPcrypt negotiation
uses a TCP option and requires 1 extra RTT to exchange cipher
material (in a separate channel to the TCP data) (see Table I).

A new TCP connection can resume a TCPcrypt session in
1 RTT, by exchanging new keys piggy-backed on the initial
exchange in the TCP SYN packets. TCPcrypt has not (yet)
been designed to reduce latency further when resuming a
session, by carrying data encrypted with the new keys on the
SYN packet.

3) Bootstrapping security from the DNS
Minimal latency networking (MinimaLT [54]) provides an

example of a ‘clean-slate’ approach that requires modifications
to the client, the server and the DNS. The data server arranges
for the DNS to provide an ephemeral public key when a client
resolves its name in the DNS. The need to regularly update
the server’s ephemeral public keys requires the addition of an
ephemeral key upload service to the DNS. Petullo et al. [54]
describe how clients and servers would initiate the necessary
long-standing secure connections with the directory service
and the ephemeral key upload service. This change has the
benefit of 0 RTTs for a client to establish a secure session
with a data server. However, even the Domain Name System
Security Extensions (DNSSEC) have proven hard to deploy.
Therefore choosing to require a different security framework
around the DNS may present a tough deployment challenge.

A Snap Start client (§III-B1b) could obtain its prior knowl-
edge of the server’s cryptographic details from the DNS, but
Snap Start is less prescriptive about precisely how to get this
pre-requisite information.

C. Packet loss recovery delays
A range of Internet transport services have been defined.

Many transports such as TCP and SCTP offer an end-to-end
reliable service. Other applications choose to use a UDP or
UDP-Lite [90] transport, and then implement loss recovery
methods in the application itself. Another group of applications
require some form of congestion control, but seek to bound
latency. Such applications may utilize Datagram Congestion
Control Protocol (DCCP [62]) to provide a range of pluggable
congestion-control algorithms (but DCCP has proved hard to
deploy).

Transport-layer error/loss control can be a source of latency,
especially when the data traverses a link with appreciable
packet loss/corruption due to link errors and/or a heavily
loaded network bottleneck suffering congestion. Measure-
ments reported in Flach et al. [91] show that Web flows expe-
riencing loss can see a fivefold increase in average completion
time, making loss recovery delays a dominating factor for Web
latency.

Three methods may be used to recover a loss: retransmis-
sion, redundancy and loss concealment.

A retransmission method uses a control loop that detects
loss/corruption and retransmits all missing packets. When
packet ordering needs to be preserved, this also implies head-
of-line blocking at the receiver to reorder the retransmitted
data (see §VI-B). When the retransmission fails for any reason
(e.g. subsequent further loss), it often requires a retransmission
timer to trigger (incurring further delay). Retransmission may
be implemented at the link (e.g. in a wireless or modem
link driver) and/or at the transport layer (e.g. within TCP
or SCTP). Implementing link layer retransmission can reduce
latency (recovery may be faster), but may also result in
more jitter to time-sensitive flows, which may not even need
reliable delivery. Also poorly designed methods could incur
unnecessary retransmission by the transport protocol [92].

Redundancy may be implemented as simple packet du-
plication at the sender (e.g. sending multiple copies of a
single control packet) or by coding a combination of packets
using Forward Error Correction (FEC). FEC enables a trade-
off between decreased capacity and enhanced reliability, and
additional processing at the sender and receiver. FEC encoding
and decoding is typically applied to blocks of data, that
can incur latency. On a link, correction codes can achieve
a statistical guarantee of reliability with a bounded additional
processing delay. In contrast, FEC at the network and transport
layers (e.g. transport packet FEC is widely used for high
quality video [93]) usually uses erasure codes to encode groups
of packets.

A combination of the three loss recovery methods, further
outlined below, may be required to achieve a tradeoff between
processing, reliability and delay.

1) Application tolerance to loss
The set of applications that require all delivered data to be

uncorrupted, but do not require loss-free transmission or or-
dered delivery can use the services offered by UDP and DCCP.
This can save significant time when loss is experienced by
removing the need to reliably detect loss, retransmit packets,
and reorder the data (§VI-B).

15

Transport protocols that enable partial reliability can allow
an application to conceal rather than retransmit/correct any
network loss/corruption, e.g. prediction of missing video con-
tent, or suppression of corrupted voice samples. Stewart et al.
[94] provide a full framework for a partially reliable service
in SCTP, giving a timed reliability service as an example.
Methods have also been proposed as enhancements to TCP.
Mukherjee and Brecht [95] introduced the concept of data
having a useful life time with Time-Lined TCP, allowing
reliability to be traded for reduced latency. McCreary et al.
[96] exploit application tolerance to loss (and not delay) using
a receiver-only TCP modification.

Where a network path is error-tolerant (e.g. some radio
links), the UDP-Lite or DCCP transports can be configured
to allow the application to appropriately handle errors in the
transport bit stream. Concealing errors can eliminate additional
delay.

2) Reduce packet loss detection times
There are a number of proposals that seek to detect loss

earlier for reliable transports. Hurtig et al. [97] recommend
updating the TCP and SCTP retransmission timeout (RTO)
timer to reduce the latency from detecting loss with short
or application-limited flows. Early Retransmit [98] modifies
TCP and SCTP when the congestion window is small to
more quickly decide that a packet has been lost, thus reducing
the delay associated with a timeout. The basic idea of early
retransmit (Fig. 11), is to allow the TCP Fast Retransmit to be
triggered by a number of duplicate acknowledgements smaller
than the standard value (three). Mellia et al. [99] seek to avoid
TCP RTO expiry by carefully segmenting TCP data, to try to
always have at least three segments in-flight, enabling Fast
Recovery. Dukkipati et al. [100] and Flach et al. [91] propose
Tail Loss Probe, a modification to TCP to avoid delay when
the end of a packet burst is lost. Instead of waiting for a RTO,
the last packet is retransmitted after about 2 RTTs as a probe
to trigger Fast Recovery based on SACK/FACK (selective/fast
acknowledgement).

3) Combining redundancy and retransmission
Redundancy can be added to reliable link and transport

protocols to avoid delays due to loss detection and recovery.
This technique has been long-used on radio links forming a
class of methods known as ‘hybrid ARQ’ (see § IV-D for a
discussion on link FEC).

Some researchers have also proposed using packet FEC
combined with TCP. These approaches trade network capacity
to reduce/eliminate retransmission delay when reliable in-
sequence delivery is required.

LT-TCP [101, 102] proposed a sender and receiver update to
provide a proactive FEC mechanism based on the end-to-end
packet erasure rate to minimize the need for retransmissions,
and reactive retransmission with FEC to reduce the risk of
TCP timeouts during retransmissions. A similar approach is
also suggested in Flach et al. [91].

Evensen et al. [103] presented Redundant Data Bundling
(RDB), with a sender-side-only modification to TCP that
retransmits unacknowledged data redundantly with new data
as long as the packet size does not exceed the network
maximum segment size (MSS). For applications that produce

Early Retransmit for TCP or SCTP

tim
e

RTO

A

Server Client Server Client

tim
e

C
D

B

ACK B
ACK B

B

A

C
D

B

ACK B
ACK B

B

without with Early Retransmit

Fig. 11. Early Retransmit for TCP or SCTP.

small packets, such as online games, this often avoids the need
for retransmissions by timeout, reducing the observed latency
upon loss.

4) Explicit congestion notification
Loss within a packet network is not only used to remove

data from the network to alleviate congestion, but senders
deliberately increase their rate to induce loss as a transport
signal they can use to regulate their rate. There are also
multiple other reasons why a packet might not (yet) have
appeared at the receiver, e.g. re-ordering, transmission errors,
packet size errors, routing errors, policy violation. Explicit
Congestion Notification (ECN [63, 104]) is a method that
can allow IP-aware equipment (routers, firewalls, etc.) and
other lower-layer devices [105] to propagate an unambiguous
congestion signal via a field in the IP packet header. This
reduces the wait needed to determine that a gap in a sequence
of packets can be considered as a loss, not just re-ordering. It
also removes the wait needed for a subsequent retransmission
(see § III-C2).

ECN requires some form of active queue management to
detect early build-up of queues. Depending on the equipment
configuration, ECN can also help to reduce delay in other
ways; these are discussed in §§ IV-F6 & IV-F7c concerning
techniques based on data centre TCP (DCTCP).

D. Message aggregation delays

Transport protocols such as TCP may aggregate messages
(carrying either upper-layer data or protocol signals) to reduce
the number of IP packets sent. Thus, the focus of message
merging is bandwidth efficiency. Two complementary tech-
niques are commonly used by TCP for this purpose:
• The Nagle algorithm [106] tries to limit the amount

of small data-carrying packets that are sent (i.e. TCP
segments of size < MSS bytes). The algorithm delays
the sending of a small segment while a previously-sent

16

re
qu

es
t d

at
a

(M
SS

) ACK

re
qu

es
t d

at
a

(<
 M

SS
)

A

B

delayed ACK:
wait up to 200 ms

response data

+ ACK

Nagle: hold remaining data while first segment has not been ACK'ed

(a) Due to the Nagle algorithm, B delays the second segment that
completes the request until it receives A’s acknowledgement of the
first segment of the request. However, A delays this ACK until its
delayed-ACK timer fires. Therefore, completion of the exchange is
extended by roughly 1 RTT plus the duration of the timer.

re
qu

es
t d

at
a

(M
SS

)
re

qu
es

t d
at

a
(<

 M
SS

)

A

B

response data

+ ACK

(b) When B uses modified Nagle [108] or disables Nagle completely,
it send both segments of the request without waiting for an ACK, so
the exchange only takes roughly 1 RTT.

Fig. 12. Combined effect of the Nagle and delayed-ACK algorithms on the
latency of a request-response transaction, where the size of the request is over
one but under two full-sized segments.

segment has not been acknowledged. The goal is to try
to coalesce small blocks of application data into a larger
block than can be sent in a single packet, instead of
sending as many packets as data blocks—i.e. transmission
of the first small block is delayed in the hope that the
application may produce more data to send while waiting
for an ACK.

• The delayed ACKs algorithm [107] tries to limit the
amount of pure ACK messages (i.e. containing no data),
either by piggybacking an ACK signal on a data-carrying
segment, or by sending a pure ACK only for every two
full-sized data segments. A timer—as high as 200 ms in
many systems—ensures that an ACK is always eventually
sent even if no data is flowing in the reverse direction.

Both mechanisms trade latency for bandwidth efficiency,
but when used in combination they may give rise to severe
additional delay [109]. This issue is illustrated in Fig. 12a, for
a request-response transaction where the size of the request is
over one but under two full-sized segments.

There are essentially two ways to avoid such latency penalty.
First, the Nagle algorithm can be turned off by latency-
sensitive applications via a standard socket option (often called
TCP_NODELAY). Second, the TCP sender can implement
a variant [108] of the Nagle algorithm, where transmission
of a small segment is delayed only if the previously-sent,
unacknowledged segment is also small. The effect of either
of these two fixes is depicted in Fig. 12b.

Fig. 13. Cross-section of a hollow photonic crystal fibre (PCF). Source: NKT
Photonics.

IV. DELAYS ALONG TRANSMISSION PATHS

This section examines the delays encountered by a single
packet as it travels along the communication path between
endpoints, i.e. the flight latency from endpoint transmission
to endpoint reception. The flight latency is the sum of delays
due to: A) Signal propagation delay, B) Medium acquisition
delays, C) Serialization delay, D) Link error recovery delays,
E) Switching/forwarding delay, and F) Queuing delay. The
following subsections detail these sources of delay and survey
techniques for reducing them.

A. Signal propagation delay

Electromagnetic waves travel about 300 mm per nanosecond
in air, slightly slower than the speed of light in vacuum. In
guided media the propagation speed is slower, around 200 mm
per nanosecond, and slightly slower in fiber than in copper.
The propagation delay is linearly proportional to the length of
the cable, or, in the case of an unguided transmission medium
(like air), the shortest distance between the transmitter and the
receiver. The distance that a signal can travel is constrained by
the attenuation in the transmission medium. If the distance is
too long, an optical signal needs to be amplified or an electrical
signal regenerated, incurring delay. An amplifier or regenerator
that needs to convert an optical signal to an electrical one,
will add significant delay, while an all optical amplifier or
regenerator will incur almost no extra delay [110]. Techniques
to further reduce propagation delay include making the link
path shorter and using a medium which propagates the signal
more quickly.

1) Straighter cable paths
Current cables tend to follow the easiest path from one

location to another, often alongside railway lines or roads,
since rights of way are easier to obtain and a path through the
land has already been cut. A straighter route would lead to
lower propagation delay and potentially fewer signal repeaters.

2) Higher signal velocity
While the speed of transmission is fixed for a medium, a

hollow core fibre (also known as hollow core photonic band
gap fibre or HC-PBGF) may decrease latency and also offer
significantly higher bandwidth than conventional monomode
fibre. This is typically constructed from a bundle of glass fibres
with the central ones missing (Fig. 13). Although the signal

17

propagates by diffraction through the fibre cladding as well
as the hollow core, signals propagate at close to the speed of
light in air.

There are niche commercial applications using hollow
core fibre, however, the loss levels are still unusable for
telecommunications. By March 2012, losses of 3.5 dB / km had
been achieved [111], down from 13 dB / km in 2003. Further
research is required to reach 0.2 dB / km (the performance of
conventional fibre). Until this is achievable, overall latency is
higher due to the need for repeaters every 7 km instead of
every 120 km.

3) Combining higher signal velocity and straighter routes
Point-to-point microwave links are increasingly being de-

ployed to transmit data with less delay than fibre, e.g. between
financial centres. It is easier to achieve a straighter route with
microwave, because planning permission is only required for
the towers along the route instead of for laying fibre the entire
length of the route. This also enables obstacles such as roads,
buildings, lakes and rivers to be overcome with relative ease.
However the signal experiences far higher losses than for fibre
and weather can affect the signal, therefore, many microwave
links need a fibre backup.

B. Medium acquisition delays
Links can use Medium Access Control (MAC) to control

access to a shared medium, which can incur additional link
latency. While most wired links use a dedicated point-to-point
interconnect, for wireless media, use of a shared radio resource
is common (e.g. wireless, cellular mobile, satellite). MAC
techniques are also used in shared access networks and for
some LAN technologies to share the wired capacity, e.g. data
over cable (DOCSIS) and passive optical networks (PON). The
design of the MAC can impact the link latency, for example
[112] shows that in GPON, the dynamic bandwidth allocation
(DBA) mechanism can incur a delay of up to 30 ms when not
efficiently done.

There are several fundamental transmission techniques for
channel access, i.e. space division multiple access (SDMA),
time division multiple access (TDMA), frequency division
multiple access (FDMA) and code division multiple access
(CDMA)/spread spectrum multiple access (SSMA). Each tech-
nique has merits for a specific scenario and type of media. In
general, MAC mechanisms may be classified according to the
scheduler and multiple-access channel schemes. Transmission
latency depends more on the MAC mechanism, than on the
channel carrier technique. Rubin [113] divides the techniques
in three classes: fixed assignment, demand assignment and
random access.

Fixed assignment (TDMA and FDMA) provides access to
predefined slots (time or frequency), yielding a predictable
access latency. However, compared with the other assignment
classes, TDMA sources can incur higher latency waiting for
their assigned time slot and senders are unable to make use
of any unallocated time slots. FDMA sources are restricted to
their assigned portion of the frequency spectrum so, similarly,
senders are unable to use capacity that has not been assigned.

Demand assignment protocols divide capacity based on re-
quests from devices that generate allocations. A MAC protocol

may be centralized or distributed, using polling or reservation
for requests. The latency to access the channel comprises
the request, allocation and transmission opportunities; the
resulting delay depends on: the choice of technique, system
configuration and level of traffic. In some systems, requests are
not reliably sent, adding further delay if these are lost. Delay
may also be incurred if a resource manager determines that a
request may be denied or only partially honoured, postponing
transmission to a later allocation cycle. Cellular mobile [114]
and broadband satellite are examples of systems based on
such protocols. Sooriyabandara and Fairhurst studied the delay
impact on TCP in satellite systems [115].

Random access or contention-based systems operate without
allocating dedicated slots/frequencies to a specific terminal.
Using random access, transmissions are not coordinated and
mostly use fully-distributed access policies, although transmis-
sion opportunities may be synchronized to centralized timing
to improve stability and utilization. This can provide low
latency access to a lightly loaded channel, but latency can in-
crease if there are collisions and a loss recovery mechanism is
invoked (e.g. back-off or redundant transmission). In adaptive
channel sensing random access, the network device first senses
the channel to schedule its message for transmission and better
avoid collisions; this is achieved without access coordination
with other devices. Wireless systems typically are designed
to be adaptive, but the longer propagation delay in satellite
broadband often requires other contention resolution methods.

The IEEE 802.11 MAC protocol [116] has become the
de facto layer-2 standard for wireless local area networks
(WLAN). From 802.11e and 802.11n frame aggregation was
introduced, defining two techniques for a device to aggregate
several MAC frames into a single larger frame, which can
reduce delay by reducing the number of contention based
media accesses required to send the data. Aggregate MAC
Service Data Unit (A-MSDU) allows multiple MSDUs of
the same traffic class to be concatenated in a single MPDU
destined for a receiver where the sub-frame header corresponds
to the same MAC header parameters (RA and TA). In contrast,
an Aggregate MAC Protocol Data Unit (A-MPDU) aggregates
multiple MPDUs in a single PHY (physical) protocol data
unit (PPDU) frame, consisting of sub-frames, each with their
own MAC header. In addition, it requires the use of block
acknowledgement or Block Ack (BA), whereas instead of
transmitting individual ACKs for every MPDU, a single BA
frame containing a bitmap field maps and accounts for several
MPDUs to be acknowledged.

Frame aggregation improves efficiency by reducing the
overhead from MAC headers. Skordoulis et al. [117] and
Lin and Wong [118] show that dramatic throughput efficiency
gains can be achieved using A-MSDU and A-MPDU, whereas
there is an optimal aggregate frame size in respect of the noise
level of the channel. There is a tradeoff between processing
time required to compute the aggregates and increase in overall
delays, yet Shen et al. [119] show that adaptive frame aggre-
gation can deliver the performance required for a service with
a stringent delay requirement, such as VoIP and interactive
gaming.

Wireless rate adaptation mechanisms seek to determine the

18

optimal send rate for the current conditions of a varying
wireless channel. How well they perform can significantly
impact the end-to-end delay of a wireless segment. Early
schemes were based on frame loss or Signal-to-Noise Ratio
(SNR), with newer techniques combining these signals and
MAC control mechanisms to determine the rate of successful
frame transmissions [120].

In summary, MAC protocols can introduce significant com-
plexity to share access to the medium. These techniques are
often optimized for channel efficiency or throughput, but can
also be appropriately optimized to avoid unnecessary latency,
and can offer prioritised access to latency-sensitive traffic.
However, achieving both at the same time or without the
complexities of traffic classification is still an open research
issue.

C. Serialization delay

Serialization/deserialization is the process of getting data
from the network card buffer to the wire or vice-versa. At
each end of a link serialization delay SS = frame-size

line-rate can be in-
troduced at the sender, and deserializing delay SD = frame-size

line-rate
at the receiver. This delay can vary with the path conditions
(e.g., adaptation of the rate of a wireless link according to
the channel condition). Poor rate adaptation can significantly
increase latency [121, 122].

Along the forwarding path each intermediate network de-
vice i introduces a deserialization and serialization delay
SD(i) + SS(i) every time a frame is read from the wire
into memory then written from memory to the wire (with
routing/switching in between). Serialization/deserialization in-
troduces delays proportional to the speed of the interface. The
delay can be reduced either by increasing the physical layer
speed or reducing the number of links that a packet needs to
traverse, as shown in virtualizing chains of network functions
(see § II-D4).

Other forwarding methods such as cut-through and
wormhole switching [123] reduce serialization/deserialization.
Cut-through [124] avoids waiting for a whole packet to be
transmit buffered, as in store-and-forward switching; instead,
a packet is forwarded as soon as the destination address is
identified, thus at each endpoint serialization/deserialization
delays remain the same, SS(1) =

frame-size
sender-line-rate and

SD(N) =
frame-size

receiver-line-rate . But at each interior hop, cut-through
can reduce the path routing/switching serialization delay to
SS(i) =

header-size
sender-line-rate and deserialization SD(i) =

header-size
receiver-line-rate ,

thus depending only on the time to serialize the header
information. However, in cut-through switching frame errors
cannot be detected until the end of the packet, thus corrupted
packets are forwarded and could impact network performance.

In wormhole switching, a packet is divided into smaller
pieces called flow control digits (or flits). A flit is usually sent
from i to i+ 1 only if the device i + 1 has sufficient buffer
space for the flit. Similar to cut-through switching, once the
header flits are received forwarding can be set up, however if
the output channel is busy, flow control blocks trailing flits—
temporarily buffering them back along the established path
toward the sender.

Wormhole switching requires fewer I/O buffers, it enables
more efficient port utilization with the implementation of
virtual channels, thus reducing latency compared to store-
and-forward switching. If intermediate network devices do
not discard packets, more reliable transmission is achieved
(packets are only lost due to bit errors). On the other hand
this introduces more complexity as it may cause deadlocks.
Wormhole switching is mainly used in multiprocessor systems
in Network-On-Chip systems (NOCs [125], see §VI-C).

D. Link error recovery delays

Link error recovery delays depend on the compromise
made between the link capacity, physical layer coding to
avoid errors and link retransmission to correct errors. Shannon
[126] showed that for a given available signal bandwidth, the
capacity of a link is limited by the channel quality. In simple
terms, conservative channel coding can reduce the probability
of errors, but long codes can also increase packet serialization
delay.

Reliable communication (e.g., using TCP) over a path
containing an error-prone link (e.g., a radio-link) can result
in occasional appreciable corruption/loss of packets. Link re-
transmission could detect and recover from channel corruption,
but incurs delay (i.e., at least 1 additional link round trip of
delay—at least 0.5 to notify the packet/frame loss and 0.5 to
resend the packet/frame to the link receiver). The loss could
also be recovered by end-to-end retransmission by a reliable
transport, but this would incur an additional delay of at least
1 times the end-to-end path RTT. In practice, the link round
trip delay is often much less than the path RTT, and often also
supports selective retransmission requests enabling faster loss
recovery (Fig. 14). Link retransmission complements transport
recovery (especially at times of high loss), but requires careful
design to avoid retransmission at multiple levels [92]. It can
also introduce unpredictable variation in the path latency.

Cross-layer approaches can help reduce delays caused by
the duplication of retransmission at the transport and link
layers [127, 128]. Therefore, link design needs to consider
the expectations of the types of traffic a link supports, and
how that can be optimized for overall latency.

Link FEC is widely used in both wired (e.g. DSL) and
wireless technologies to recover from physical layer errors.
FEC may be implemented using Reed-Solomon (RS) cod-
ing, although higher-efficiency codes (e.g. Low-Density Parity
Codes, LDPC) are often used on bandwidth-limited radio
links. Coding can be combined with Interleaving (I-FEC) to
provide better resilience to bursts of errors (i.e. impulse noise
protection (INP) for interference).

There is an intrinsic trade off when choosing interleaving
parameters: a more robust scheme with higher delay, or one
with less protection but less latency. In DSL, as in radio links,
this has a direct impact on the delay of the transmission layer.
Interleaving in DSL provides INP protection using I-FEC.
A typical INP overhead protection setting introduces 8 ms
delay in the downstream direction and a 0 ms delay, with no
protection, in the upstream direction [129] over the physical
line (see § IX-D3).

19

Sender Receiver

end-to-end loss recovery

tim
e

A
B

B

TC
P
 R

T
O

ACK B

Sender Receiver

link-level loss recovery

tim
e

A
B

B

lin
k-

la
y
e
r

re
tr

a
n

sm
is

si
o
n

ti
m

e
r

L2 ack

Fig. 14. End-to-end (i.e. TCP-based) versus link-level retransmission. Lack
of a link-layer ACK on the first hop triggers local retransmission of the frame
carrying TCP segment B.

Another way to reduce the need for end-to-end recovery
(and hence latency) is to improve the link channel quality
(i.e., the signal to noise ratio). This reduces the need for link
ARQ or the delay associated with FEC and reduces the latency
impacts of wireless rate adaptation (see §§ IV-B & IV-C). This
could involve replacing a microwave link with an optical fibre
link, or changing the coding and modulation schemes on a
radio link.

E. Switching/forwarding delay

The links along a network path are connected by network
devices, such as core switches and routers. Transit through
each device adds to the path latency. There are a number
of different network device architectures: input buffered, out-
put buffered, combined input/output buffered, etc., each with
different latency characteristics [130]. In a typical design,
the forwarding engine examines each packet header to select
the appropriate output link. The latency incurred, SL, is not
a constant, but depends on the complexity and the number
of rules processed and the speed at which entries in the
forwarding table may be accessed. It is often possible to
provide a minimum latency, and usually also a maximum
latency [131].

Once the output link has been selected, the packet passes
through the switching fabric with latency SF . In a device with
several cards (or several racks), SF will also depend of the
relative location of the input and output interfaces. The total
latency through the fabric may be:

Sbase = SL + SF (1)

In the classical store-and-forward architecture a packet can
be queued at the input waiting for the forwarding engine,
introducing a latency of SI , and/or at the output when there
is contention, incurring SO of additional delay (§ IV-F). In
addition to this queuing delay in the intermediate network
devices, deserialization SD and serialization SS introduces
further delay that can be addressed using different mechanisms
(see § IV-C). Hence the total switching latency will be:

Stotal = SD + SI + SL + SF + SO + SS (2)

Software Defined Networking (SDN) allows an operator to
implement a set of rules, and can be expected to increase the
load on the rule engine, increasing SL [132]. SDN controller
performance is an area of active research [133]. Sbase can be
reduced by increasing the switching fabric speed, lowering SF .

F. Queuing delay

Delays from packet queuing at devices along the end-to-
end path, in general, contributes the largest delays to the flight
latency. This latency originates from contention for either the
switching fabric or the output interface (SI and SO in § IV-E).
Provisioning sufficient resources will always reduce (or elim-
inate) contention, but at the expense of decreased link utiliza-
tion. Input and/or output buffering is needed to ensure high
utilization with bursty network traffic, but inevitably leads
to building queues. The overall effect of queuing delay is
complex, with buffering often present in each device and each
network layer or sub-layer. In this section the term buffer will
refer to the resources available to queue packets, and the term
queue will refer to the amount of buffer space being used.

Managing queues for quality of service metrics, including
latency, was a very active area of research until Dense Wave
Division Multiplexing (DWDM) made core network over-
provisioning a cost-effective approach to support latency sensi-
tive traffic [134]. More recently, latency and network buffering
issues have again received attention through the efforts of
Gettys [135], who coined the term bufferbloat to describe
the over-abundance of buffering resources in several parts of
typical Internet paths. Large queues can induce high latency at
any congested point on the end-to-end path. Currently this is
mainly an issue at the edge of the network [136, 137], but the
problem will increasingly affect the core as network access
speeds increase.

Efforts to reduce queuing delays along the path can be
divided into seven approaches: 1) Flow and circuit scheduling,
2) Reducing MAC buffering, 3) Smaller network buffers,
4) Packet scheduling, 5) Traffic shaping and policing, 6) Queue
management, and 7) Transport-based queue control.

1) Flow and circuit scheduling
A network device can avoid queuing delays by directly

connecting its inputs and output ports (as in e.g. optical
switches used to handle the high rates in the core of the
Internet or in data centres [138]). There are many types of
optical switching [139], but two main categories: Circuit-
switched (wavelength, fibre or time slot) and connectionless
(packet and burst). The former requires the a priori set up
of an all optical path from ingress to egress, resulting in
less statistical multiplexing [140]. However, after a path has
been established, there is no S[IOL] delay and SF has also
potentially been reduced (see § IV-E). For data travelling along
this path, delay will be the speed of light in the fiber times the
distance. If such a path is not available, data may have to wait
for a path to be created, or may have to be routed via another
egress, resulting in a temporary increase in latency and jitter.

Since only small optical buffers are currently feasible,
designs for optical burst and packet switches have almost
no buffering delay (S[IO]). Currently, optical burst switching

20

is the most practical of the connectionless optical switching
techniques [141, 142]. In burst switching, packets destined for
the same egress are collected in a burst buffer at the ingress and
sent in a group. This reduces or removes the need for buffering
in the network, but can increase the overall end-to-end latency
due to the additional ingress buffering. Optical packet switches
are still an area of active research, and developments may
help improve latency compared to burst switching because
they do not require the extra ingress buffering of optical burst
switching.

Both burst and packet switching may involve tuning wave-
length converters, configuring Micro-Electro-Mechanical-
System (MEMS) switches, and/or wavelength selective
switches. Depending on the architecture, switching delays of
the order of 100–300 ns may be achievable resulting in these
being no slower than electrical switches [138].

2) Reducing MAC buffering
Buffering at or below the MAC layer is present for a

range of reasons, including: traffic differentiation; header
compression; capacity request/medium access (§ IV-B); FEC
encoding/interleaving (§ III-C); transmission burst formation;
handover and ARQ (§ III-C). While systems are typically
designed for common use-cases, a large number of inde-
pendently maintained buffers can add significant amounts of
latency in ways that may not be immediately obvious [135,
143]: e.g. when traffic patterns change, the radio resource
becomes congested, or components of the system are upgraded
revealing buffering in a different part of the network stack.

Network devices have moved from a position where under-
buffering was common to where MAC buffer bloat can now
significantly increase latency [144], with latencies of many
seconds not uncommon in an un-optimized system.

Delays can also result as a side effect of other link proto-
cols. For example, some Ethernet switches implement a type
of back pressure flow control using IEEE 802.3X PAUSE
frames [145]. If the input queue of a downstream switch is full,
a switch can send a PAUSE frame to causes upstream devices
to cease transmission for a specified time. This mechanism can
avoid loss during transient congestion, but sustained overload
can result in a cascading effect that causes the buffers of
switches along a path to be filled – dramatically increasing the
path latency [146]. Anghel et al. [147] show that use of PAUSE
frames in data centres can improve flow completion times,
but that care is needed in setting the thresholds in switches
and ensuring that there is end-system support. Priority Flow
Control (PFC) is an enhancement that can reduce delay for
latency sensitive flows by allowing the PAUSE to specify a
particular class of traffic in IEEE 802.1Qbb [148].

In general, unnecessary buffering below the IP level needs
to be eliminated to improve latency. Where possible, packets
should be buffered in the IP layer using Active Queue Man-
agement (AQM) methods [149] (§ IV-F6). This can require
a redesign of the architecture to enable coordination between
protocol entities, avoiding the pitfalls of direct implementation
of a large number of independent layers and construction of
individually buffered “pipes/streams” across the lower lay-
ers [135, 143, 150, 151]. In the Linux kernel since Aug
2011, Byte Queue Limits (BQL) has significantly reduced

delay within network interface hardware, but without radically
altering inter-layer co-ordination [152]. It is hard to size a
hardware transmit buffer statically, because it consists of a
queue of pointers to packet buffers that may each range in
size from a few bytes to 64 KiB. So BQL does not attempt
to reduce this hardware buffer size. Instead it separately
maintains a record of bytes queued and it dynamically adapts
a byte limit to track the variation in queue size using a new
Dynamic Queue Limits (DQL) library [153]. Whenever the
bytes queued exceeds the limit, further queuing from the upper
layers is blocked. This minimises the lower layer queue, and
pushes any larger queue up into the network stack where AQM
can be applied.

3) Smaller network buffers
The most effective means of reducing queuing delay is to

reduce the size of buffers in each device along the end-to-
end path, this limits the maximum queue size. An early buffer
dimensioning rule-of-thumb [154] recommended that buffers
should be sized proportional to the line rate times the RTT
(B = RTT× C), the Bandwidth Delay Product (BDP), but this
is now known to be excessive.

Appenzeller et al. [155] investigated whether BDP sized
buffers are required for high utilization in core routers, and
showed that core router buffers can take advantage of a high
degree of statistical multiplexing and reduce BDP sized buffers
by a factor of

√
n, B = RTT×C√

n
, where n is the number of

concurrent flows on the link. Further reductions are possible
if the full utilization constraint is relaxed, though Dhamdhere
and Dovrolis [156] raised concerns of higher loss rates and
thus lower TCP throughput. The work by Appenzeller et
al. and an update [157] spawned a number of studies and
proposals. Vishwanath et al. [158] surveyed and critiqued
much of this work and conducted experiments with mixed
TCP and UDP traffic. They concluded that small buffers make
all-optical-routers more feasible. As well as reducing latency,
Havary-Nassab et al. [159] showed that small buffers make the
network more robust against Denial-of-Service (DoS) attacks.

Although work on reducing buffer sizes in the core net-
work is necessary and important for the future, most current
congestion is closer to the network edges, where there is not
a high degree of statistical multiplexing. Chandra [160] di-
vides congestion into packet-level and burst-level congestion.
Packet-level congestion only requires small buffers, however
congestion due to traffic burstiness and correlations requires
much larger buffers. For this reason, small buffers at lightly
multiplexed network edges require traffic to be smoothed or
paced to avoid burst-level congestion and allow smaller buffers
(§§ IV-F5 and IV-F7).

Optimizing buffer sizes for various scenarios is still an
area of research. A trade-off will remain between latency,
utilization and packet loss—with latency expected to become
more critical.

4) Packet scheduling
Packet scheduling can also impact latency. A scheduling

mechanism allows a network device or endpoint to decide
which buffered packet is sent when multiple packets are
queued. Internet hosts and network devices have by de-
fault used first-in-first-out (FIFO) scheduling, which sends

21

the oldest queued packet first. This can cause head-of-line
blocking when flows share a transmission link, resulting in
all flows sharing an increased latency. There are, however,
a wide variety of queue scheduling mechanisms and hybrid
combinations of mechanisms that can either seek to ensure
a fair distribution of capacity between traffic belonging to a
traffic class/flow (class/flow isolation), or to prioritize traffic in
one class before another. These methods can reduce latency for
latency-sensitive flows. This section does not seek to explore
all scheduling methods, but will highlight some key proposals.

a) Class based: Some scheduling mechanisms rely on
classifying traffic into one of a set of traffic classes each as-
sociated with a “treatment aggregate” [161]. Packets requiring
the same treatment can be placed in a common queue (or
at least be assigned the same priority). A policy apportions
the buffer space between different treatment aggregates and a
policy determines the scheduling of queued packets. Different
classes of traffic may receive a different quality reflecting
their latency and other requirements, so scheduling with this
knowledge can have positive impacts on reducing latency for
latency-sensitive flows.

A router or host-based model implements scheduling in
individual routers/hosts without reference to other devices
along the network path. This is easy to deploy at any device
expected to be a potential bottleneck (e.g., a home router),
although it does not itself provide any end-to-end quality of
service (QoS).

A more sophisticated model aligns the policies and classes
used by the routers across a domain, resulting in two basic
network QoS models: The differentiated services model [162]
aligns the policies configured in routers using the management
plane to ensure consistent treatment of packets marked with
a specific Differentiated Services Code Point (DSCP, [163])
in the IP packet header (i.e. devices schedule based only
on treatment aggregates). In contrast, the integrated services
model [164] uses a protocol to signal the resource require-
ments for each identified flow along the network path, allowing
policies to be set up and modified in real-time to reflect the
needs of each flow. Both models can provide the information
needed to control the delay of traffic, providing that delay-
sensitive traffic can be classified. The integrated services
model is best suited to controlled environments, e.g. to control
latency across an enterprise domain to support telepresence or
other latency-sensitive applications.

b) Flow based: Flow based queuing allows a scheduler
to lessen the impact that flows have on each other and to
discriminate based on flow characteristics. A key example
of this is Fair Queuing (FQ), proposed by Nagle [165] and
Demers et al. [166], which aims to improve fairness among
competing flows. This ensures that queuing delays introduced
by one (possibly misbehaving) flow do not adversely affect
other flows, achieving fairness. FQ has been adapted and
extended in many different ways including: weighted FQ [166,
167], and practical approximations such as Round Robin (RR)
scheduling and Deficit RR (DRR). In practical implementa-
tions, there may be a limit to the number of queues that can be
implemented, hence stochastic fair queuing (SFQ McKenney
[168]) and similar methods have been proposed to eliminate

1

1

1

2

2

21

1

3

2 3 3

32

21 3

3
123

123F2

F1

t

FIFO

FQ/RR

EDF

D1 D2 t
queued packet arrivals

packet departures

Fig. 15. Sharing of available capacity by two flows, illustrating the difference
between FIFO, FQ/RR and EDF scheduling. Flow F1 has deadline D1, and
flow F2 had deadline D2.

the need for a separate queue for each traffic flow.
Per-flow classification requires a flow classifier to discrim-

inate packets based on the flows to which they belong and
deduce their required treatment. In the router or host-based
model this function is performed at each router and requires
visibility of transport protocol headers (e.g. protocol and port
numbers), whereas in the Differentiated or Integrated models
visibility is required at the edge of the QoS domain. When
tunnels are used, all tunnel traffic is generally classified as a
single flow (an exception could be the use of the IPv6 Flow
Label to identify subflows). This can add latency by assigning
all traffic that uses a VPN tunnel to the same queue, besides
the obvious processing cost of encryption and decryption.

c) Latency specific: Some schedulers schedule packets to
achieve a low or defined latency. The simplest is Last-In-First-
Out (LIFO [169, 170]), which minimizes the delay of most
packets—new packets are sent with a minimum delay at the
expense of packets already queued. Unfortunately, this method
also maximizes the delay variance and reorders packets within
a flow.

Deadline-based schemes attempt to bound the latency of
a queue, e.g. Earliest Deadline First (EDF Liu and Layland
[171]), where jobs (or packets [172]) are scheduled in the
order of their deadline. The principle of EDF scheduling is
illustrated in Fig. 15, for two flows with different deadlines;
both flows can meet their deadlines if the flow with the earliest
deadline is scheduled first. Unfortunately, these methods fail
to provide good performance under overload.

Shortest Queue First (SQF) is a flow/class based scheduler
that serves packets from the flow/class with the smallest queue
first. It has been proposed for reducing latency in home access
gateways [173]. Carofiglio and Muscariello [174] show that
the SQF discipline has desirable properties for flows that send
less than their fair share, such as thin latency-sensitive flows
and short flows, at the expense of bulk throughput-sensitive
flows.

d) Hierarchical scheduling: In many networks it is nor-
mal to create a hierarchy of scheduler treatments, in which
some classes of traffic are given preferential or worse treatment
by the scheduler, to achieve different treatments for the traffic.
For example the Expedited Forwarding (RFC 3246) differenti-
ated services class assigns a treatment that offers low loss and
low latency. Class-based queuing (Floyd and Jacobson [175]),
hierarchical packet fair queuing [176], hierarchical fair service
curve [177] and 802.11e QoS enhancements for WLANs [178]

22

provide such methods. Any priority-based algorithm needs to
correctly classify the traffic in a way that guarantees the re-
quired treatment. This typically requires a policing (or traffic-
conditioning) function to prevent misuse. In the integrated
and differentiated services model this conditioning may be
provided at the domain edge [179].

5) Traffic shaping and policing
Traffic shapers smooth traffic passing through them using

a buffer to limit peak transmission rates and the length of
time these peak rates can be maintained. While shaping can
help prevent congestion—and therefore delay further along the
path—, it does so at the expense of delay introduced at the
shaper. The foundational traffic shaping algorithms are the
leaky bucket algorithm (Turner [180]) and the related token
bucket algorithm. Traffic shapers are used extensively in the
Internet [181], though often to reduce ISP costs rather than to
reduce delays along the path [182].

Traffic policers drop packets that exceed a specified peak
transmission rate, peak burst transmission time, and/or average
transmission rate. Policing was first proposed by Guillemin et
al. [183] for ATM networks, but is still an effective tool for
managing QoS, especially latency, in the Internet. Briscoe et
al. [184] propose a policing mechanism that could be used
either to police the sending rate of individual sources (e.g.
TCP) or, more significantly, to ensure that all the sources
behind the traffic entering a network react sufficiently to
congestion, as a combined effect, without constraining any
flow individually. This developed into the IETF Congestion
Exposure (ConEx [185]) work to enable a number of mech-
anisms, especially congestion-based policing, to discourage
and remove heavy sources of congestion and the latency they
cause.

6) Queue management
Network devices can monitor the size of queues and take

appropriate action as the queue latency builds; this is known
as queue management. Techniques such as drop tail and drop
front [186] are said to be passive. In contrast, Active Queue
Management (AQM) techniques manage queues to achieve
certain queue loss and latency characteristics by proactively
marking or dropping packets; which signal to endpoints to
change their transmission rate. AQM mechanisms generally
work in combination with scheduling, traffic shaping, and
transport-layer congestion control. Adams [187] provides an
extensive survey of techniques from Random Early Detection
(RED Floyd and Jacobson [188]), introduced in 1993, through
to the year 2011. This section looks at more recent contribu-
tions, with a specific focus on latency.

a) PIE and CoDel: Two current proposals aim to min-
imize the average queuing delay: Proportional Integral con-
troller Enhanced (PIE Pan et al. [189]) and Controlled Delay
(CoDel Nichols and Jacobson [190]), and more recently, a
per-flow queuing version of CoDel called FQ-CoDel.

The PIE algorithm uses a classic Proportional Integral
controller to manage a queue so that the average queuing
delay is kept close to a configurable target delay, with a
current default value of 20 ms. PIE does this by using an
estimate of the current queuing delay to adjust the random
ingress packet drop or marking probability. The algorithm self-

tunes its parameters to adapt quickly to changes in traffic. PIE
tolerates bursts of packets up to a configurable maximum, with
a current default value of 100 ms.

CoDel attempts to distinguish between two types of queues,
which the authors refer to as good queues and bad queues—
that is, queues that simply buffer bursty arrivals, and those
just creating excess delay. Although the default target delay is
5 ms, it allows temporary buffering of bursts which can induce
delays orders of magnitude larger than the target delay. Packets
are dropped or marked at deterministic intervals at the head
of a queue. Dropping/marking at the queue head decreases the
time for the transport protocol to detect congestion. Combining
this with the flow isolation of a fair queuing scheduler (see
§ IV-F4) avoids packet drops for lower-rate flows.

Both schemes attempt to keep configuration parameters to
a minimum, auto tune, and control average queue latency
to approach a target value. Both exhibit high latency during
transient congestion episodes. Use of smaller buffers would
prevent this, but this is an area that requires further research
(see [191–193]).

b) DCTCP and HULL: Data Centre TCP (DCTCP Al-
izadeh et al. [194]) is illustrated in Fig. 16. It uses an AQM
method that has been designed to keep queuing delay and
delay variance very low, even for small numbers of flows
including a single flow. The method appears deceptively
simple; it merely marks the ECN field [63] of all packets
whenever the queue exceeds a short threshold.

The AQM for DCTCP signals even brief excursions of
the queue, in contrast to other AQMs that hold back from
signalling until the queue has persisted for some time (see
§ IV-F7c). Even though existing switches often only implement
RED, they can avoid introducing signalling delay by simply
setting their smoothing parameter to zero. The transport-layer
functions of DCTCP are described in § IV-F7.

High bandwidth Ultra-Low Latency (HULL Alizadeh et al.
[195]) replaces the AQM algorithm in DCTCP. It aims to keep
the real queue extremely short by signalling ECN when a
virtual queue exceeds a threshold. A virtual queue is a token-
bucket-like counter that fills at the real packet arrival rate, but
drains slightly more slowly than the real line. A growing range
of commercial equipment natively supports virtual queues,
often using two hardware leaky buckets [196].

7) Transport-based queue control
A number of transport layer mechanisms have been pro-

posed to support low queuing delays along the end-to-end
path. Two key elements are: burstiness reduction and early
detection of congestion.

a) Coupled congestion control: When multiple flows
that originate from the same endpoint traverse a common
bottleneck, they compete for network capacity, causing more
queue growth than a single flow would. Detecting which flows
share a common bottleneck and coupling their congestion
control (as e.g. in [197]) can significantly reduce latency, as
shown with an SCTP-based prototype in [198]. Solutions in
this space are planned outcomes of the IETF RMCAT working
group [199] (see also §V-C2).

b) Burstiness reduction: A TCP session that always has
data to send typically results in paced transmission, since the

23

lin
e

ut
ili

sa
tio

n
bu

ff
er

oc
cu

pa
nc

y

b u f f e r s i z e

AQM
operating

point

shallower
operating
point

good line
utilisation

lower queuing
delay and more
predictably low

buffer kept
for bursts

TCP saw-teeth
seeking the

operating point smooth TCP:
more smaller

saw-teeth

Today (at best)
TCP on end-systems
AQM at bottlenecks

if change bottlenecks
alone

DCTCP
change bottlenecks
and TCP

cuts delay but
poorer line
utilisation

time also highly insensitive
to threshold configuration

Fig. 16. How Data Centre TCP (DCTCP) reduces delay without losing
utilisation.

sender effectively paces the rate at which new data segments
may be sent at, to the rate at which it receives ACK packets
for old segments that have left the network. However, this is
not always the case. TCP’s window-based congestion control
together with bottleneck queuing can result in very bursty
traffic [200]. In some implementations, the TCP max burst
function [201] limits the maximum burst size per received
ACK, hence reducing burstiness for bulk applications.

However, not all applications continuously have data to
transmit (e.g. when a server responds to requests for specific
data chunks, or when a variable rate video session experiences
a scene change). There may therefore be periods in which no
TCP data are sent, and hence no ACKs are received—or an
application may use an entirely different transport that does
not generate an ACK for every few segments. Either of these
can result in bursts of packets, and may require explicit pacing
at the sender or a traffic shaper within the network.

Host pacing is a method that limits the burstiness of a flow
(similar to host-based traffic shaping). It can result in smaller
network queues, reduced buffering requirements (see § IV-F3),
and also reduce the latency experienced by flows that would
otherwise be queued behind the bursty traffic [202]. However,
the effects of TCP pacing on the network are complicated
and depend on many factors (Aggarwal et al. [203]). Wischik
[204] shows that it has the potential to decrease stability unless
buffers are small. Wei et al. [205] conclude that the effect of
pacing is generally positive, improving the worst-flow latency.
Enachescu et al. [206] propose a TCP pacing scheme that may
allow network buffer sizes to be very small, even on the order
of 10–20 packets in core routers.

c) Low threshold ECN: An explicit signal of the network
load or congestion, before, or just as, the congested queue
begins to grow provides the best signal to a transport layer. Un-
fortunately, the current standard for ECN [63] does not define
such a signal. Instead, ECN signals are treated equivalently to
loss signals, both when generated in the network and when
responded to by end systems.

A form of instantaneous ECN marking (see § IV-F6) was
designed for Data Centre TCP (DCTCP [194]), which smooths
the congestion signals at the endpoints:
• End-systems smooth signals over their own RTT, avoiding

the network needing to conservatively delay signals for
the longest likely RTT, holding back information from
short-RTT flows for tens or even hundreds of their RTTs.

• The rate-response of end-systems can be proportionate to
the extent of the signals, not just a fixed conservatively
large rate reduction (i.e. halving) in response to a signal
(see Fig. 16).

In DCTCP, a congestion signal α is computed by the
sender, measuring the fraction of ECN-marked packets in a
window. DCTCP’s congestion control uses α to drive how
the congestion window, cwnd, evolves. In the absence of
congestion (i.e. no ECN marks) cwnd grows as in standard
TCP, whereas cwnd reduction is proportional to the level of
congestion α; halving the window only happens under very
heavy congestion (α = 1). A DCTCP source can therefore
maintain a small-amplitude sawtooth that closely hugs the
available capacity, allowing the AQM threshold to be very
short, therefore keeping delay low and near-constant.

DCTCP was deployed by Microsoft within its Bing data
centres, and in Windows 8. The Linux implementation has
been modified slightly to work over long RTT paths. Results
in [194] show that it behaves well with the shallow buffers
present in commodity switches, and yields much fewer time-
outs. Achieving both low delay and high throughput is at the
expense of slower convergence time for long flows; this is due
to the less aggressive congestion response compared to TCP.

DCTCP spawned other recent transport protocol advances
[195, 207, 208] that leverage ECN and AQM to reduce
queuing delay. All these approaches are currently restricted
to environments like data centres and private networks, where
a single administrator can ensure all endpoints and network
devices universally support ECN and where congestion signals
are responded to smoothly in all end-systems, and not delayed
in the network. There is ongoing research on how to enable
the DCTCP approach to co-exist with existing traffic in public
networks [209].

Deadline-Aware Data Center TCP (D2TCP Vamanan et al.
[207]) relies on instantaneous ECN markings and maintains
an estimate of the level of congestion α just as DCTCP. The
reaction to impending congestion is modulated according to
deadlines: near-deadline flows back off much less (or even
not at all) compared to far-deadline flows. This is achieved by
a slight change to the DCTCP congestion response, where α is
replaced by αd, with d > 0 an indication of how far the flow’s
remaining time is from its deadline; for long flows without
an explicit deadline, d = 1 and D2TCP behaves exactly like
DCTCP, whereas d > 1 for flows which deadline is near.

L2DCT (Munir et al. [208]) also draws on DCTCP, but
differs in the way the congestion window is updated. It is
an end system change that emulates a Least Attained Service
scheduling discipline, which prioritizes short flows without
a need to know their length or deadlines a priori; only the
amount of data already sent is used. The congestion response
follows that of D2TCP, but with a system of “weights” that

24

depend on the amount of data sent. When there is congestion,
L2DCT makes long flows back off more than short flows.
When there is no congestion, long flows increase their con-
gestion window more conservatively than short ones, with the
amount of increase progressively getting smaller for longer
flows (down to a minimum value).

HULL [195] leverages the ideas behind DCTCP (see
§ IV-F6). HULL aims at operating with almost-empty buffers.
Because it can leverage a virtual queue, HULL trades band-
width for latency; the loss of bandwidth is tuneable by
adjusting the parameters of the virtual queue. HULL trades
lower latency for short flows against longer completion times
for long-lived flows. Since there is no ACK clock, HULL also
requires a pacing module at the sender to dissipate burstiness.

These proposals achieve significant improvements in la-
tency performance with respect to standard TCP (even when
standard TCP is used in combination with RED and stan-
dard ECN). For instance, according to Alizadeh et al. [194],
DCTCP allows the network to carry ten times as much
data (both background and queries) while allowing an ∼80%
reduction in the 95th percentile of query completion times,
with timeouts being close to non-existent (0.3% of flows).
With realistic traffic patterns, 99.9th percentiles of completion
times for short flows (queries) can be reduced by as much as
∼40%. Other proposals claim yet larger improvements. For
example, D2TCP seems to reduce the proportion of flows
missing their deadlines by as much as 75%, compared to
DCTCP, whereas L2DCT brings mean completion times down
by 50% and 95%, compared to DCTCP and TCP respectively.

d) Delay-based congestion detection: One issue that
contributes to queuing latency is that congestion is often not
detected until it has already induced delay. Early detection of
the onset of congestion allows congestion controllers to reduce
their rate quickly before queues build. This could use delay-
based inference of congestion or early explicit notification
of congestion by the network. Delay based mechanisms can
directly measure the quantity that needs to be reduced. They
also do not require any specific signalling from the network.
Jin et al. [210] argue that without an explicit signal from the
network, delay is a viable congestion measure. However, de-
spite their long history (their origins stretch back to 1987 when
NETwork BLock Transfer (NETBLT [211]) was proposed,
with TCP Vegas (Brakmo and Peterson [212]) being the most
notable early proposal) delay-based congestion control mecha-
nisms have proven difficult to deploy over the Internet. This is
mainly due to potential starvation by conventional loss-based
algorithms. To date, Low Extra Delay Background Transport
(LEDBAT [213]) is the only widely adopted mechanism (see
§V-D).

Hayes and Ros [214] discuss these co-existence issues argu-
ing that delay-based congestion control should still be consid-
ered part of the solution for reducing end-to-end path latency.
Delay-based congestion control seems to require no changes
to network equipment. However, it only keeps queuing delay
low if the traffic can be isolated from competing conventional
loss-based algorithms. This could be achieved if the delay-
based approach were deployed universally in a closed network,
but in the Internet it only works if the current bottleneck

queue provides flow separation. Arguments for and against
flow separation are outside the scope of the present work, but
anyway, a delay-based transport implementation has to assume
that not all network queues will protect it from competing
flows. Therefore some delay-based approaches accept that they
cannot always keep delay low, and they switch to a more
aggressive mode if they detect losses (e.g. see [215]).

V. DELAYS RELATED TO LINK CAPACITIES

The available link capacity along a path as well as the
way in which the available capacity is used can contribute to
the overall latency. Whenever the link capacity is low, packet
serialization times may represent a non-negligible component
of the total latency of an end-to-end communications chain.
Furthermore, capacity is often shared and only a small pro-
portion of the capacity may be available to a specific flow;
such is the case when links are congested. Increasing the
link capacity would alleviate this congestion and hence reduce
queuing delays. When capacity is scarce, delays can also be
shortened by reducing the amount of information that needs
to be transferred over the network.

Due to protocol inefficiencies, increased capacity may not
necessarily yield lower latency. One reason can be TCP
congestion control during the initial slow-start phase, which
may often not be able to reach the available capacity before the
end of a flow, making the duration of the transmission solely
dependent on the RTT. While protocols should efficiently use
available capacity, they must also be aware of other flows,
ensuring that limited capacity is shared in a way that avoids
inducing delay or loss to the other flows. Collateral damage
caused to other flows can be limited by yielding capacity to
higher priority flows or by avoiding to inject large bursts of
data into the network.

The details of these issues are further explored in this
section.

A. Insufficient capacity

Increasing link capacity (i.e. transmission speeds) seems
like an obvious way to reduce packet serialization times and
the incidence of persistent congestion. This can be achieved by
upgrading the physical link interface (e.g. 10 GE to 100 GE).
However, such a brute-force approach to reduce latency is
not always economically sensible, nor technically feasible. An
alternative way to increase the available capacity is to use
several parallel links or multiple paths at once.

1) Leveraging multiple links / interfaces
At the network layer, a router/switch can bundle/aggregate

parallel physical links to form one logical link, e.g. using the
Link Aggregation Control Protocol (LACP [216]). Another
way is to permit routers to utilize parallel paths, such as in
ECMP (see § II-A), in which the packet forwarding is routed
and load-balanced over multiple paths. A third possibility
is to simultaneously utilize the multiple network interfaces
available on many devices (e.g. using one service to minimize
delay, another to maximize throughput or minimize cost), as
described by the IETF Multiple Interfaces work [217, 218].

25

Transport protocols can also support multiple paths. A
multipath endpoint can dynamically exploit multihoming
by striping data across several interfaces simultaneously.
This approach is followed by protocols like Multipath TCP
(MPTCP [219–221]) and Concurrent Multipath Transfer for
SCTP (CMT-SCTP [222]), as well as related proposals like
Dynamic Window Coupling [223] that may apply to both
MPTCP and CMT-SCTP. The main goal of these mechanisms
is to maximize throughput—and to balance traffic load across
paths—by regarding all available links as a single, pooled
resource, with lower transfer times as a result. Further, mixing
multipath transmission with some form of end-to-end redun-
dancy (for faster loss recovery) can be envisioned as a means
of attaining lower latency [224, 225].

Multipath transmission may reduce transfer times, but in
some cases this only benefits long-lived flows. For instance,
with MPTCP there is a protocol overhead from setting up a
subflow across a path other than the primary one [11]—such
overhead adds latency that may not make it worthwhile to use
more than one interface for a short flow. Large differences in
RTTs add to this delay, if e.g. the first subflow goes along the
shortest RTT path, the transfer may finish before the handshake
on the longest RTT path has completed [226]. Another latency-
related issue with multipath transports is packet reordering at
the receiver [227]. Use of several paths may result in packets
arriving out of order, and large differences in path RTTs may
increase the severity of reordering events.

Adequate scheduling for concurrent multipath transmission
may help to avoid reordering, while at the same time mini-
mizing delivery delay. Multipath scheduling has been studied
(e.g. [228–231]), although these studies tend to focus on bulk
data applications, and/or on throughput optimization. § IV-F4
provides details of how packet scheduling affects latency.

B. Redundant information

Some types of content are simultaneously requested / deliv-
ered to many users, for example Live TV video or massive
software upgrades. Instead of redundantly transporting the
content over the network, multicast can offer a saving of ∼1/n
in capacity (i.e. a unicast flow sent n times only needs to
be sent once for each branch of a multicast tree, replicating
the flow at each router/switch). In general, IP multicast is
the most scalable solution for delivering high rate services
(e.g. high definition broadcast TV), but it is often deployed
as a local managed service (i.e. not end-to-end through the
Internet). Multicast can also be used for other services, e.g.
content cache distribution to populate CDN servers [232] (see
§ II-C1), especially for delivering live multimedia content over
the Internet [233, 234].

Application Layer Multicast (ALM) avoids the need to
deploy IP multicast by creating an overlay network. Auto-
mated Multicast Tunneling (AMT) is an alternate technology
that mimics end-to-end IP multicast by dynamically creating
tunnels to native multicast routers.

For some applications, protocol headers may induce a non-
negligible overhead, dominating packet transmission times (for
low transmission rates). In such cases, header compression can

reduce the required capacity. This reduces the transmission
latency. Header compression may be applied to one or more
layers of the protocol stack, and may be either end-to-end, on
a given link, or via a network middlebox.

SPDY (§VII-A) is an example of use of end-to-end header
compression for a specific application protocol (HTTP) that
can bring about noticeable delay savings.

Two examples of per-link, multi-layer compression are
Compressed TCP [235] and IPHC [236]. Robust Header Com-
pression (ROHC) provides a family of methods that can be
used to reduce the size of the IP header as well as upper-layer
headers, be it e.g. TCP [237], UDP and RTP [238], and other
protocols. These mechanisms can be very efficient: headers
can be compressed to as little as ∼10% of their original
size [237]; for a TCP ACK segment, this means decreasing
transmission times by ∼90%. A disadvantage of link-layer
header compression is that a single packet loss may increase
latency, if the loss results in desynchronization between the
state (or “context”) of the compressor and the decompressor.
For instance, with schemes such as Compressed TCP, context
desynchronization may typically inhibit fast retransmit, thus
resulting in a TCP timeout that would not happen in the
absence of compression [237].

C. Under-utilized capacity

It is not straightforward to optimize utilization of the
network capacity. On the one hand, the link(s) between two
network devices can be monitored and upgraded as described
in §V-A, on the other hand optimal utilization of the network
capacity depends on the dynamics of end-to-end traffic flows.
This section focuses on how mechanisms for protocols that use
congestion control can be improved to reduce transfer latency.
It describes techniques for recovering more efficiently from a
congestion phase, and mechanisms that enable faster sensing
of available capacity to more quickly utilize a network path.

1) More aggressive congestion control
It has been known for more than a decade that bulk flows

using standard TCP congestion control [239] perform poorly
over paths with a large bandwidth-delay product (BDP). One
of the main reasons is the additive-increase, multiplicative-
decrease (AIMD) behaviour of TCP. In congestion avoidance,
a TCP sender complying with RFC 5681 [239] increases
its congestion window roughly by one full-sized segment
per RTT; following congestion (loss), the sender divides its
window by two (at least). Hence, when the BDP is large, a
standard TCP sender may need many round-trip times after a
congestion event to attain a large window again [240]. This
behaviour results in a sender being unable to efficiently exploit
the available capacity and, thus, in long flow completion times.

More aggressive congestion-control algorithms have been
proposed, such as HSTCP [240], Scalable TCP [241], and
CUBIC (adopted as the default TCP variant in Linux since
kernel version 2.6.15) [242]. These algorithms all modify
the additive-increase, multiplicative-decrease (AIMD) rules:
by increasing the window growth rate and decreasing the
amount of window reduction after a loss, they aim at speeding
up window recovery after loss events. The explicit focus of

26

ACK 2000 ACK 4000
ACK 6000

0 10
00

20
00

30
00

50
00

40
00

60
00

70
00

80
00

90
00

ACK 8000
ACK 10000

(a) IW = 2.

ACK 2000
ACK 4000

ACK 6000

0 10
00

20
00

30
00

50
00

40
00

60
00

70
00

80
00

90
00

ACK 8000
ACK 10000

(b) IW = 10.

Fig. 17. Impact of the initial window (IW) on transfer times, for two values
of IW.

all such proposals is not in low latency, but in maximizing
throughput for long-lived flows; shorter completion times
come as a by-product.

A slightly different approach has been adopted by protocols
such as FAST TCP [243] or Compound TCP [244], which
use the estimated end-to-end queuing delay to control the
sender’s congestion window. Their goal is to send at the
highest possible rate while keeping the amount of queued
packets—hence, queuing delay—bounded. (See also § IV-F7.)

2) Rapidly sensing available capacity
At the start of a connection, or after a long idle period,

congestion controlled flows are faced with the challenge of
how to efficiently acquire available capacity and determine a
suitable safe sending rate that does not adversely impact other
flows that share a part of the same path. TCP and SCTP use
the Slow Start algorithm [239] to probe for available capacity.
Slow Start linearly increases the congestion window for every
ACK received, roughly doubling the window each round trip
time, leading to an exponential growth of the sending rate.
The algorithm continues until congestion is detected or a slow-
start threshold is reached. The initial congestion window (IW)
standardized in RFC 5681 [239] for TCP and RFC 4960 [61]
for SCTP, ranges from 2 to 4 segments depending on the
maximum segment size. The small initial congestion window
requires several RTTs to transfer even relatively short flows,
contributing to latency. The exponential growth of the sending
rate in the slow start phase may also lead to a severe overshoot
of the available capacity and excessive packet loss [245].
Decreasing the time for TCP to send the initial part of a
transfer can significantly reduce latency for applications that
send small to medium volumes of data.

a) Sensing capacity without network assistance:
In [246], Dukkipati et al. studied the effects of using an

increased initial congestion window for Web download against
geographically spread data centres. Their study suggested
that an increased initial congestion window could decrease
latencies for this type of transaction. The IETF recently issued
an experimental RFC that allows an initial congestion window
of up to 10 segments (IW10 [247]). The effect of using higher

values of IW on the transfer times of short flows is illustrated
in Fig. 17, for a flow of size 10 segments and for two values
of IW (2 and 10, respectively). Host pacing may be used in
combination with IW10 to reduce the probability of inducing
packet loss [248].

The effects of a much more significant change to the TCP
start-up phase were earlier explored by Liu et al. in a proposal
called Jump Start [249]. Jump Start injects all data available
in the send queue, up to the size of the receiver’s advertised
window, already in the first transmission round which in effect
allows an unlimited initial congestion window. This data is
paced by the end-host using an RTT estimate from the three-
way handshake. If data is lost, then Jump Start falls back on the
traditional TCP recovery and reduces the congestion window
appropriately. How the network would cope with the excessive
initial send rate that may result from Jump Start is unclear from
the paper, and Jump Start is also shown to be too aggressive
in [250].

Several techniques have proposed ways to estimate the
sending rate that may safely be sustained by a path. Swift
Start [251] uses the packet-pair technique [252] for an initial
estimate of the available capacity. To guard against imprecise
measurements, a fraction of the estimated capacity is then used
as the send rate for the next round. The capacity estimate
is combined with pacing to avoid sending a large burst of
data into the network. RAPID [253] uses a more advanced
scheme where the sending times of the packets are carefully
scheduled to probe for multiple possible sending rates in a
single RTT. This is achieved by sending the packets within a
multi-rate probe stream (or chirp) where the rate increases
with time. The available capacity is then estimated based
on observations of the inter-packet spacing at the receiver.
Although RAPID mainly targets the congestion avoidance
phase, it also includes an improved slow-start. Under ideal
conditions RAPID allows a suitable initial sending rate to be
detected in only 1–4 RTTs. Issues and possible solutions for
how congestion control based on chirping can be deployed in
production systems are discussed in [254].

An alternative strategy to gaining knowledge about the path
is through sharing of information between connections to
the same destination, or more generally between connections
known to pass through a shared bottleneck. RFC 2140 [255]
discusses both the possibility for temporal sharing, where a
new TCP connection could reuse the congestion window of an
earlier, now closed TCP connection, and the possibility of en-
semble sharing, where the congestion state is shared between
several active TCP connections. With ensemble sharing a new
TCP connection could immediately be given a share of the
available capacity towards a given destination. The congestion
manager framework described in RFC 3124 [256] generalizes
the concept of ensemble sharing to allow joint congestion
management across all transport protocols and applications.
Current standardization work within the IETF RMCAT work-
ing group [257] on congestion control for interactive real-
time media also includes the possibility of joint congestion
management, with [197] as a first proposal. Although joint
congestion management can allow a new flow to quickly find
a suitable sending rate, it is only applicable when multiple

27

R1 R2 R3S D

SYN

➀
“I'd like to start

at X Mb/s” ➁
“X is OK
for me”

➂
“I can only allow

you Y < X ”

➃
“Y is OK
for me”

SYN+ACK
➄

“you may use
Y Mb/s”

At t = 0:

At t = RTT:

Fig. 18. Quick-Start operation. The requested sending rate (X) is acceptable
to router R1, but not to router R2 who suggests a lower value (Y), and this
value is acceptable to router R3.

flows share a common bottleneck, something which is also
hard to detect reliably (see also § IV-F7a).

b) Sensing capacity with network assistance:
While the proposals described above did not rely on any

network assistance, there are also a number of proposals that
rely on advanced network functionality or explicit feedback
from the network. TCP Fast Start [258] uses a possibly stale
congestion window from previous connections during start-up.
To compensate, TCP Fast Start sends packets with a class of
service that it expects the network to discard preferentially,
in order to protect other traffic. TCP-Peach [259] uses probe
packets that are marked to be treated by the network with lower
priority in order to detect spare capacity in a satellite network
context. Recursively cautious congestion control (RC3) [260]
also relies on priority queueing being available in the network.
In addition to sending high priority packets following TCP’s
normal algorithm, it sends additional packets (starting from
the end of the flow) at several lower priority levels to take
advantage of spare capacity.

The Quick-Start extension to TCP and DCCP [261–263] is
an example of an approach that relies on explicit feedback
from the network. This allows an endpoint to signal a desired
sending rate in the TCP SYN segment (Fig. 18). Each router
along the path must then agree to the desired rate or reduce the
rate to an acceptable value. The receiver feeds the information
back to the sender which sets the initial congestion window
according to the result.

The eXplicit Control Protocol (XCP [264]) proposes a
similar idea, but here each data packet carries a new congestion
header. A sender indicates its desired congestion window for
the next round in the header and the routers accept or reduce
the window size. As XCP receives continuous per-packet
feedback on the path congestion, it can not only use available
capacity quickly at flow start-up, but also react quickly to
changes in traffic load. This maintains a small standing queue
size and reduces packet drops.

The Rate Control Protocol (RCP [265]) also proposes a new
header field with information allowing routers to add informa-
tion about the allowed sending rate. One main difference to
XCP is that in RCP the routers offer the same rate to all flows.
When a path is congested, these methods allow short flows to
finish more quickly. Quick-Start, XCP and RCP all suffer from
deployment difficulties; not just the need to update routers and
switches, but also the fact that an end-system cannot jump to

the agreed rate in case it is traversing a lower layer bottleneck
that does not support the mechanism.

The discussed proposals for rapidly sensing capacity mainly
target short to medium size flows where they can significantly
reduce the number of transmission rounds required. In practice
IW10 can bring a saving of up to four RTTs [246] and the other
schemes have potential for even larger savings. Longer flows
see less proportional benefit, because the start-up phase is of
lesser significance for long flows. IW10, Jump Start, Quick
Start and RCP have been evaluated and compared by Scharf
in [250]. He found an increased initial congestion window
to be the most promising of these proposals, since Jump Start
seems to be too aggressive, while Quick Start and RCP require
modifications to the entire network to be efficiently deployed,
and have not seen any practical use. Scharf also found an
increased initial congestion window to be a reasonable im-
provement, since it is easy to deploy and it should not endanger
network stability. Still, an increased initial congestion window
can only offer a limited performance improvement in relation
to what is possible, and larger IW values are currently not
thought safe for more general deployment.

D. Collateral damage

The Internet path between endpoints is a shared resource,
that can introduce a common bottleneck in which traffic from
one or more flows can influence the delay and loss experienced
by another flow. One responsibility of the transport layer is to
promote good sharing of this path, and the IETF therefore
requires all traffic to use some form of congestion control
algorithm [266]. Moreover, applications vary significantly in
both the characteristics of the data they would like to send and
their expectations of the network conditions (i.e. throughput,
RTT, loss rate, latency, etc). This section describes methods to
mitigate inducing unnecessary latency amongst flows. It ini-
tially focuses on transport for Scavenger applications, followed
by bursty TCP applications, and finally how to avoid slow start
overshoot.

The methods described below in the context of TCP and
a Scavenger Class can be applied to any transport protocol,
including SCTP, DCCP and other protocols based on UDP. Al-
though these methods can help avoid an unnecessary increase
in application latency, they are not appropriate for all traffic.
Applications that choose to use UDP in preference to TCP,
SCTP or DCCP do not necessarily react to loss or delay on the
same time-scale as TCP would. Some UDP-based applications
do not react at all [149], or react only after many RTTs (e.g.
circuit-emulation service [267]).

1) Low priority congestion control
Most bulk traffic (i.e. from applications that need to transmit

continuously for periods of many RTTs) use TCP. TCP probes
for network capacity, by continuously trying to grow the
congestion window to the point at which congestion is detected
by loss or timeout. This has the side effect that a bulk TCP flow
builds a queue at the bottleneck router, which causes flows
sharing this bottleneck to experience increased latency [268].

One approach to reduce the impact of TCP capacity probing,
is to use increased (queuing) delay as a metric for detecting

28

bit-rate

time

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

congestion

time

bit-rate

time

����������������������������������
����������������������������������
����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������

���������������������������������
���������������������������������
���������������������������������

a) equal rates

b) scavenger
flows yield
to congestion

interactive
flows
complete
sooner

scavenger
flows
hardly
delayed

Fig. 19. Scavenger congestion control.

capacity, see § IV-F7. Delay-based methods could exploit
this to build a Scavenger Class application. This class of
application voluntarily accesses network resources with lower
priority than other traffic, preferring to quickly yield capacity
to more important traffic when multiple flows compete (see
Fig. 19). For example, transport designed for bulk background
peer-to-peer transfer or aggressive pre-fetching that desires to
capitalize on excess capacity when available. Work in this
domain includes TCP Nice [269], which combines delay-based
inference of congestion with an aggressive reduction of the
send rate, allowing also a send rate below one packet per
RTT. TCP Low Priority (TCP-LP [270]) proposed a similar
delay-based approach, showing that using this for background
transfers instead of TCP can reduce the response time of
competing Web connections by around 80%.

In 2012 the IETF defined Low Extra Delay Background
Transport (LEDBAT [213]), an experimental method to sup-
port Scavenger applications. In the absence of competing
flows, a LEDBAT flow is intended to sustain a rate as high
as possible while keeping the queuing delay along the end-
to-end path close to a target value. The method estimates
the base delay (i.e. the minimum delay in the absence of
queuing), and then adapts a congestion window in proportion
to the difference between the measured queuing delay and a
predefined target (with 25 and 100 ms as typical values). This
is intended to allow LEDBAT to conservatively decrease its
sending rate in the presence of queuing delay.

LEDBAT and similar techniques have been widely de-
ployed in peer-to-peer clients, and have been adopted by
some OS vendors to deliver software updates. However, some
authors [271–273] have reported potential issues that call
into question its intended Scavenger behaviour, especially
its impact on latency-sensitive applications like web brows-
ing [273, 274]. Some of the difficulties in obtaining a reliable
delay-based congestion signal are shared with TCP Nice and
TCP-LP, with similar potential issues also applying for these

protocols.
Recent work by Gong et al. [275] has also shown a

potentially negative interaction between AQM and low priority
congestion control. The AQM mechanisms in effect remove
the prioritization between flows that the low priority con-
gestion control is trying to achieve. Transport and network
methods need to therefore be designed to complement each
other [149] (see § IV-F6).

2) Congestion window validation
Some classes of applications generate data at a variable rate

determined by the application itself rather than trying to send
as fast as possible, for example remote storage and real-time
transmission. In the context of TCP, this corresponds to a flow
that needs to send appreciable volumes of data, but does not
need to maximize throughput as in bulk transfers.

Variable rate applications that use TCP can significantly
impact the latency of other flows. This is because a TCP
sender can accumulate a large congestion window, even if
the application is not generating sufficient data to probe for a
higher rate. If the application then increases the rate, this can
inject a (line-rate) burst of data into the network. Congestion
Window Validation (CWV [276]) attempted to solve this by
limiting the congestion window to the actual used value.

Experience subsequently showed that while CWV addresses
a valid need, the algorithm in [276] can add latency to real-
time applications [277]. This resulted in little use of CWV,
so recent IETF activity is updating CWV to permit bursty
applications to accumulate a larger, but controlled, congestion
window coupled with a more aggressive reduction in rate when
congestion is detected using the unvalidated window [278].

The new CWV method seeks to satisfy the capacity re-
quirements of variable-rate latency-sensitive applications, and
to reduce latency for flows that share a bottleneck with bursty
TCP applications [279]. It may also improve performance
for variable-rate TCP applications that encounter a network
bottleneck or a change in their network path characteristics.

3) Avoiding slow start overshoot
Excessive bursts of data may also be inserted into the

network during connection start-up (§V-C2). The exponential
increase of the sending rate during slow start may result in
severe overshoot of the available capacity. This can not only
result in packet loss for a flow itself, but also causes packet
loss and increased delay for other competing flows. Avoiding
(or at least limiting) slow start overshoot can thus help reduce
latency.

Hybrid slow start (HyStart [245]) is one solution targeting
slow start overshoot for bulk flows. HyStart does not change
TCP’s basic slow-start algorithm, but attempts to exit slow start
before a severe overshoot occurs. It applies two independent
heuristics to find a suitable exit point. First, it monitors when
the duration of each whole acknowledgement train approaches
the RTT, which indicates that the congestion window is
large enough to utilize the available path capacity. Second, it
monitors increases in the delay for the acknowledgements sent
at the beginning of each round, which indicate that queuing
delays are building along the path. HyStart is implemented
as part of the CUBIC congestion control module used as a
default in Linux.

29

Earlier work in this area includes the Limited Slow Start
mechanism defined in [280]. This adds a maximum value for
the slow start threshold, max_ssthresh. Once the conges-
tion window grows beyond max_ssthresh, the increase is
limited to max_ssthresh/2 segments per round. Selecting
a suitable value for max_ssthresh is, however, difficult.
Paced Start [281] monitors the queuing delay that a buffer adds
between packets when sent in trains during TCP slow-start and
paces the packets sent in subsequent rounds. CapStart [282]
uses a combination of limited slow start and classic slow start.
Limited slow start is used unless the sender measures that the
bottleneck is probably at the sender and not in the network,
in which case it reverts to classic slow-start. Because the
ssthresh value determines the transition point from slow
start to congestion avoidance, it can be dynamically tuned to
avoid overshoot. Methods for tuning the ssthresh value
based on estimates of the available bandwidth are for example
explored in [283] and [284]. The challenge in all cases is that
limiting the sending rate or leaving slow start too early will
increase the time required to reach the available capacity.

VI. INTRA-END-HOST DELAYS

Host latency results from how applications are designed and
optimized to locate, request and process data. This depends
on the operating system and is constrained by the hardware
technology of the host. This section analyzes delays due to
processes within the host, as opposed to processes in-between
hosts. Buffering delay and head-of-line delays are associated
to protocol stacks and how they are designed and operate at the
end points, and are detailed in the next subsections. Moreover,
operating system delays include delays associated not only to
the software, but also to the hardware of the host. In this
framework, latency depends on the fundamental design and
architecture of the systems.

A. Transport protocol stack buffering

The network stack needs to buffer data passing between
the network and application(s). Host stacks provide buffering
at both the sender and receiver, since generally applications
execute outside the kernel where protocol processing is nor-
mally performed. Excessive host buffering not only adds to
end-to-end latency, it also can result in excessive resource
consumption. A straightforward mitigation is to limit the
maximum queue size, although in practice there are many
places in the stack where buffering may be required. Still, there
is evidence that operating systems are being updated to limit
the effects of bufferbloat, with the bufferbloat project [285] as
a strong driver for this work.

Semke et al. [286] showed that tuning the send socket
depth to 2 × cwnd could avoid excessive buffering for bulk
TCP flows without impacting throughput. TCP small queues
(TSQ) also modified the Linux kernel [287] to limit the default
network socket to 128 KB, to avoid sender latency. Moreover,
Goel et al. [288] showed a trade-off between the depth of
socket input buffering and the TCP throughput that could be
used to optimize performance when an application wishes to

trade the maximum throughput for reduced latency. In real-
time applications (e.g. using the Real-Time Protocol, RTP),
a common issue is that network latency can cause data to
arrive after a deadline, and is then of no (or limited) value;
excessive input buffering adds to this latency. Byte Queue
Limits (BQL [153]) has been added to Linux to dynamically
minimize the hardware transmit buffer, thus pushing any larger
queue higher up the network stack where AQM can be applied
(see § IV-F2).

Latency can also be introduced when data needs to be
copied between a buffer and application, kernel, or device
memory. A Zero-copy technique avoids redundant copying
between intermediate buffers and associated context switches
[289]. This can significantly benefit both bulk transfer over
high-speed networks [290] and latency-sensitive real-time ap-
plications [291].

B. Transport head-of-line (HOL) blocking

TCP’s stream-based design requires the socket API to
sequentially deliver data to the receiver. This can cause head-
of-line (HOL) blocking with added delay when packets are
lost or reordered during transmission.

Reliable ordered delivery is not a requirement for best-
effort, datagram-based protocols based on UDP, or for DCCP.
Datagram-based protocols do not require significant receive
buffering, leaving any re-ordering decisions to the application,
where these may be kept to a minimum for latency-sensitive
applications. When data is framed as separate messages (e.g.
application-layer framing), it may be possible for an applica-
tion to skip data that is no longer needed or avoid waiting for
data that was not received. This is provided by DCCP and by
PR-SCTP [94] which permits a stream-based partial reliability
(see also § III-C1). DCCP and UDP-Lite can also deliver data
when the checksum fails on all or parts of a packet, potentially
eliminating HOL blocking delay.

SCTP can also reliably deliver datagrams when they do not
arrive in the order in which they were sent. This avoids HOL
blocking delay for applications that can accept out-of-order
data, or when ordered data streams are multiplexed together
such that the ordering of datagrams on the wire breaks only
between, not within the streams. Fig. 20 shows two application
streams, A and B, sent over a single TCP connection, where
ordering due to the loss of A1 causes unnecessary delay for
application B. SCTP’s multi-streaming provides a form of
multiplexing without this delay. This matches SCTP’s goal
to support latency-sensitive transaction processing applications
multiplexed over a common transport entity.

The solutions described in § III-C for reducing packet loss
recovery delays can also all help reduce or eliminate HOL
blocking delay caused by packet loss. In particular, ECN and
FEC can remove or hide the losses that are the underlying
cause of the blocking, respectively (§ III-C). ECN only re-
moves congestive losses, whereas FEC hides both congestive
and transmission losses. FEC can potentially also help reduce
HOL blocking delay due to reordering.

The current sockets application programming interface
(API) provides the stack with very little information about the

30

Application A Application B Application A Application B

Sender Receiver

A2

B2

A3

B3

A1

B1

A2

B2

A3

B3

B1

A
4

A
5

A
6

A
7

B
4

B
5

B
6

B
7

Send

Buffers Buffers

Receive

Resend A1

Wait for A1

Fig. 20. Head-of-Line blocking delay, due to loss of packet A1

data being sent. Many of the issues with protocol buffering
could be eliminated if the sender socket interface were richer
and provided additional information about the relative value
and expected timeliness required for transmission [292, 293].
A richer API could also ease migration of services to other
transports more tailored to latency-sensitive applications (e.g.
DCCP and SCTP) [294].

C. Operating system delays

The operating system must orchestrate and shield the diver-
sity and complexity of hardware from software. Application
software uses APIs to interact with the operating system,
network stack and other applications. The host hardware
technology—more specifically, how the CPU, memory and
I/O devices (e.g. NICs) are designed to exchange and process
data—has a fundamental impact on the latency experienced
by applications [295].

Techniques such as parallelization, pipelining and zero-copy
can increase performance and reduce latency. Many forms
of parallelism can reduce latency [296, 297]. Bit-level par-
allelism improves the processor, buses or memory word sizes.
Instruction-level parallelism utilizes multi-core or instruction
pipelining. Data parallelism takes advantage of the possibility
of multiple processors accessing part of the same data concur-
rently, while task parallelism addresses independent tasks that
can be done concurrently. Parallelizing is not always straight-
forward; data and task synchronization in a multi-threaded
environment can lead to the so-called “race condition” problem
[298]. Multithreaded programming addressed race conditions
using locks, mutexes and semaphores, however detecting race
conditions is an NP-hard problem [299].

Addressing latency in the host is not only a matter of faster
hardware, it also implies addressing the architecture of the
system. Chip manufacturers already optimize and integrate
frame control, scheduler, memory and data path logic in the
silicon fabric [300]. Network-On-Chip is an active field of
research [301, 302], which proposes to integrate network
and CPU functions on the same die [303, 304]. Rumble et
al. [305] argue that a system capable of achieving remote
procedure calls with 5–10µs delays for data centre applica-
tions is possible, with a long-term objective of achieving 1µs

delays. Rumble et al. further urge silicon, operating system
and software developers to work together to achieve this long
term goal.

VII. COMPOSITE SOLUTIONS

Many mechanisms bundle techniques that address multiple
sources of delay. This section illustrates this by describing
three such mechanisms: A) SPDY — an application-layer web
protocol mechanism, B) QUIC — an experimental stream-
oriented multiplexing protocol based on UDP, and C) WAN
accelerators — edge devices that use a variety of techniques
to accelerate an enterprise’s WAN connection.

A. SPDY

SPDY [306] is an application-layer web protocol that reuses
HTTP’s semantics. As such, it retains all features including
cookies, ETags and Content-Encoding negotiations. SPDY
only replaces the manner in which data is written to the
network. The purpose of this is to reduce page load time.
It does this by introducing the following mechanisms:
• Multiplexing: A framing layer multiplexes streams over a

single connection, removing the need to establish separate
TCP connections for transferring different page resources.

• Compression: All header data is compressed to reduce
the overhead of multiple related requests; [306] reports a
reduction of ∼85% in HTTP header sizes, and a reduction
in web-page download times due to smaller headers that
can be as high as 1 s in a low-bandwidth scenario.

• Universal encryption: SPDY is negotiated over SSL/TLS
(§ III-B1) and thus operates exclusively over a secure
channel. This adds delay to complete the key exchange
in the SSL/TLS Handshake Protocol.

• Server Push/Hint: Servers may proactively push re-
sources to clients (e.g. scripts and images that might
be required in the future); alternatively, SPDY can send
hints advising clients to pre-fetch content (see § II-C3).
A downside of the drive to reduce web browser latency
is that, with this feature, SPDY sessions can potentially
transfer much more content that traditional methods,
impacting the latency of traffic that shares a network
bottleneck.

• Content prioritization: A client can specify the preferred
order in which resources should be transferred.

SPDY consists of two components. The first provides
framing of data, thereby allowing features like compression
and multiplexing. The framing layer works on top of secure
(SSL/TLS) persistent TCP connections that are kept alive as
long as the corresponding web pages are open. Clients and
servers exchange control and data frames, both of which
contain an eight-byte header. Control frames are used for
carrying connection management signals and configuration
options, while data frames carry HTTP requests and re-
sponses. The second component maps HTTP communication
into SPDY data frames. Multiple logical HTTP streams can be
multiplexed using interleaved data frames over a single TCP
connection.

31

A recent study [307] found that Server Push is currently
largely unsupported, leaving most of the potential latency gains
of SPDY to multiplexing. Agreeing with other earlier studies,
the authors of [307] find it hard to document a consistent
advantage or disadvantage except for low-bandwidth/high-
delay environments. Notably, while SPDY reduces HOL delay
at the application layer (e.g. a stream does not have to wait
to be transmitted until another one that consists of dynami-
cally generated content is ready), multiplexing over TCP still
gives SPDY the RTT-timescale HOL blocking delay shown in
Fig. 20. This may be addressed by QUIC (§VII-B).

B. QUIC

QUIC (Quick UDP Internet Connections) is a project by
Google to design a new stream-oriented multiplexing protocol
for the next-generation web. The protocol is intended to
provide low latency for services equivalent to TCP, but built
upon UDP. UDP was chosen because it offers immediate
deployment and provides a high connectivity success rate
through middleboxes. QUIC seeks to combine a carefully se-
lected collection of layer-4 techniques to decrease application
latency for SPDY and HTTP2.0 [308].

The main features of QUIC that affect latency are:
1) Avoiding the head-of-line blocking that would be incurred

by streams multiplexed over TCP. Being based on UDP,
QUIC can also avoid the initial handshake TCP would
have had to perform to set up the connection.

2) Intrinsic TLS-like security that seeks to eliminate the TLS
handshaking delay [309].

3) Pacing to reduce loss due to bursts from congestion
window cycles.

4) FEC to reduce the delays caused by the need for retrans-
missions.

Initially QUIC will be explored within the open source
Chromium project [310] and to experiment with mechanisms
that work across multiple protocol layers. In the long term,
this could result in an alternative protocol to TCP—although
experience of using and understanding the new mechanisms
could also result in updates to TCP itself rather than evolving
a new standard protocol. As QUIC is still in a prototype
phase and several of the sub-mechanisms are immature at the
time of writing [311], it is hard at this time to estimate the
potential gain and possible effects from the combinations of
mechanisms deployed in QUIC.

C. WAN accelerators

WAN accelerators combine many of the component tech-
niques discussed in this paper, many of which were pioneered
by WAN accelerator vendors. WAN accelerators are typically
deployed by an enterprise that uses a virtual private network
(VPN) to interconnect branch site(s) and a centralized data
centre(s) or headquarters site(s). They are generally targeted
for deployment at the border of each site, to cover the segment
of the path over the wide-area network between sites. To some
extent they can be thought of as a way to speed up deployment
of techniques that ought eventually to be implemented in

the stack of every end-system. However, they also exploit
aggregate knowledge that is not easily available in every end-
system.

1) Structural Arrangements for WAN Acceleration
Traffic typically traverses a pair of WAN accelerators, one

at the egress of the sending site, and the other at the ingress
to the receiving site. Variants of this arrangement exist. For
instance in a mobile workforce scenario the ‘branch site’ end
of the pair of accelerators may be software installed on each
employee’s mobile device, e.g. Riverbed’s Steelhead Mobile
Client [312].

Ipanema’s products are unusual in that they do not just act
in pairs; the set of boxes around the edges of a VPN over a
meshed wide-area network communicate with each other to
optimize traffic leaving the mesh from any one egress (the
only published explanation is in Ipanema’s patents [313–315],
but Fig. 4 in [316] gives a high level overview). This approach
can be applied one-ended, so that all traffic is still routed via
a WAN accelerator at the data centre end, but branches do not
need to deploy a device.

The benefits of WAN acceleration are starting to be eroded
with the trend towards local Internet break-out at each branch
site. This so-called ‘hybrid connectivity’ uses the Internet
to reach public cloud data centres while the VPN provides
connectivity to private resources as well as to the same public
data centres when Internet quality is poor. Ipanema partially
addresses this shift with a product that sits at a branch site
and automatically selects between the Internet and the VPN
for each user flow [317]. However, WAN accelerators cannot
be fully effective unless they control all the traffic passing
through the devices.

2) WAN Acceleration Features
Here we focus exclusively on the features of WAN accel-

erators that address latency, ignoring techniques that address
bandwidth efficiency (e.g. correctly scaling TCP’s receive-
window or using high-speed TCP). Below is a list of latency
techniques that WAN accelerators employ. Each specific make
and model of WAN accelerator will provide only a subset of
these. Where the details may be of interest, some are explained
further afterwards.

Techniques may be either generic, transport-specific (e.g.
applicable solely to TCP), or application-specific:
• Generic

– Eliminating duplicate data transfers (loosely related
to § II-C1 on caching and to §V-B on redundant
information);

– QoS marking and enforcement by application (see
§ IV-F4);

• Transport
– Connection Pooling (related to § III-A4 on pipelining);
– SSL acceleration (loosely related to § III-B1);
– Rapid filling of available capacity (related to §V-C2

on rapidly sensing available capacity);
• Application

– Cache pre-fetching (see § II-C1);
– Reduce round trips of important but inefficient appli-

cation layer protocols.

32

According to the Riverbed Optimization System (RiOS v6.1)
Technology Overview [312], RiOS uses many of the tech-
niques listed above. Riverbed’s data de-duplication is a com-
pression technique that replaces sequences of bytes with index
codes. It works at a minimum granularity of about 100 B, but
the codes work hierarchically, so they can refer to a large
file with only small differences from an otherwise similar
file transferred earlier. This de-duplication approach is inde-
pendent of the application protocol, unlike caching (§ II-C1),
which needs to understand the objects and identifiers that an
application layer protocol uses. It can therefore compress e-
mail attachments, remote print serving, java applets, back-ups,
etc.

At the transport level, Riverbed’s accelerators maintain a
pool of pre-opened connections between the ends of the
WAN segment, to deal with TCP’s handshaking round trips
in advance, that would otherwise slow down short-lived con-
nections. Riverbed avoids aggregating many TCP connections
into one TCP tunnel, which can lead to classic TCP-over-
TCP performance problems and to packet fragmentation due to
tunnel header overhead. Instead each WAN accelerator device
acts as a TCP proxy by intercepting each TCP connection and
mapping it into another TCP connection over the wide area,
which is in turn mapped into a third TCP connection between
the remote WAN accelerator and the remote end-point.

In contrast, at the transport-layer, current Ipanema WAN
accelerators focus on minimizing TCP’s slow-start latency.
They continuously co-ordinate with each other to determine
the capacity each WAN segment should consume into each
branch. Then each TCP flow immediately opens up its window
to fully utilize this allocated capacity (bandwidth usage is also
optimized as part of this process, but that is outside our current
scope).

It has been proposed that WAN accelerators use the RSVP
reservation protocol to ensure that capacity is available on
interior links as well as on edge devices [318], so that
immediately opening a full window does not overload core
network links. However, most vendors take the pragmatic
approach of solely managing access link bottlenecks into and
out of the WAN.

Some vendors concentrate on a limited sub-set of the
techniques; for instance, Infinita focuses on reducing the
time for TCP slow-start as well as using high-speed TCP
for the continuing connection [319]. Nonetheless, eliminating
duplication is common in most solutions, because it often gives
the greatest gains (e.g. Riverbed claims it typically reduces
flow sizes by 65% to 95%).

It is also very popular for WAN accelerators to remove
chatty handshaking rounds in application-layer protocols that
were originally designed for LAN rather than WAN environ-
ments. The classic example is Microsoft Windows networked
file system (CIFS), which used to be very inefficient before it
was redesigned for wide area networks [320]. Streamlining
is also popular for other common enterprise applications
such as Microsoft SQL Server databases (the TDS protocol);
Lotus Notes; and the Oracle e-Business application suites.
However, standardized protocols also offer considerable scope
for proprietary latency improvements, e.g. Network file sys-

tem (NFS); server-based email (MAPI); and HTTP/HTTPS.
Many application-specific WAN acceleration features enhance
old versions of the protocols, and become redundant as the
application-layer protocols evolve to efficiently support wide-
area networking.

Application-specific knowledge can also be used to pre-
fetch data. For instance, caching at a branch under the as-
sumption that several people will probably download the same
corporate email or objects hyperlinked from popular Web
pages.

Some WAN accelerators include other miscellaneous tech-
niques, such as using FEC to mitigate packet losses (see
§ III-C), enforcing bandwidth limits, or placing limits on the
number of connections (to protect equipment from flow-state
exhaustion).

3) Performance enhancing proxies (PEPs)
There are also sets of performance accelerators aimed at

links with specific characteristics, such as intermittent con-
nectivity, variable bandwidth on demand, high latency, high
loss, etc. These devices act similarly to WAN accelerators
and often provide similar functions, but can also leverage
cross-layer features—such as information about the network
held in a service subscriber database, access to radio resource
management functions to accelerate transmission of key data,
and the ability to setup and manage lower layer bearers
with specific capabilities. Such devices are widely deployed
to support wireless, cellular and satellite services, especially
to manage application performance in the face of high or
unpredictable delay or variable loss (see [321] for further
information).

VIII. CLASSIFYING SOLUTIONS IN DIFFERENT WAYS

To determine a sound structure for this survey, a few alter-
native classification structures were considered. We arranged
all the techniques using each scheme to test which one would
both encompass all the material and lead to fewest overlaps.

An alternate way that we explored for structuring this survey
was based on the phase(s) of a communication session that
each technique addresses. In principle, any exchange of data
between endpoints can be regarded as being divided in (up to)
three phases over time:

1) Session startup.
2) “Getting up to speed” (GUTS), i.e. assessing a safe

sending rate for the path by progressively increasing the
sending rate.

3) Data transfer.

Taking a long-lived, TCP-based bulk transfer as an example,
(1) corresponds to the three-way handshake, (2) to the initial
slow-start phase, (3) and to transfer of most of the data
after the initial slow-start transient (with the sender mainly
in congestion avoidance). Of course, this mental model does
not necessarily apply as-is to any arbitrary data exchange,
nor are all phases always non-overlapping. For instance, for
short-lived TCP flows transfer of all data (phase (3)) may well
happen without the sender ever exiting slow-start (phase (2)).
Nonetheless, in spite of such potential ambiguities, the model

33

TABLE II
ALTERNATE TAXONOMY, BASED ON THE TYPICAL PHASES OF A COMMUNICATION SESSION.

Phase(s) of a session addressed
Type of technique Discussed in Section Startup GUTS Transfer
Shorter-latency routes II-A x x x
DNS pre-fetching II-B x
Network Proxies and caches II-C1 x x x
Client caches II-C2 x x x
Data prediction and latency-hiding II-C3 x x x
Better service placement II-D x x x
Parallel option negotiation III-A1 x
Reducing NAT setup delay III-A2 x
Fast opening of TCP connections III-A3 x
Application pipelining III-A4 x x
Path MTU discovery III-A5 x x x
Faster transport security negotiation III-B1 x
Building encryption into TCP III-B2 x
Bootstrapping security from the DNS III-B3 x
Trading reliability for lower latency III-C1 x x
Reducing packet-loss detection times III-C2 x x
Adding redundancy to TCP III-C3 x x
Explicit congestion notification III-C4 x x x
Enhanced Nagle III-D x
Straighter cable paths IV-A1 x x x
Higher signal velocity IV-A2 x x x
Combining higher signal velocity and straighter routes IV-A3 x x x
Optimizing MAC-layer protocols IV-B x x x
Reducing serialization delay IV-C x x x
Improving link error control or channel quality IV-D x x x
Lower switch processing delays IV-E x x x
Flow and circuit scheduling IV-F1 ? x x
Limiting MAC-layer buffering and flow control IV-F2 x x x
Limiting IP-layer buffering IV-F3 x x x
Packet scheduling IV-F4 x x x
Traffic shaping and policing IV-F5 x x x
Active queue management IV-F6 x x x
Transport-based queue control IV-F7 x x
Leveraging multiple links / interfaces to increase capacity V-A x x
Avoiding transmitting redundant information V-B x
More aggressive congestion control V-C1 x
Rapidly sensing available capacity V-C2 x
Minimizing collateral damage V-D x x x
Limiting buffering in the host’s network stack VI-A x x x
Avoiding transport HOL latency VI-B x
Reducing Operating system delays VI-C x x x
SPDY VII-A x ? x
QUIC VII-B x x
WAN accelerators VII-C x x x

34

is convenient since some latency-reduction techniques focus
on specific phases of the lifetime of a session.

Table II illustrates the way in which the types of techniques
explored in the previous sections map into different phases
of a session. An ‘x’ symbol denotes that a given technique
can likely bring latency-reduction benefits in the corresponding
phase, whereas an ‘?’ symbol indicates that benefits are not
clear-cut and may depend on several factors, or may involve
tradeoffs; the reader is referred to the relevant sections for
details. Note that many of these techniques are applicable to, or
have an impact on, more than one of the three phases described
above, implying that such a classification would be of limited
use.

Another way of structuring a taxonomy of techniques that
can reduce latency would be to map the techniques to the
layers of the OSI model. However, we discarded this obvious,
easy classification scheme since it did not offer much insight
into the problems each solution addresses; also, we found
that it obscured the fact that some types of methods may be
applied at multiple different layers of the stack, or cannot be
simply mapped to a single layer because they may require the
concerted actions of elements in more than one layer.

For instance, techniques such as TFO for faster opening of
TCP connections (§ III-A3) are clearly located at the transport
layer. However, TCP Early Retransmit (§ III-C2) also sits
clearly in the transport layer, yet it addresses very differ-
ent issues than TFO. Methods like compression of protocol
headers may be applied to application-layer protocols (as e.g.
SPDY does, see §VII-A) or to network- and transport-layer
headers (as e.g. ROHC does, see §V-B). Yet they tackle a
similar issue—protocol header overhead. Further, some other
techniques, like Active Queue Management (§ IV-F6), involve
the interaction of entities located at more than one layer of
the stack (e.g. the transport protocol and a buffering system
in a lower layer, in the case of AQM).

Even within the structure we adopted, the top level sources
of delay to use were not obvious (and they are different from
those proposed by Touch [322]). For instance, we do not have
a section for delay due to interaction between an endpoint
and the network, even though we have one for interaction
between endpoints (§ III). A number of the delays are certainly
exacerbated by a lack of explicit interaction between endpoint
and network in the Internet architecture, e.g. those to do with
sensing available capacity in §V-C2, V-D. Nonetheless, it did
not seem appropriate to identify this interaction as a source of
delay, when it is actually the absence of this interaction that
causes delay. Therefore, instead we chose to classify these
delays by the underlying source of delay, e.g. attempting to
sense capacity.

If interaction between endpoint and network had been one
of our top level classifications, the following techniques would
have fallen within it:

• Introduction of explicit signals:
– Classic ECN (§ III-C4)
– Instant ECN, e.g. DCTCP (§ IV-F6a)
– Virtual queue ECN, e.g. HULL (§ IV-F6a)
– Lower priority for probe packets, e.g. Fast-Start, TCP-

Peach (§V-C2)
– Explicit rate signalling, e.g. Quick Start, XCP, RCP

(§V-C2)
• Working round lack of explicit signals:

– Delay-based congestion control (§ IV-F7c)
– Chirping to detect buffer capacity (§V-C2)
– Increasing TCP’s initial window (§V-C2)
– Congestion window validation (§V-D2)
– Detecting slow-start overshoot using delay (§V-D3)

IX. GAIN VS. DEPLOYABILITY

Having surveyed a wide range of techniques, we now aim
to summarize the merits of the main types of technique. Our
primary approach will be to visualize the gain in performance
of each technique against the potential difficulties and cost
foreseen in getting it deployed—gain vs. pain.

A. Gain

Quantifying the benefit of each technique requires consen-
sus on a figure of merit. We decided on percent reduction in
session completion time

= 100%− session-completion-time
original-session-completion-time

.

In general, we take the baseline for original session comple-
tion time as the state of the art technology used in production
systems at the time of writing (2014).

‘Session’ is a deliberately general concept that can be
stretched to mean a message, a connection or a set of connec-
tions that fulfil a task. This allows us to compare techniques
that address a range of interactions, as long as the content
of the session is the same in the before and after scenarios
(denominator and numerator):
• a one-way end-to-end event notification (message), e.g. a

price update;
• a two-way exchange (connection) including connection

set-up and optionally security set-up, e.g. retrieval of a
simple Web page;

• a set of exchanges of information (session), e.g. retrieval
of a geographical map identifying hardware shops in a
locality.

‘Completion time’ was chosen to focus on the whole of a
task, but can also be used to measure the time to complete
the component steps in a process. The term latency is often
associated with the time spent getting started before the
body of a task can start, and completion time can measure
completion of the start-up phase. It is not always natural
to stretch this to the extreme. For instance the latency of a
streaming video is the delay between requesting it and the
first frame being played-out, but ‘completion time’ is not a
good term for this. Nonetheless, as long as it is qualified by
what is being completed, completion time is a useful general
metric.

One disadvantage of using reduction in completion time is
that all the techniques with the most startling results bunch up

35

CDN

TLS-FS

no DSL
interleave

AQM
FEC/TCP

TFO

ECN+AQM

DNS
pre-

fetch

DCTCP

Deploy-
ability

reduction in

completion

time

50%

0

100%

StraightforwardVery Hard or Costly

data
pre-fetch

straighter links
hollow fibre

micro-

wave

sender onlyboth ends
network only

both ends

& network

all at

once

for example...

QS

RTOR
TLP

IW10

(a) Small session (∼20 kB) flows over WAN

RTOR
TLP

TLS-FS
DNS
pre-

fetch

reduction in

completion

time

50%

0

100%

Very Hard or Costly
sender onlyboth ends

network only
both ends

& network

all at

once

for example...

Straightforward

Deploy-
ability

ECN+AQM

DCTCP

data
pre-fetch

CDN
AQM

straighter

links
hollow fibre

IW10TFO

QS

(b) Small session (∼20 kB) flows over LAN

no DSL
interleave

Deploy-
ability

reduction in

completion

time

50%

0

100%

Very Hard or Costly

data
pre-fetch

sender onlyboth ends
network only

both ends

& network

all at

once

for example...

CDN

Straightforward

DNS pre-fetchAQMECN TLS-FShollow fibre microwaveDCTCP IW10TFOQS

(c) Large session (> 2MB) flows over WAN

data
pre-fetch

DNS pre-fetchAQMECN TLS-FSDCTCP IW10TFO Deploy-
ability

reduction in

completion

time

50%

0

100%

Very Hard or Costly
sender onlyboth ends

network only
both ends

& network

all at

once

for example...

Straightforward

CDNhollow fibre QS

(d) Large session (> 2MB) flows over LAN

Fig. 21. Bubble plots of rough latency gains against ease of deployment for a selection of techniques. The heights of the captions of each bubble represent
typical values, and the vertical extent of the bubble represents variance. See § IX-D for expansion of abbreviations and commentary on each technique. Some
techniques discussed in the commentary are not included in the diagram because their latency reduction is too scenario-specific

at just under 100%. To solve this, a possible alternative metric
would have been speedup factor

=
original-session-completion-time

session-completion-time
.

However, then the majority of reasonable techniques would
bunch around 1–1.5. Given few techniques give exceptional
improvements in performance and most give only moderate
gains, we use percent reduction in completion time, except
if we need to bring out the distinctions between those with
exceptional improvements.

B. Pain

The difficulty foreseen in deploying a technology is neces-
sarily subjective. We arrange the techniques on a rough scale
from ‘Very Hard or Costly’ to ‘Straightforward’. The scale
does not extend to ‘Easy’ because it is debatable whether
deployment is ever easy in a complex system like the Internet.

In general, techniques that offer immediate performance
gain when unilaterally deployed on an end-system are placed

at the ‘Straightforward’ end of the spectrum. On the other
hand, techniques that require the sender, receiver and all
network elements on the path between them to be changed
before there is any benefit are considered very hard to deploy,
particularly if all parties have to change at once. Nonetheless,
we have still categorized some techniques that are unilater-
ally deployable as ‘Very Hard or Costly’ because of their
prohibitive cost (e.g. replacing long-distance fibre links with
point-to-point microwave links).

C. Caveats and Scenarios

Fig. 21 arranges a small selection of the techniques in
the full survey as bubble plots. The vertical axis represents
reduction in session completion time and ease of deployment
is shown on the horizontal. Bubble diagrams are generally
approximate, which suits the rough nature of the data being
presented.

In general, bubbles higher and to the right are better.
Nonetheless, it is important not to ignore techniques on the

36

left, because subsequent research might succeed in making a
technique easier to deploy.

The vertical positioning of each bubble’s caption represents
the typical reduction to be expected, while the vertical extent
of each bubble roughly represents the likely variance of the
latency reduction. We admit that variance of reduction in
completion time is not an intuitive metric, because it usually
has more to do with variance of completion time before the
solution is applied, not variability in how well the solution
reduces completion time. Wider bubbles merely show that a
technique’s deployability is less certain.

Such a simple visualization cannot hope to summarize
all the factors involved, which can only be appreciated by
looking up the relevant techniques in the body of this survey
and following up the references if necessary. This interim
visualization alone should not be used to prioritize work, nor
to identify gaps in the solution space, because:
• it only includes a small selection of the techniques in the

present survey;
• quantification of latency reduction often relies on ev-

idence from the promoters of a particular technique
without independent verification;

• with such a wide variety of techniques, it is hard to
ensure that the baseline cases are all comparable before
calculating the reduction in latency of each technique;

• the reduction in latency of any technique depends on
the prevailing scenario—the levels of transmission and
congestion losses, the bottleneck capacity, the degree of
multiplexing, the patterns of foreground and background
traffic arrivals, the topology, etc.;

However, we felt a selection of ball-park figures would be
more useful than no quantification at all.

Despite the numerous parameters above that could charac-
terize a scenario, two parameters in particular strongly affect
the outcome in nearly all cases:
• the amount of data transferred (‘session-size’);
• how far apart the end-points are (or were originally), e.g.

WAN, LAN.
It should be sufficient to visualize just two cases for each of
these two dimensions, leading to the 2 × 2 matrix of cases
shown. We assume about 20 kB of data for the small session-
size, and we will take a large session-size to mean more than
two orders of magnitude greater (> 2MB). Fig. 21 illustrates
the case of a WAN (∼200 ms) and a LAN (∼2 ms RTT).

D. Commentary

The ‘gain and pain’ of the techniques selected for Fig. 21
is discussed below, organized by the main sources of delay
that it addresses. The bubbles are coloured to match the main
sources of delay in Fig. 2.

1) Structural
Optimize routes (§ II-A):

The scope for reducing path latency by optimizing
the route is distinctly scenario-specific. Chetty et al.
[323] measured the latency from Johannesburg in
South Africa to various servers around the world and

compared it with the distance ‘as the crow flies’. Di-
viding the measured latency by the time it would take
for light to traverse the direct distance in glass gives
the stretch factor introduced by the Internet routing
system, further compounded by circuitous cable runs,
i.e. stretch = measured latency / ideal latency. The
stretch factor to servers in the southern hemisphere
or equatorial regions was always more than 2.5. In
contrast, the stretch factor to northern hemisphere
servers was typically about 1.3. The explanation was
that all routes traversed northern hemisphere Internet
exchanges, even when the other end was also in
Africa, such as Nairobi in Kenya, which exhibited
the highest stretch of 6.9. Reducing the worst stretch
(6.9) to the best (1.25) would represent a reduction
in delay of 1− 1.25/6.9 ≈ 82%.

In contrast, optimizing route latency within a net-
work in a more mature market offers diminishing re-
turns. For instance, an unpublished study conducted
on a European national core network found that
edge-to-edge latency could be reduced by about 3.2%
on average by rearranging the OSPF link weights.
This gain would be smaller when translated into a
reduction in end-to-end delay, because the network
core is only a proportion of the end-to-end path,
and there is little scope for route optimization in
the access portion. The same study showed that
further reducing delay on every route to its absolute
minimum (‘as the crow flies’) would lead to an
average reduction in delay of 79%—nearly as bad
as the worst case in the Johannesburg study. This
is perhaps not surprising, since the relatively small
absolute reductions in delay that can be achieved at
a national scale would not be worth the investment
in thousands of routes between pairs of towns, at
least not in comparison to the greater potential gains
in absolute terms between a few major international
centres.

DNS (Domain Name System) pre-fetch (§ II-B):
DNS pre-fetching will save on average 250 ms for a
Web user once a link is followed [324]. A survey on
DNS lookups in Jung et al. [17] shows that around
25% of DNS lookups take more than 1 second and
as many as 5% of DNS lookups take more then
10 seconds. DNS pre-fetching removes this excessive
variability, represented by the height of the bubbles
in the diagrams. Jung et al. [17] found that around
85% of lookups were resolved locally. We have no
data for the benefit of DNS pre-fetching in a LAN
setting. This benefit is likely to be small because the
resolution requests, if done at at all, will probably be
local as well. DNS lookups create initial latency for
both short and longer lasting flows, but they do not
affect per-message latency once the initial lookup is
done.

CDN (Content Distribution Network § II-C1):
By placing content closer to the user, CDNs can
greatly reduce the latency. E.g. practical tests show

37

that, when combined with front-end optimization
(FEO), CDNs can make web pages load up to four
times faster [325]. A CDN is most cost-effective
for small objects, but it still reduces completion
time considerably for larger objects, although with
more storage capacity expense. More sophisticated
solutions are available, e.g. those that serve the start
of a large object from cache, then resort to the
origin server for the bulk of the data. CDNs rely on
economy of scale by sharing the cost over many users
to increase the cache-hit-rate. Therefore, a CDN
would be prohibitively expensive and rarely improve
latency for content that is already local, which is why
a CDN would provide no benefit for objects retrieved
over a LAN.

Data pre-fetch (§ II-C2):
Pre-fetching data can offer near-zero latency, but only
if the right data was included in all the data that was
pre-fetched. Arbitrarily large reductions in delay can
be achieved by pre-fetching arbitrarily large amounts
of data, which is why the bubbles for pre-fetching
data show high gain but also high pain—towards the
costly left-hand end of the plots. The precise levels
of gain and cost will be highly scenario-specific (e.g.
more interesting over DSL than cellular access). The
one certainty is that pre-fetching more data offers
diminishing returns.

2) Interactions between Endpoints
TFO (TCP Fast Open § III-A3):

The rightmost column of Table I shows that TFO
removes the initial round trip, but only for a re-
sumed session. A 20 kB transfer will be broken into
14 segments if the maximum transmission unit is
1500 B. For a TCP slow start with a traditional initial
window of 3 segments, it will take 3 rounds of
window doubling to transfer these segments (3, 6
& 5 segments respectively). So in this case TFO
reduces completion time by roughly 1 − 3/4 or
25%. Of course, for connections to new servers or
to servers that have refreshed the seed for the TFO-
cookie, there will be no reduction, hence the bubble
in the diagram extends down to zero. On a LAN,
the best latency reduction will be a little less than
25% merely because server processing time becomes
more significant relative to round trips. For any large
transfer, the single round-trip saved by TFO makes
little difference.

TLS-FS (Transport Layer Security/False-Start § III-B1):
As can be seen in Table I, False-Start saves a round
trip when first opening a secure session. However,
when resuming a session, the existing TLS design
already saves a round trip and False-Start does not
improve on this (except in the less common case
where the server resumes the session). Therefore,
the gain of False-Start is similar to that of TFO,
but in the converse circumstances (only for new,
not resumed sessions). Like TFO, False-Start only

saves delay if both ends support it, but it suffers
from considerable additional deployment constraints,
as explained in § III-B1.

RTOR (Retransmission TimeOut Restart) and
TLP (Tail Loss Probe) (§ III-C2):

Techniques related to enhanced packet loss recovery
only come into play when loss occurs. As a result
their average gain is low, but they can bring signif-
icant gains for the short flows hit by loss(es), thus
making low delay much more predictable.

In the typical case RTOR shaves one RTT off
the recovery time when a loss occurs in the end of
a flow, and up to one RTT plus the delayed ACK
time in the best case [97]. For a short flow over a
WAN, assuming an RTO of twice the RTT and a
delayed ACK time of 200 ms, this will result in a
25% reduction in completion time in the best case.
Over a LAN, loss is more rare and the RTT is less
significant in relation to the RTO. The delayed ACK
time can, however, be significant. Assuming a Linux
sender with a minimum RTO of 200 ms, the flow
completion time of a short flow can in the best case
be almost halved by removing the delayed ACK time
from the recovery time.

As reported in Flach et al. [91], TLP (Tail Loss
Probe) reduces the average completion time for short
Web flows over the Internet by roughly 3%. Further-
more, [91] reports observing RTOs that are 200 times
the RTT in their Web traces. As TLP can reduce the
loss recovery to a few RTTs the gain in the best case
can be close to 100%. Over a LAN, the gain in the
best case can also be close to 100%, as the RTO is
typically much larger than the RTT.

For large transfers the loss recovery delay is of
limited impact, rendering both schemes less signifi-
cant for this case. Both schemes are straightforward
to deploy as they require only sender-side modifica-
tions.

Adding Forward Error Correction (FEC) to TCP (§ III-C3):
Mechanisms for adding FEC to TCP can fully mask
packet loss when it occurs. As the packet loss re-
covery time can dominate the completion time for
short flows in both WAN and LAN environments,
the gain is in the best case close to 100%. The
average gain and the impact on long transfers is
still limited for reasons discussed above. Adding
FEC to TCP requires support at both the sender
and receiver. Care must also be taken to ensure that
proper congestion control is invoked for packets that
are lost and recovered through FEC.

ECN (Explicit Congestion Notification § III-C4):
The use of ECN can also remove the need for
dropping packets. As currently specified [63], ECN
will have similar gains to TCP with FEC, in that it
removes the packet loss recovery time. The use of
ECN requires support from both ends as well as the
network.

38

3) Transmission Path
Straighter links (§ IV-A1):

A common rule of thumb used within carriers is
that a fibre or cable route will be 25% longer than
the line-of-sight route, but no scientific references
to this are known. The shorter transmission path
would cut the completion time of short TCP flows by
(1− 1/1.25 = 20%), because a short flow is still in
the slow-start phase when it finishes, which requires
a set number of round trips for a certain transfer size.
The completion time of a larger transfer is limited
by bandwidth, not path length, so straighter cables
would typically not affect its completion time. In
the case where two long-running TCP Reno transfers
share a bottleneck they will take shares of capacity
inversely proportional to RTT, so the completion
time of a large transfer would be shorter if the
cables were straighter. However, the rate of mod-
ern TCP is becoming less dependent on RTT (e.g.
TCP CUBIC’s packet rate is roughly proportional to
1/RTT0.25 [326]).

Hollow fibre (§ IV-A2):
The signal velocity in ordinary optical fibre is 2/3
of that in air or hollow fibre. Therefore, hollow fibre
could reduce path delay by up to 33%, assuming
its jointing losses were improved. This advantage
would typically only be realized by short flows, for
the same reasons as discussed above for straighter
links. Both hollow fibre and straighter links would be
prohibitively expensive, except for niche applications
such as private links between financial centres.

Microwave (§ IV-A3):
Microwave combines the 20% line-of-sight benefit
(§ IV-A1) and the 33% increase in signal velocity,
making a total reduction in delay of roughly (100%−
20%)(100% − 33%) = 53%. This has to be traded
off against weather-induced unreliability. Therefore,
in practice, the theoretical 53% latency gain from
microwave is often reduced by the need for repeaters
(which add 6.5µs every 60 km) and the need for end-
to-end link FEC (adding around 150µs).

Reducing WiFi medium acquisition delay (§ IV-B):
The IEEE 802.11 Medium Access Control incorpo-
rates two medium access methods: the mandatory
Distributed Coordination Function (DCF) method
and the optional Point Coordination Function (PCF)
which provides Time Bounded Services (TBS). DCF
is based on the Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) protocol, with two
possible access methods, a so-called basic method
and the RTS/CTS method. Vardakas et al. [327]
shows that, depending on the data rate and the num-
ber of stations, delays can be reduced by hundreds
of milliseconds up to more than a second using
RTS/CTS instead of the basic method.

Adopted in IEEE 802.11n, frame aggregation im-
proves efficiency by reducing overhead due to MAC
headers. Gains due to frame aggregation depend

strongly on the rate and noise level of the channels,
number of stations, packet size and specifics of ag-
gregation technique [118]. [328] shows that dozens to
hundreds of milliseconds can be removed using two-
level aggregation instead of A-MPDU, while [117,
329] show that two-level aggregation outperforms A-
MPDU, which outperforms A-MSDU aggregation.
Moreover, [330] experimentally compares a system
with and without frame aggregation, and shows that
frame aggregation improves throughput, with mini-
mum impact on average inter-frame delay, albeit with
some impact on jitter. Other works [119, 331] show
that frame aggregation can be deployed and fulfill
delay sensitive requirements, such as for voice and
video services.

Removing DSL Interleaving (§ IV-D):
Forward error correction coupled with interleaving
(I-FEC) is a mechanism widely adopted for impulse
noise protection. On the one hand, the mechanism
itself introduces delay but, on the other hand, it hides
transmission errors along wired or wireless media,
which would otherwise introduce retransmission and
time-out delays. Interleaving introduces the follow-
ing levels of one way delay:
• ADSL1: operators use either FAST (0 ms inter-

leaving) or SLOW (16 ms interleaving).
• ADSL2/2+: most common is 8 ms interleaving.
• VDSL2: most common is 8 ms interleaving.

ARQ: retransmission is used for impulse noise
protection, a shorter I-FEC with 0.5 ms interleaving
delay kept for channel protection. In case a packet is
retransmitted it will take 4 ms longer (so a total delay
of 4.5 ms), but such retransmits are only expected to
occur for 1% to 5% of the packets.

Removing interleaving on DSL is applicable only
for the WAN cases. In the first case (Fig. 21a)
removing interleaving would represent a considerable
reduction in delay (e.g. removing 8 ms one-way
interleaving delay removes about 8% of a 200 ms
WAN round-trip time, and as much as 80% of a
20 ms round-trip time). Figure 12 of Sundaresan et
al. [332] shows that US broadband service providers
using cable can offer less than 10ms last-mile round-
trip latency to nearly 100% of their users, while
a significant proportion of customers of DSL-based
providers experience up to 60 ms, largely because of
interleaving.

In the case of elephant file transfers (Fig. 21c),
the reduced RTT should make little difference to
throughput and therefore completion time. While
removing interleaving leaves the path more suscep-
tible to impulse noise, this would have little effect
on the long-running throughput of modern more
robust transport protocols, such as TCP CUBIC,
which would strive to maintain the line rate, as
long as the bit error rate (BER) introduces loss at a
lower order of magnitude than the congestion control

39

mechanisms themselves induce to fill the link.
Fairhurst and Wood [92] discusses the impact of a

range of Automatic Repeat Request (ARQ) methods
on TCP, and identifies the ways in which ARQ
introduces delay to Internet traffic.

Optimize Forwarding (§ IV-E) and (§ IV-C):
The objective is to reduce Stotal = SD + SI + SL +
SF + SO + SS , where SL is the delay due to the
packet header manipulation and SF is the delay of
passing through the switching fabric (see § IV-E).
Ramaswamy et al. [132] give a good overview of
baseline network processing delay, while Rumble et
al. [305] set the challenge on how far we should aim.
This is closely related to improvements addressed in
§VI-C on OS delays. These delays are of an order
of magnitude of nanoseconds, thus improvements in
these sources will be small relative to typical delays
from other sources measured in microseconds. SI

and SO represent the input and output port queuing
delays, in addition serialization/deserialization delays
are given by SS and SD. Newman [333] indicates
that, if cut-though is properly implemented, it can
remove dozens to hundreds of microseconds on a
10 GE interface. Moreover, I/O buffering and seri-
alization/deserialization delays can be reduced by
increasing the port line speed or reducing the number
of port traversals (see § IV-C). In comparison with
other sources of delays, which can reduce latency in
the milliseconds order of magnitude, improvements
in forwarding yield small delay gains.

Correct buffer sizing (§ IV-F2) and (§ IV-F3):
The work of Gettys [135] and others has shown
that buffers in many places in the Internet are
sized far larger than they should be. Unless the
traffic pattern makes one of these buffers become
the bottleneck, they will introduce no delay. How-
ever, whenever traffic converges on such a buffer,
long delays will be experienced—as long as a few
seconds. No buffer ever needs to hold more data
than the longest possible round-trip half-way round
the earth and back at the speed of light in glass
(about 200 ms). Therefore, re-sizing a 2 s buffer to
200 ms will immediately reduce worst-case latency
for short flows with a 200 ms base delay (case 1a)
by 1− (200 + 200)/(2000 + 200) = 82%.

Ideally, AQM would also be implemented in the
buffer (see § IV-F6). Adaptively sizing low level
buffers to the minimum needed to absorb queue vari-
ation can both significantly reduce delay and push
the queue up into a higher layer buffer where AQM
is more appropriate (see § IV-F2). Correct sizing of
a buffer should always be possible by configuration,
even if AQM or adaptive buffer sizing has not been
implemented in the equipment at hand. A buffer
intended for numerous multiplexed flows may be
sized even smaller than one worst-case global round-
trip (see § IV-F3).

Class-based scheduling (§ IV-F4):

Prioritizing latency-sensitive traffic can eliminate
most queuing delays along a path, provided that the
latency sensitive traffic uses less than the capacity
available. The latency reduction comes at the expense
of extra latency for other traffic sharing the path. This
can eliminate close to 100% of queuing delay for
latency-sensitive traffic along the path. The percent-
age reduction of the overall flight latency depends
on what the minimum flight time is when there is no
queuing, so it can provide savings of between ∼95%
and ∼50% with current levels of network buffering.

Class-based scheduling is only applicable where a
small proportion of traffic is latency sensitive and the
remainder is not. In scenarios where the majority of
the traffic is latency sensitive, it is less useful.

AQM (Active Queue Management § IV-F6):
AQM algorithms aim at avoiding having buffers that
are persistently full, and recent AQM proposals use
queuing delay as an input variable to their control
system [189, 190]. For instance, PIE—like Adap-
tive RED, a much older algorithm [334]—tries to
stabilize the queue around a preset value of a few
tens of ms. Hence, any reduction in queuing delay
achieved thanks to AQM is to be compared to the
maximum delay corresponding to a full buffer, and
is dependent on the way the AQM parameters are
set; other parameters such as the load and degree
of statistical multiplexing (i.e. number of flows and
composition of the traffic mix) will also play a role
in how (much) the buffer is filled—e.g. an AQM may
have little effect in a very lightly-loaded buffer.

In the absence of bufferbloat, buffers for small
numbers of flows can be supposed to have been
sized as to absorb (roughly) one worst-case RTT’s
worth of packets, which gives an indication of the
maximum possible queue length. In the WAN exam-
ple, if we consider a persistently filled 200 ms buffer
(i.e. an RTT-sized buffer) and an AQM achieving
an average queue of 20 ms, then the four rounds
needed to transfer 20 kB of data with TCP (one
for connection setup, plus three for the data) will
take about 1600 and 880 ms without and with AQM,
respectively. This amounts to ∼45% reduction in
completion time. With a bloated bottleneck buffer—
say, one second’s worth of buffer space—completion
time without AQM may take as much as ∼4.8 s,
hence giving a reduction of ∼83% when AQM is
used. Similar rough estimates can be obtained in the
LAN scenario with short flows, 2 ms buffers and an
AQM that keeps queuing delays at a few hundreds of
µs (like DCTCP’s does at 1 Gbps link speeds [194]).

DCTCP (Data Centre TCP § IV-F6):
The developers of DCTCP claim that it cut mean
completion time in their Bing data centre by about
40%–45% for short flows and by about 86% during
periods when load was ten times the normal load.
Perhaps more importantly, the 99.9th percentile de-
lay reduced by over 40%, meaning that delay not

40

only reduced, but it became more predictably low.
DCTCP can be deployed in a private data centre,
but its placement on the bubble diagram indicates
that it would be very hard to deploy in a multi-
tenant data centre or on the public Internet. This is
because DCTCP requires simultaneous changes to
senders, receivers and all switches. A way has been
proposed to incrementally deploy DCTCP on the
public Internet [209], which would shift the DCTCP
bubble to the right. However, it is only in the early
stages of evaluation at the time of writing.

DBCC (Delay-Based Congestion Control § IV-F7c):
Delay-based congestion controls use path delay (one-
way or round-trip) as a measure of congestion.
During periods when all flows at a queue are using
DBCC, this enables them to keep queuing delays
along the path low; often to below a configurable
threshold of a few milliseconds. For example, if the
bottleneck link has a maximum queuing delay of
200 ms, and the sources use delay-based congestion
control with a threshold of 10 ms, there will be a
95% reduction in maximum queuing delay compared
to what would happen if loss-based congestion con-
trol was used. The overall flight latency reduction
depends on the minimum flight time when there is
no queuing. If this was 2 ms, for example, the saving
could be ∼95%, and for a semi-global connection of
e.g. 200 ms, a ∼47% reduction could be achieved.
However, DBCC can have performance issues when
coexisting with conventional loss-based approaches
(see § IV-F7c).

4) Related to Link Capacities
IW10 (TCP initial window = 10 §V-C2):

A short 20 kB flow typically consists of 14 seg-
ments. Therefore, following TCP’s initial handshak-
ing round, it would require 2 rounds to complete
(consisting of 10 then 4 segments respectively). This
compares to the 3 rounds necessary if IW were
3 (see earlier). Therefore in this case, IW10 cuts
delay by 25%. The large majority of web flows are
ten segments or less [246], therefore they would
complete in one round (not including the handshake
round). The potential negative effects of using a
larger initial window are not yet fully understood,
requiring further evaluations [247].

IW10+TFO:
For a resumed 20 kB connection, combining IW10
with TFO would cut both the handshake round and
one round of slow-start relative to IW3, which leads
to a significant halving of completion time in the
case of a 20 kB flow.

IW10+TLS-FS+TFO:
Combining all three of these techniques would cut
two rounds from both a first-time connection and a
resumed connection.

QS (Quick-Start §V-C2):
As simulated and shown analytically in Sarolahti

et al. [263], Quick-Start will satisfy a request for
a small 20 kB flow in two round trips, which is
50% of the four round trips that regular TCP slow-
start would take. Quick-Start cannot complete in less
than two round-trips, because it needs the first round
trip for the explicit signals to request and grant the
sending rate. Over a LAN, the full 50% gain may
not be realized if the bottleneck rate is low. For
instance, after the initial rate has been granted, a
20 kB flow will take 1.5 ms to transfer at 100 Mb/s,
which consumes nearly another round trip, leading
to only 35% reduction in latency. Quick-Start offers
little benefit to elephant file transfers, because the
start-up latency becomes a small proportion of the
overall completion time.

Despite the considerable gain of Quick-Start, the
deployment pain is high, except for private networks.
A host cannot know whether it is safe to send at the
granted rate [335], if it may overrun a L2 bottleneck
that has not been updated to support Quick-Start. The
Quick-Start protocol maintains a count of QS hops
so that a host will not use the granted rate if the
number of QS hops is less than the number of IP
hops (taken from the IP time-to-live field). During
initial deployment when very few paths will be fully
populated with QS-enabled routers, this will nearly
always prevent QS from being used across a general
Internet path. Layer 3 approaches like Quick Start
(§V-C2) do not check whether lower layer buffers
can accept a sudden influx of traffic.

New-CWV (New Congestion Window Validation §V-D2):
Using new-CWV benefits other flows sharing a bot-
tleneck by reducing collateral damage, but can also
reduce the latency of a flow itself: for example, a
flow that downloads a series of Web objects, with
a request for 20 kB every 10 sec would experience
a delay of 4 round trips per request using either
standard TCP or the experimental congestion win-
dow validation update in RFC2861. A persistent
connection could complete each transfer in 1 RTT
using new-CWV. The benefit of using new-CWV is
strongly dependent on the traffic pattern and network
conditions. More scenarios and results are presented
in Biswas et al. [336] and Angelogiannopoulos [337]
who reported a 60% improvement for YouTube traf-
fic.

5) Intra-End-Host
Stack buffering (§VI-A):

Appropriate dimensioning and handling of end-host
buffering can bring significant latency improvements
for some particular applications. For instance, zero-
copying techniques in the context of web servers
(i.e. avoiding memory copying and context switch-
ing between processes that constitute a server-side
application) have been shown in [290] to allow
for speedup factors between 1.3 and 2.3, in terms
of number of served requests; similarly, they show

41

that a zero-copying technique allows to serve up to
44% more requests with a “good” response time (as
specified in a standard web benchmark) under similar
conditions of load, file sizes, etc. Moreover, [338]
recently demonstrated that a redesign of how the TCP
stack is implemented in the OS (kernel and user-
space), taking into account multicore processors, and
addressing inefficiencies from packet I/O, memory
and TCP connection management, can dramatically
improve host performance by 33% to 320% com-
pared to the plain Linux stack. However, given the
information available in the above cited references, it
is very difficult to infer how such performance gains
would translate into end-to-end latency gains for a
specific flow.

Multi-streaming (§VI-B):
Application layer framing (ALF) and the potential
to deliver data out-of-order in the Stream Control
Transport Protocol (SCTP [94]), SPDY (§VII-A)
or QUIC (§VII-B) can allow multiple ordered data
streams to be efficiently multiplexed onto a single
transport association or connection; this means that
these streams are handled by the same congestion
controller, as opposed to each one getting their own.
A flow could only see a benefit if it consists of
several smaller streams; in this case, the completion
time heavily depends on packet loss [307] as well
as how the session is divided (how many streams, of
which length, and when they begin).

To better understand the range of possible benefits,
we can consider the worst and best possible case in
terms of starting times: if the streams begin at exactly
the same time, there will typically be no benefit from
using multi-streaming as opposed to using multiple
separate transport associations or connections—in
fact, the slightly less aggressive congestion control
behavior of one as opposed to two controllers could
lead to a slightly larger delay. If, however, the two
streams are exactly consecutive, i.e. stream 2 begins
when stream 1 ends, then stream 2 can benefit from
immediately using the larger congestion window of
stream 1.

Assume, for example, that a short 20 kB (typ-
ically 14 segments) flow is split in half and the
two streams are sent sequentially. Without multi-
streaming, stream 1 needs 2 rounds in Slow Start
and stream 2 needs 2 rounds, yielding a total of 4
rounds. With multi-streaming, the second stream can
be transferred in only 1 round, yielding a total of
1 rounds—a reduction by 25%. With larger flows,
the doubling of the congestion window in Slow Start
means that, ideally, flows are split in half such that
half of the transfer can finish within only one round
following a larger number of preceding rounds—
a completion time reduction that approximates but
never reaches 50%. The gain increases with the num-
ber of rounds, i.e. the length of the transfer, but so
does the chance of the TCP sender leaving Slow Start

due to loss or reaching the capacity limit. Remember,
though, that this is only the benefit of using multi-
streaming as opposed to sending the multiple streams
sequentially without such mechanism.

X. CONCLUSIONS

Historically, the Internet community has worked to improve
throughput and resource utilization. There is, however, a grow-
ing awareness that latency is today often the key limiting factor
for user experience. This is in part driven by an increasing
number of latency-sensitive interactive Web and cloud based
applications, and in part by increasing amounts of capacity
becoming available over the Internet. In contrast to bandwidth,
where the bottleneck link determines the capacity available
for a communication session, the latency experienced by a
communication session is additive in nature where a number
of different sources may contribute to the experienced latency.
In this work we aimed to identify the different sources of
delay that may affect a communication session, providing a
structured overview of the latency problem, and to survey
available techniques for reducing latency as well as their
merits.

Structural delays, such as placement of servers and subop-
timal routes can contribute significantly to latency. Structural
delays are particularly problematic in less developed parts of
the Internet where CDNs and other caching infrastructure are
lacking and peering agreements often add significant routing
stretch.

Various interactions between the endpoints are also a source
of latency. For short flows, initialization delays can contribute
a significant component of the experienced latency, but they
do not affect per-message latency once the initialization phase
is completed. While loss may only occasionally occur, packet
loss recovery delays often contribute significantly to the higher
percentile delays experienced by short flows and individual
messages, giving significant impact on user-perceived perfor-
mance. As previously discussed in § III-C, it has been found
that Web flows experiencing loss see a fivefold increase in
completion times on average, making loss recovery delays a
dominating factor for Web latency.

Several sources of delay accumulate along the transmission
path. Here, queuing delay is of particular importance as
excessive queue build-ups may increase the latency by several
orders of magnitude. This has spurred renewed interest in
AQM, as underlined in 2013 by the creation of an AQM
Working Group in the IETF and the requirement to use AQM
in the latest DOCSIS standard. Further work on AQM, as
well as the interaction with transport-based queue control, are
important topics moving forward.

The way in which link capacity is being used and shared
also contributes to overall latency. As link capacities keep
increasing while the majority of flows over the Internet remain
small, scalable methods for rapidly sensing available capacity
become increasingly important. Closely related to the issue
of queuing delays, methods for capacity sharing that not only
provide a suitable service for the flow itself, but also limit the
collateral damage imposed on other flows can also impact the
latency experienced.

REFERENCES 42

Intra-end-host delays, in the form of protocol stack buffering
and operating system delays, can contribute significant latency.
Good progress is being made in removing such delays due to
the efforts of the bufferbloat project among others.

The gains of select key techniques for reducing latency
in relation to the difficulty or cost of deployment have
been estimated in this survey. Such estimates are inherently
imprecise as many factors influence the gain obtained in a
specific scenario and fully comparable baseline cases are hard
to establish. Nevertheless, we find the estimation important
for furthering the understanding of the possible solution space
and its limitations. As can be seen in Figs. 21a and 21b, the
vertical extent of the bubbles is large for many of the solutions.
This is a reflection of the fact that many important sources of
latency are intermittent in nature, including queuing delay and
loss recovery delay. The associated solution techniques remove
or reduce the resulting occasional large delays and make the
latency more predictable.

Reducing latency for the benefit of Internet users constitutes
a key challenge for the networking community over the
coming years. As should have become clear, removing all
the sources of latency is a multifaceted undertaking and will
require combining the various different competencies in the
scientific and industrial communities in a collective effort. By
identifying key sources of latency, highlighting the various
techniques that can be applied to reduce latency and outlining
the gains that can be expected from such techniques in relation
to the cost and difficulty of deployment, it is our hope that
this paper can serve as a starting point to further drive this
important work forward.

XI. ACKNOWLEDGEMENTS

This work was inspired by an unpublished survey by Nick
Gates of BT and the University of Cambridge and Bob
Briscoe, Philip Eardley and Carla Di Cairano Gilfedder of
BT. The work also benefited from the discussions at the ISOC
Latency Workshop in London, where an early (2pp) version
of the survey was presented [339], and suggestions from the
anonymous reviewers and Dave Täht’s public review of a
preprint. We would also like to thank James Sterbenz and Joe
Touch for their excellent text on this subject, which is recom-
mended reading; “High-speed networking — A systematic ap-
proach to high-bandwidth low-latency communication” [340].

The authors were part-funded by the European Community
under its Seventh Framework Programme through the Reduc-
ing Internet Transport Latency (RITE) project (ICT-317700).
The views expressed are solely those of the authors.

REFERENCES

[1] E. Schurman and J. Brutlag, Performance Related
Changes and their User Impact, In Proc. Velocity
2009, slides: http://tinyurl.com/yg3xbhk, Jun. 2009.

[2] M. Mayer, In Search of... A better, faster, stronger
Web, In Proc. Velocity 2009, (Online video no longer
available), Jun. 2009.

[3] T. Zou, G. Wang, M. V. Salles, D. Bindel, A. Demers,
J. Gehrke, and W. White, “Making time-stepped appli-
cations tick in the cloud,” in Proc. of the ACM Sym-
posium on Cloud Computing (SOCC), 2011, pp. 1–14.

[4] E. Rosen, A. Viswanathan, and R. Callon, Multiproto-
col Label Switching Architecture, RFC 3031 (Proposed
Standard), Updated by RFCs 6178, 6790, Internet
Engineering Task Force, Jan. 2001.

[5] Y. Rekhter, T. Li, and S. Hares, A Border Gateway
Protocol 4 (BGP-4), RFC 4271 (Draft Standard), Up-
dated by RFCs 6286, 6608, 6793, Internet Engineering
Task Force, Jan. 2006.

[6] J. Moy, OSPF Version 2, RFC 2328 (INTERNET
STANDARD), Updated by RFCs 5709, 6549, 6845,
6860, Internet Engineering Task Force, Apr. 1998.

[7] H. Xie, L. Qiu, Y. Yang, and Y. Zhang, “On self
adaptive routing in dynamic environments - an evalua-
tion and design using a simple, probabilistic scheme,”
in Proc. of the IEEE International Conference on
Network Protocols (ICNP), Oct. 2004, pp. 12–23.

[8] C. Hopps, Analysis of an Equal-Cost Multi-Path Algo-
rithm, RFC 2992 (Informational), Internet Engineering
Task Force, Nov. 2000.

[9] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P.
Pillay-Esnault, Multi-Topology (MT) Routing in OSPF,
RFC 4915 (Proposed Standard), Internet Engineering
Task Force, Jun. 2007.

[10] F Valera, I. V. Beijnum, A Garcia-Martinez, and
M Bagnulo, “Multi-path BGP: motivations and solu-
tions,” in OpenAIRE: Open Access Infrastructure for
Research in Europe, vol. 216372, Cambridge Univer-
sity Press, 2011, pp. 1–20. [Online]. Available: http:
//orff.uc3m.es/handle/10016/10324.

[11] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure,
TCP Extensions for Multipath Operation with Multiple
Addresses, RFC 6824 (Experimental), Internet Engi-
neering Task Force, Jan. 2013.

[12] A. Ford, C. Raiciu, M. Handley, S. Barre, and J.
Iyengar, Architectural Guidelines for Multipath TCP
Development, RFC 6182 (Informational), Internet En-
gineering Task Force, Mar. 2011.

[13] F. Kelly and T. Voice, “Stability of end-to-end
algorithms for joint routing and rate control,”
ACM SIGCOMM Computer Communications Review
(CCR), vol. 35, no. 2, pp. 5–12, Apr. 2005. [On-
line]. Available: http://www.statslab.cam.ac.uk/∼frank/
PAPERS/kv.html.

[14] Apple, iOS: Multipath TCP Support in iOS 7, Online
URL: http://support.apple.com/kb/HT5977, Jan. 2014.

[15] M. Scharf and A. Ford, Multipath TCP (MPTCP)
Application Interface Considerations, RFC 6897 (In-
formational), Internet Engineering Task Force, Mar.
2013.

[16] M. X. Makkes, A. Oprescu, R. Srijkers, and R. Meijer,
“MeTRO: low latency network paths with routers-on-
demand,” Springer Lecture Notes in Computer Sci-
ence, Oct. 2013, Euro-Par 2013: Parallel Processing
Workshops.

http://tinyurl.com/yg3xbhk
http://orff.uc3m.es/handle/10016/10324
http://orff.uc3m.es/handle/10016/10324
http://www.statslab.cam.ac.uk/~frank/PAPERS/kv.html
http://www.statslab.cam.ac.uk/~frank/PAPERS/kv.html
http://support.apple.com/kb/HT5977

REFERENCES 43

[17] J. Jung, E. Sit, H. Balakrishnan, and R. Morris,
“DNS performance and the effectiveness of caching,”
IEEE/ACM Trans. Netw., vol. 10, no. 5, pp. 589–603,
Oct. 2002.

[18] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig,
“Comparing DNS resolvers in the wild,” in Proc. of
the ACM Internet Measurement Conference (IMC),
(Melbourne, Australia), 2010, pp. 15–21.

[19] T. Callahan, M. Allman, and M. Rabinovich, “On mod-
ern DNS behavior and properties,” ACM SIGCOMM
Computer Communications Review (CCR), vol. 43, no.
3, pp. 7–15, Jul. 2013.

[20] S. Sundaresan, N. Magharei, N. Feamster, and R. Teix-
eira, “Accelerating last-mile web performance with
popularity-based prefetching,” ACM SIGCOMM Com-
puter Communications Review (CCR), vol. 42, no. 4,
pp. 303–304, Aug. 2012.

[21] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai
network: a platform for high-performance Internet
applications,” ACM SIGOPS Oper. Syst. Rev., vol. 44,
no. 3, pp. 2–19, Aug. 2010.

[22] J. S. Otto, M. A. Sánchez, J. P. Rula, and F. E. Busta-
mante, “Content delivery and the natural evolution of
DNS: remote DNS trends, performance issues and al-
ternative solutions,” in Proc. of the ACM Internet Mea-
surement Conference (IMC), (Boston, Massachusetts,
USA), 2012, pp. 523–536.

[23] G. Barish and K. Obraczka, “World wide web caching:
trends and techniques,” IEEE Commun. Mag., vol. 38,
no. 5, pp. 178–184, May 2000.

[24] S. Podlipnig and L. Böszörmenyi, “Replacement
strategies for quality based video caching,” in Proc.
of the IEEE International Conference on Multimedia
and Expo (ICME), vol. 2, 2002, 49–52 vol.2.

[25] S. Podlipnig and L Böszörmenyi, “A survey of web
cache replacement strategies,” ACM Computing Sur-
veys (CSUR), vol. 35, no. 4, pp. 374–398, 2003.

[26] T. M. Kroeger, D. D. Long, and J. C. Mogul, “Explor-
ing the bounds of web latency reduction from caching
and prefetching,” in Proc. of the USENIX Symposium
on Internet Technologies (USITS), 1997, pp. 13–22.

[27] A. Dan, M. G. Kienzle, and D. Sitaram, “A dynamic
policy of segment replication for load-balancing in
video-on-demand servers,” Springer Multimedia Sys-
tems, vol. 3, no. 3, pp. 93–103, 1995.

[28] L. Barroso, J. Dean, and U. Holzle, “Web search for a
planet: the Google cluster architecture,” IEEE Micro,
vol. 23, no. 2, pp. 22–28, 2003.

[29] L. Kontothanassis, Content delivery considerations for
different types of Internet video, Keynote, ACM Multi-
media Systems Conference (MMSys), 2012. [Online].
Available: http://www.mmsys.org/?q=node/64.

[30] Y. Chen, S. Jain, V. K. Adhikari, and Z.-L. Zhang,
“Characterizing roles of front-end servers in end-to-
end performance of dynamic content distribution,” in
Proc. of the ACM Internet Measurement Conference
(IMC), 2011, pp. 559–568.

[31] M. Saxena, U. Sharan, and S. Fahmy, “Analyzing
video services in Web 2.0: a global perspective,” in
Proc. of ACM Network and Operating System Sup-
port for Digital Audio and Video (NOSSDAV), 2008,
pp. 39–44.

[32] P. B. Beskow, K.-H. Vik, P. Halvorsen, and C. Gri-
wodz, “The partial migration of game state and dy-
namic server selection to reduce latency,” Springer
Multimedia Tools and Applications, vol. 45, no. 1-3,
pp. 83–107, Oct. 2009.

[33] Y. Chen, S. Byna, and X.-H. Sun, “Data access history
cache and associated data prefetching mechanisms,” in
Proc. of the ACM/IEEE Conference on Supercomput-
ing (SC), (Reno, Nevada), 2007, 21:1–21:12.

[34] F. T. Johnsen, T. Hafsøe, C. Griwodz, and P.
Halvorsen, “Workload characterization for news-on-
demand streaming services,” in Proc. of the IEEE
International Performance Computing and Communi-
cations Conference (IPCCC), Apr. 2007, pp. 314–323.

[35] L. Pantel and L. Wolf, “On the suitability of dead
reckoning schemes for games,” in Proc. of the Annual
Workshop on Network and Systems Support for Games
(NetGames), Apr. 2002.

[36] W. Palant, C. Griwodz, and P. Halvorsen, “Evaluating
dead reckoning variations with a multi-player game
simulator,” in Proc. of ACM Network and Operating
System Support for Digital Audio and Video (NOSS-
DAV), B. N. Levine and M. Claypool, Eds., 2006,
pp. 20–25.

[37] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder,
and R. Szeliski, “High-quality video view interpolation
using a layered representation,” ACM Transactions
on Graphics, vol. 23, no. 3, p. 600, Aug. 2004.
[Online]. Available: http://portal.acm.org/citation.cfm?
doid=1015706.1015766.

[38] D. Cohen-Or, “Model-based view-extrapolation for
interactive VR Web-systems,” in Proc. Computer
Graphics International, 1997, pp. 104–112,248.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=601282.

[39] D Cohen-or, Model-based view extrapolation for in-
teractive virtual reality systems, 2001. [Online]. Avail-
able: http://www.google.com/patents/US6307567.

[40] A. Kumar, S. Merugu, J. J. Xu, E. W. Zegura, and
X. Yu, “Ulysses: a robust, low-diameter, low-latency
peer-to-peer network,” Wiley European Transactions
on Telecommunications, vol. 15, no. 6, pp. 571–587,
2004.

[41] T. Small, B. Li, and B. Liang, “Outreach: peer-to-
peer topology construction towards minimized server
bandwidth costs,” IEEE J. Sel. Areas Commun., vol.
25, no. 1, pp. 35–45, 2007.

[42] K.-H. Vik, “Group communication techniques in
overlay networks,” PhD dissertation, Simula Re-
search Laboratory / University of Oslo, Oslo, Nor-
way, Dec. 2008. [Online]. Available: https://simula.no/
publications/Simula.simula.20.

http://www.mmsys.org/?q=node/64
http://portal.acm.org/citation.cfm?doid=1015706.1015766
http://portal.acm.org/citation.cfm?doid=1015706.1015766
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=601282
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=601282
http://www.google.com/patents/US6307567
https://simula.no/publications/Simula.simula.20
https://simula.no/publications/Simula.simula.20

REFERENCES 44

[43] Application-layer traffic optimization (alto), 2014.
[Online]. Available: http://datatracker.ietf.org/wg/alto/.

[44] Amazon, Amazon ec2 instance types, 2013. [Online].
Available: http://aws.amazon.com/ec2/instance-types/.

[45] Microsoft, Windows azure, 2013. [Online]. Available:
http://www.windowsazure.com/.

[46] Google, Google compute engine, 2013. [Online].
Available: https://cloud.google.com/products/
compute-engine.

[47] G. Armitage, “Optimising online FPS game server
discovery through clustering servers by origin au-
tonomous system,” in Proc. of ACM Network and
Operating System Support for Digital Audio and Video
(NOSSDAV), (Braunschweig, Germany), May 2008,
pp. 3–8.

[48] P. Beskow, A. Petlund, G. Erikstad, C. Griwodz, and
P. Halvorsen, “Reducing game latency by migration,
core-selection and TCP modifications,” Inderscience
International Journal of Advanced Media and Com-
munication (IJAMC), vol. 4, no. 4, pp. 343–363, 2010,
Special issue on selected papers from NetGames.

[49] M. Satyanarayanan, P. Bahl, R. Cáceres, and N.
Davies, “The case for VM-based cloudlets in mobile
computing,” IEEE Pervasive Computing, vol. 8, no. 4,
pp. 14–23, Oct. 2009.

[50] S. K. Barker and P. Shenoy, “Empirical evaluation
of latency-sensitive application performance in the
cloud,” in Proc. of the ACM Multimedia Systems
Conference (MMSys), (Phoenix, Arizona, USA), 2010,
pp. 35–46.

[51] K. Raaen, A. Petlund, and P. Halvorsen, “Is today’s
public cloud suited to deploy hardcore realtime ser-
vices?” In Springer Lecture Notes in Computer Sci-
ence, Euro-Par 2013, 2013.

[52] “Single root I/O virtualization,” PCI-SIG, Specification
v1.1, 2009. [Online]. Available: http://www.pcisig.
com/members/downloads/specifications/iov/sr-
iov1 1 20Jan10.pdf.

[53] T. Dierks and E. Rescorla, The Transport Layer Secu-
rity (TLS) Protocol Version 1.2, RFC 5246 (Proposed
Standard), Updated by RFCs 5746, 5878, 6176, Inter-
net Engineering Task Force, Aug. 2008.

[54] W. M. Petullo, X. Zhang, J. A. Solworth, D. J.
Bernstein, and T. Lange, MinimaLT: minimal-latency
networking through better security, Cryptology ePrint
Archive, Report 2013/310, May 2013. [Online]. Avail-
able: http://eprint.iacr.org/2013/310.

[55] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “TCP
fast open,” Internet Draft draft-ietf-tcpm-fastopen, Jul.
2014, Work in progress.

[56] S. Frankel and S. Krishnan, IP Security (IPsec) and
Internet Key Exchange (IKE) Document Roadmap,
RFC 6071 (Informational), Internet Engineering Task
Force, Feb. 2011.

[57] J. Postel, Transmission Control Protocol, RFC 793
(INTERNET STANDARD), Updated by RFCs 1122,
3168, 6093, 6528, Internet Engineering Task Force,
Sep. 1981.

[58] A. Langley, N. Modadugu, and B. Moeller, “Transport
Layer Security (TLS) false start,” Internet Draft draft-
bmoeller-tls-falsestart, Jun. 2010, Work in progress.

[59] A. Langley, “Transport Layer Security (TLS) snap
start,” Internet Draft draft-agl-tls-snapstart-00, Jun.
2010, Work in progress.

[60] A. Bittau, D. Boneh, M. Hamburg, M. Handley, D.
Mazieres, and Q. Slack, “Cryptographic protection of
TCP streams (tcpcrypt),” Internet Draft draft-bittau-
tcp-crypt-03, Sep. 2012, Work in progress.

[61] R. Stewart, Stream Control Transmission Protocol,
RFC 4960 (Proposed Standard), Updated by RFCs
6096, 6335, Internet Engineering Task Force, Sep.
2007.

[62] E. Kohler, M. Handley, and S. Floyd, Datagram Con-
gestion Control Protocol (DCCP), RFC 4340 (Pro-
posed Standard), Updated by RFCs 5595, 5596, 6335,
6773, Internet Engineering Task Force, Mar. 2006.

[63] K. Ramakrishnan, S. Floyd, and D. Black, The Ad-
dition of Explicit Congestion Notification (ECN) to
IP, RFC 3168 (Proposed Standard), Updated by RFCs
4301, 6040, Internet Engineering Task Force, Sep.
2001.

[64] D. Wing and A. Yourtchenko, Happy Eyeballs: Suc-
cess with Dual-Stack Hosts, RFC 6555 (Proposed
Standard), Internet Engineering Task Force, Apr. 2012.

[65] D. Wing and P. Natarajan, “Happy eyeballs: trending
towards success with SCTP,” Internet Draft draft-
wing-tsvwg-happy-eyeballs-sctp, Oct. 2010, Work in
progress.

[66] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. John-
ston, J. Peterson, R. Sparks, M. Handley, and E.
Schooler, SIP: Session Initiation Protocol, RFC 3261
(Proposed Standard), Updated by RFCs 3265, 3853,
4320, 4916, 5393, 5621, 5626, 5630, 5922, 5954,
6026, 6141, 6665, 6878, Internet Engineering Task
Force, Jun. 2002.

[67] J. Rosenberg, Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator
(NAT) Traversal for Offer/Answer Protocols, RFC
5245 (Proposed Standard), Updated by RFC 6336,
Internet Engineering Task Force, Apr. 2010.

[68] S. Guha and P. Francis, “Characterization and mea-
surement of TCP traversal through NATs and fire-
walls,” in Proc. of the ACM Internet Measurement
Conference (IMC), (Berkeley, CA), 2005, pp. 199–211.

[69] J. Maenpaa, V. Andersson, G. Camarillo, and A. Ker-
anen, “Impact of network address translator traversal
on delays in peer-to-peer session initiation protocol,”
in Proc. of IEEE GLOBECOM, 2010, pp. 1–6.

[70] R. Mahy, P. Matthews, and J. Rosenberg, Traversal
Using Relays around NAT (TURN): Relay Extensions
to Session Traversal Utilities for NAT (STUN), RFC
5766 (Proposed Standard), Internet Engineering Task
Force, Apr. 2010.

[71] R. Braden, T/TCP – TCP Extensions for Transactions
Functional Specification, RFC 1644 (Historic), Obso-

http://datatracker.ietf.org/wg/alto/
http://aws.amazon.com/ec2/instance-types/
http://www.windowsazure.com/
https://cloud.google.com/products/compute-engine
https://cloud.google.com/products/compute-engine
http://www.pcisig.com/members/downloads/specifications/iov/sr-iov1_1_20Jan10.pdf
http://www.pcisig.com/members/downloads/specifications/iov/sr-iov1_1_20Jan10.pdf
http://www.pcisig.com/members/downloads/specifications/iov/sr-iov1_1_20Jan10.pdf
http://eprint.iacr.org/2013/310

REFERENCES 45

leted by RFC 6247, Internet Engineering Task Force,
Jul. 1994.

[72] C. Hannum, “T/TCP vulnerabilities,” Phrack Maga-
zine, vol. 8, no. 53, Jul. 1998. [Online]. Available:
http://phrack.org/issues/53/6.html.

[73] L. Eggert, Moving the Undeployed TCP Extensions
RFC 1072, RFC 1106, RFC 1110, RFC 1145, RFC
1146, RFC 1379, RFC 1644, and RFC 1693 to
Historic Status, RFC 6247 (Informational), Internet
Engineering Task Force, May 2011.

[74] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan, “TCP Fast Open,” in Proc. of the
ACM international conference on Emerging Network-
ing Experiments and Technologies (CoNEXT), (Tokyo,
Japan), 2011, 21:1–21:12.

[75] W. Zhou, Q. Li, M. Caesar, and P. Godfrey, “ASAP:
a low-latency transport layer,” in Proc. of the ACM
international conference on Emerging Networking Ex-
periments and Technologies (CoNEXT), Dec. 2011.

[76] T. Berners-Lee, R. Fielding, and H. Frystyk, Hypertext
Transfer Protocol – HTTP/1.0, RFC 1945 (Informa-
tional), Internet Engineering Task Force, May 1996.

[77] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T. Berners-Lee, Hypertext Transfer
Protocol – HTTP/1.1, RFC 2616 (Draft Standard),
Updated by RFCs 2817, 5785, 6266, 6585, Internet
Engineering Task Force, Jun. 1999.

[78] M. Belshe and R. Peon, “SPDY protocol,” Internet
Draft draft-mbelshe-httpbis-spdy, Feb. 2012, Work in
progress.

[79] K. Lahey, TCP Problems with Path MTU Discovery,
RFC 2923 (Informational), Internet Engineering Task
Force, Sep. 2000.

[80] P. Savola, MTU and Fragmentation Issues with In-
the-Network Tunneling, RFC 4459 (Informational),
Internet Engineering Task Force, Apr. 2006.

[81] M. Mathis and J. Heffner, Packetization Layer Path
MTU Discovery, RFC 4821 (Proposed Standard), In-
ternet Engineering Task Force, Mar. 2007.

[82] J. Touch and M. Townsley, “Tunnels in the Internet
architecture,” Internet Draft draft-ietf-intarea-tunnels-
00, Mar. 2010, Work in progress.

[83] E. Rescorla and N. Modadugu, Datagram Transport
Layer Security Version 1.2, RFC 6347 (Proposed Stan-
dard), Internet Engineering Task Force, Jan. 2012.

[84] A. Langley, TLS next protocol negotiation, Google
Technical Note: nextprotoneg, Jul. 2011.

[85] ——, “Transport Layer Security (TLS) next proto-
col negotiation extension,” Internet Draft draft-agl-tls-
nextprotoneg-04, May 2012, Work in progress. [On-
line]. Available: http://tools.ietf.org/html/draft-agl-tls-
nextprotoneg.

[86] S. Friedl, A. Popov, A. Langley, and E. Stephan,
“Transport Layer Security (TLS) application layer pro-
tocol negotiation extension,” Internet Draft draft-ietf-
tls-applayerprotoneg, Mar. 2014, (Work in progress).
[Online]. Available: http://tools.ietf.org/html/draft-ietf-
tls-applayerprotoneg.

[87] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig,
Transport Layer Security (TLS) Session Resumption
without Server-Side State, RFC 5077 (Proposed Stan-
dard), Internet Engineering Task Force, Jan. 2008.

[88] E. Stark, L.-S. Huang, D. Israni, C. Jackson, and
D. Boneh, “The case for prefetching and prevalidating
TLS server certificates,” in Proc. of the Network and
Distributed System Security (NDSS) Symposium, 2012.

[89] E. Rescorla, “New handshake flows for TLS 1.3,” In-
ternet Draft draft-rescorla-tls13-new-flows, Feb. 2014,
Work in progress. [Online]. Available: https://tools.ietf.
org/html/draft-rescorla-tls13-new-flows.

[90] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson,
and G. Fairhurst, The Lightweight User Datagram
Protocol (UDP-Lite), RFC 3828 (Proposed Standard),
Updated by RFC 6335, Internet Engineering Task
Force, Jul. 2004.

[91] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N.
Cardwell, Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett,
and R. Govindan, “Reducing web latency: the virtue
of gentle aggression,” in Proc. of ACM SIGCOMM,
(Hong Kong, China), 2013, pp. 159–170.

[92] G. Fairhurst and L. Wood, Advice to link designers on
link Automatic Repeat reQuest (ARQ), RFC 3366 (Best
Current Practice), Internet Engineering Task Force,
Aug. 2002.

[93] M. Watson, A. Begen, and V. Roca, Forward Error
Correction (FEC) Framework, RFC 6363 (Proposed
Standard), Internet Engineering Task Force, Oct. 2011.

[94] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P.
Conrad, Stream Control Transmission Protocol (SCTP)
Partial Reliability Extension, RFC 3758 (Proposed
Standard), Internet Engineering Task Force, May 2004.

[95] B. Mukherjee and T. Brecht, “Time-lined TCP for the
TCP-friendly delivery of streaming media,” in Proc.
of the IEEE International Conference on Network
Protocols (ICNP), Nov. 2000, pp. 165–176.

[96] D. McCreary, K. Li, S. Watterson, and D. Lowen-
thal, “TCP-RC: a receiver-centered TCP protocol
for delay-sensitive applications,” in Proc. of the
SPIE/ACM Annual Multimedia Computing and Net-
working (MMCN), vol. 5680, Jan. 2005, pp. 126–130.

[97] P. Hurtig, A. Brunström, A. Petlund, and M. Welzl,
“TCP and SCTP RTO Restart,” Internet Draft draft-
ietf-tcpm-rtorestart, Jul. 2014, Work in progress.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-
tcpm-rtorestart.

[98] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton,
and P. Hurtig, Early Retransmit for TCP and Stream
Control Transmission Protocol (SCTP), RFC 5827
(Experimental), Internet Engineering Task Force, May
2010.

[99] M. Mellia, M. Meo, and C. Casetti, “TCP smart fram-
ing: a segmentation algorithm to reduce TCP latency,”
IEEE/ACM Trans. Netw., vol. 13, no. 2, pp. 316–329,
Apr. 2005.

[100] N. Dukkipati, N. Cardwell, Y. Cheng, and M.
Mathis, “Tail Loss Probe (TLP): an algorithm for

http://phrack.org/issues/53/6.html
http://tools.ietf.org/html/draft-agl-tls-nextprotoneg
http://tools.ietf.org/html/draft-agl-tls-nextprotoneg
http://tools.ietf.org/html/draft-ietf-tls-applayerprotoneg
http://tools.ietf.org/html/draft-ietf-tls-applayerprotoneg
https://tools.ietf.org/html/draft-rescorla-tls13-new-flows
https://tools.ietf.org/html/draft-rescorla-tls13-new-flows
http://tools.ietf.org/html/draft-ietf-tcpm-rtorestart
http://tools.ietf.org/html/draft-ietf-tcpm-rtorestart

REFERENCES 46

fast recovery of tail losses,” Internet Draft draft-
dukkipati-tcpm-tcp-loss-probe, Feb. 2013, Work in
progress. [Online]. Available: http://tools.ietf.org/html/
draft-dukkipati-tcpm-tcp-loss-probe.

[101] O. Tickoo, V. Subramanian, S. Kalyanaraman, and
K. Ramakrishnan, “LT-TCP: end-to-end framework to
improve TCP performance over networks with lossy
channels,” in Proc. of the International Workshop on
Quality of Service (IWQoS), (Passau, Germany), ser.
Springer Lecture Notes in Computer Science, Jun.
2005, pp. 81–93.

[102] B. Ganguly, B. Holzbauer, K. Kar, and K. Battle,
“Loss-Tolerant TCP (LT-TCP): implementation and
experimental evaluation,” in Proc. of the IEEE Military
Communications Conference (MILCOM), (Orlando,
USA), Oct. 2012, pp. 1–6.

[103] K. Evensen, A. Petlund, C. Griwodz, and P. Halvorsen,
“Redundant bundling in TCP to reduce perceived
latency for time-dependent thin streams,” IEEE Com-
mun. Lett., vol. 12, no. 4, pp. 334–336, Apr. 2008.

[104] S. Floyd, “TCP and explicit congestion notification,”
ACM SIGCOMM Computer Communications Review
(CCR), vol. 24, no. 5, pp. 8–23, Oct. 1994.

[105] B. Briscoe, J. Kaippallimalil, and P. Thaler, “Guide-
lines for adding congestion notification to protocols
that encapsulate IP,” Internet Draft draft-ietf-tsvwg-
ecn-encap-guidelines, Mar. 2014, Work in progress.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-
tsvwg-ecn-encap-guidelines-04.

[106] J. Nagle, Congestion Control in IP/TCP Internetworks,
RFC 896, Internet Engineering Task Force, Jan. 1984.

[107] R. Braden, Requirements for Internet Hosts - Com-
munication Layers, RFC 1122 (INTERNET STAN-
DARD), Updated by RFCs 1349, 4379, 5884, 6093,
6298, 6633, 6864, Internet Engineering Task Force,
Oct. 1989.

[108] G. Minshall, “A proposed modification to Nagle’s
algorithm,” Internet Draft draft-minshall-nagle, Jun.
1999, Work in progress. [Online]. Available: http://
tools.ietf.org/html/draft-minshall-nagle.

[109] S. Cheshire, TCP performance problems caused by
interaction between Nagle’s algorithm and delayed
ACK, Self-published online: http://www.stuartcheshire.
org/papers/NagleDelayedAck/, May 2005.

[110] E. Ciaramella, “Wavelength conversion and all-
optical regeneration: achievements and open issues,”
J. Lightw. Technol., vol. 30, no. 4, pp. 572–582, Feb.
2012.

[111] N. V. Wheeler, M. N. Petrovich, R. Slavik, N. K.
Baddela, E. R. N. Fokoua, J. R. Hayes, D. Gray, F. Po-
letti, and D. Richardson, “Wide-bandwidth, low-loss,
19-cell hollow core photonic band gap fiber and its
potential for low latency data transmission,” in Proc. of
the National Fiber Optic Engineers Conference, 2012,
PDP5A.2.

[112] The importance of dynamic bandwidth allocation in
GPON networks, White Paper, PMC-Sierra, Sep. 2008.

[113] I. Rubin, The Communications Handbook, J. Gibson,
Ed., ser. The electrical engineering handbook series.
Taylor & Francis, 2002, vol. Chapter 35.

[114] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov,
and F. Khafizov, TCP over Second (2.5G) and Third
(3G) Generation Wireless Networks, RFC 3481 (Best
Current Practice), Internet Engineering Task Force,
Feb. 2003.

[115] M. Sooriyabandara and G. Fairhurst, “Dynamics of
TCP over BoD satellite networks,” Wiley International
Journal of Satellite Communications and Networking,
vol. 21, no. 4-5, pp. 427–449, 2003.

[116] “Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications,” IEEE, Std.
802.11, 2007.

[117] D. Skordoulis, Q. Ni, H.-H. Chen, A. Stephens, C.
Liu, and A. Jamalipour, “IEEE 802.11n MAC frame
aggregation mechanisms for next-generation high-
throughput WLANs,” IEEE Wireless Commun. Mag.,
vol. 15, no. 1, pp. 40–47, 2008.

[118] Y. Lin and V. Wong, “Frame aggregation and optimal
frame size adaptation for IEEE 802.11n WLANs,” in
Proc. of IEEE GLOBECOM, 2006, pp. 1–6.

[119] D. Shen, X. Wang, Y. Sun, N. Bao, M. Wu, and L.
Shen, “The performance of adaptive frame aggregation
with delay limits in ultrahigh-speed WLAN,” in Proc.
of the IEEE International Conference on Communica-
tion Technology (ICCT), 2010, pp. 1364–1368.

[120] S. Biaz and S. Wu, “Rate adaptation algorithms for
IEEE 802.11 networks: A survey and comparison,”
in Proc. of the IEEE Symposium on Computers and
Communications (ISCC), Jul. 2008, pp. 130–136.

[121] E. Ancillotti, R. Bruno, and M. Conti, “Experimen-
tation and performance evaluation of rate adaptation
algorithms in wireless mesh networks,” in Proc. of
the ACM Symposium on Performance Evaluation of
Wireless Ad Hoc, Sensor, and Ubiquitous Networks
(PE-WASUN), (Vancouver, British Columbia, Canada),
2008, pp. 7–14.

[122] ——, “Design and performance evaluation of
throughput-aware rate adaptation protocols for IEEE
802.11 wireless networks,” Elsevier Performance
Evaluation, vol. 66, no. 12, pp. 811–825, 2009,
Performance Evaluation of Wireless Ad Hoc, Sensor
and Ubiquitous Networks.

[123] K. G. Shin and S. W. Daniel, “Analysis and implemen-
tation of hybrid switching,” ACM SIGARCH Comput.
Archit. News, vol. 23, no. 2, pp. 211–219, May 1995.

[124] Z. Cui, L. Xia, P. G. Bridges, P. A. Dinda, and
J. R. Lange, “Optimizing overlay-based virtual net-
working through optimistic interrupts and cut-through
forwarding,” in Proc. of the ACM/IEEE Conference
on International Conference on High Performance
Computing, networking, Storage and Analysis (SC),
(Salt Lake City, Utah, USA), 2012, 99:1–99:11.

[125] Z. Shi and A. Burns, “Real-time communication anal-
ysis for on-chip networks with wormhole switching,”

http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe
http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe
http://tools.ietf.org/html/draft-ietf-tsvwg-ecn-encap-guidelines-04
http://tools.ietf.org/html/draft-ietf-tsvwg-ecn-encap-guidelines-04
http://tools.ietf.org/html/draft-minshall-nagle
http://tools.ietf.org/html/draft-minshall-nagle
http://www.stuartcheshire.org/papers/NagleDelayedAck/
http://www.stuartcheshire.org/papers/NagleDelayedAck/

REFERENCES 47

in Proc. of the IEEE/ACM International Symposium
on Networks-on-Chip (NOCS), 2008, pp. 161–170.

[126] C. Shannon, “Communication in the presence of
noise,” Proc. of the IRE, vol. 37, no. 1, pp. 10–21,
1949.

[127] F. Foukalas, V. Gazis, and N. Alonistioti, “Cross-
layer design proposals for wireless mobile networks: a
survey and taxonomy,” IEEE Commun. Surveys Tuts.,
vol. 10, no. 1-4, pp. 70–85, 2008.

[128] D. Kliazovich, S. Redana, and F. Granelli, “Cross-
layer error recovery in wireless access networks: the
ARQ proxy approach,” Wiley International Journal of
Communication Systems, vol. 25, no. 4, pp. 461–477,
2012.

[129] “Leveraging VDSL2 for mobile backhaul: meeting the
long-term challenges in the mobile broadband era,”
Alcatel-Lucent, Tech. Rep., 2010. [Online]. Available:
http://resources.alcatel-lucent.com/?cid=142941.

[130] D. M. Divakaran, S. Soudan, P. Primet, and E. Altman,
“A survey on core switch designs and algorithms,”
INRIA, Tech. Rep. RR-6942, May 2009. [Online].
Available: http://hal.inria.fr/inria-00388943.

[131] N. McKeown, Internet routers: past, present and fu-
ture, Lecture for BCS Ada Lovelace Award, Jun. 2006.
[Online]. Available: http://yuba.stanford.edu/∼nickm/
talks/.

[132] R. Ramaswamy, N. Weng, and T. Wolf, “Character-
izing network processing delay,” in Proc. of IEEE
GLOBECOM, vol. 3, Nov. 2004, pp. 1629–1634.

[133] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado,
and R. Sherwood, “On controller performance in
software-defined networks,” in Proc. of the USENIX
Workshop on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services (Hot-
ICE), (San Jose, CA), 2012.

[134] C. Fraleigh, F. Tobagi, and C. Diot, “Provisioning IP
backbone networks to support latency sensitive traffic,”
in Proc. of the IEEE International Conference on
Computer Communications (INFOCOM), vol. 1, 2003,
pp. 375–385.

[135] J. Gettys, “Bufferbloat: dark buffers in the Internet,”
IEEE Internet Comput., vol. 15, no. 3, pp. 96–96,
2011.

[136] D. Genin and J. Splett, Where in the Internet is conges-
tion? Cornell University Library, submitted, Jul. 2013.
[Online]. Available: http://arxiv.org/abs/1307.3696.

[137] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu, “Characterizing residential broadband net-
works,” in Proc. of the ACM Internet Measurement
Conference (IMC), (San Diego, California, USA),
2007, pp. 43–56.

[138] C. Kachris and I. Tomkos, “A survey on optical in-
terconnects for data centers,” IEEE Commun. Surveys
Tuts., vol. 14, no. 4, pp. 1021–1036, 2012.

[139] M. Maier and M. Reisslein, “Trends in optical switch-
ing techniques: a short survey,” IEEE Netw., vol. 22,
no. 6, pp. 42–47, Nov. 2008.

[140] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath
communications: an approach to high-bandwidth op-
tical WANs,” IEEE Trans. Commun., vol. 40, no. 7,
pp. 1171–1182, Jul. 1992.

[141] Y. Chen, C. Qiao, and X. Yu, “Optical burst switching:
a new area in optical networking research,” IEEE
Netw., vol. 18, no. 3, pp. 16–23, 2004.

[142] P. Chandra, A. Turuk, and B. Sahoo, “Survey on
optical burst switching in WDM networks,” in Proc. of
the IEEE International Conference on Industrial and
Information Systems (ICIIS), 2009, pp. 83–88.

[143] “Bufferbloat: what’s wrong with the Internet?” Com-
mun. ACM, vol. 55, no. 2, pp. 40–47, Feb. 2012.

[144] D. Täht, Fixing bufferbloat on wireless or
not every packet is sacred, Presentation, Nov.
2012. [Online]. Available: http://www.teklibre.
com/∼d/bloat/Not every packet is sacred-
Battling Bufferbloat on wifi.pdf.

[145] “Specification for 802.3 full duplex operation and
physical layer specification for 100 Mb/s operation on
two pairs of category 3 or better balanced twisted pair
cable (100BASE-T2),” IEEE, Std. 802.3X, 1997.

[146] R. Veeravalli, G. Armitage, J. But, and T. Nguyen,
“Interactions between TCP and Ethernet flow con-
trol over Netgear XAVB2001 HomePlug AV links,”
Centre for Advanced Internet Architectures, Swin-
burne University of Technology, Melbourne, Australia,
Tech. Rep. 130121A, Jan. 2013. [Online]. Avail-
able: http://caia.swin.edu.au/reports/130121A/CAIA-
TR-130121A.pdf.

[147] A. S. Anghel, R. Birke, D. Crisan, and M. Gusat,
“Cross-layer flow and congestion control for data-
center networks,” in Proc. of the Workshop on Data
Center - Converged and Virtual Ethernet Switching
(DC CAVES), (San Francisco, USA), 2011, pp. 44–62.

[148] “Media access control (MAC) bridges and virtual
bridges,” IEEE, Std. 802.1Q, 2012.

[149] F. Baker and G. Fairhurst, “Recommendations re-
garding active queue management,” Internet Draft
draft-ietf-aqm-recommendation, Aug. 2014, Work in
progress. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-aqm-recommendation.

[150] G. Fairhurst, R. Secchi, and A. Yun, “A flexible
QoS architecture for DVB-RCS2,” Wiley International
Journal of Satellite Communications and Networking,
vol. 31, no. 5, pp. 219–232, 2013.

[151] J. Sterbenz and G. Parulkar, “Axon: a high speed com-
munication architecture for distributed applications,” in
Proc. of the IEEE International Conference on Com-
puter Communications (INFOCOM), (San Francisco,
CA, USA), 1990, pp. 415–425.

[152] D. Siemon, “Queueing in the Linux network
stack,” Linux Journal, Sep. 2013, Online: http:
//www.linuxjournal.com/content/queueing-linux-
network-stack.

[153] J. Corbet, Network transmit queue limits, URL: http:
//lwn.net/Articles/454390/, Aug. 2011.

http://resources.alcatel-lucent.com/?cid=142941
http://hal.inria.fr/inria-00388943
http://yuba.stanford.edu/~nickm/talks/
http://yuba.stanford.edu/~nickm/talks/
http://arxiv.org/abs/1307.3696
http://www.teklibre.com/~d/bloat/Not_every_packet_is_sacred-Battling_Bufferbloat_on_wifi.pdf
http://www.teklibre.com/~d/bloat/Not_every_packet_is_sacred-Battling_Bufferbloat_on_wifi.pdf
http://www.teklibre.com/~d/bloat/Not_every_packet_is_sacred-Battling_Bufferbloat_on_wifi.pdf
http://caia.swin.edu.au/reports/130121A/CAIA-TR-130121A.pdf
http://caia.swin.edu.au/reports/130121A/CAIA-TR-130121A.pdf
http://tools.ietf.org/html/draft-ietf-aqm-recommendation
http://tools.ietf.org/html/draft-ietf-aqm-recommendation
http://www.linuxjournal.com/content/queueing-linux-network-stack
http://www.linuxjournal.com/content/queueing-linux-network-stack
http://www.linuxjournal.com/content/queueing-linux-network-stack
http://lwn.net/Articles/454390/
http://lwn.net/Articles/454390/

REFERENCES 48

[154] R. Bush and D. Meyer, Some Internet Architec-
tural Guidelines and Philosophy, RFC 3439 (Informa-
tional), Internet Engineering Task Force, Dec. 2002.

[155] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing
router buffers,” in Proc. of ACM SIGCOMM, (Portland,
Oregon, USA), 2004, pp. 281–292.

[156] A. Dhamdhere and C. Dovrolis, “Open issues in router
buffer sizing,” ACM SIGCOMM Computer Communi-
cations Review (CCR), vol. 36, no. 1, pp. 87–92, Jan.
2006.

[157] Y. Ganjali and N. McKeown, “Update on buffer sizing
in Internet routers,” Proc. of ACM SIGCOMM, vol. 36,
no. 5, pp. 67–70, Oct. 2006.

[158] A. Vishwanath, V. Sivaraman, and M. Thottan, “Per-
spectives on router buffer sizing: recent results and
open problems,” ACM SIGCOMM Computer Commu-
nications Review (CCR), vol. 39, no. 2, pp. 34–39,
Mar. 2009.

[159] V. Havary-Nassab, A. Koulakezian, and Y. Ganjali,
“Denial of service attacks in networks with tiny
buffers,” in Proc. of the IEEE International Conference
on Computer Communications (INFOCOM), (Rio de
Janeiro, Brazil), 2009, pp. 91–96.

[160] K. Chandra, “Statistical multiplexing,” in Wiley Ency-
clopedia of Telecommunications, John Wiley & Sons,
Inc., 2003.

[161] K. Chan, J. Babiarz, and F. Baker, Aggregation of
Diffserv Service Classes, RFC 5127 (Informational),
Internet Engineering Task Force, Feb. 2008.

[162] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
and W. Weiss, An Architecture for Differentiated Ser-
vices, RFC 2475 (Informational), Updated by RFC
3260, Internet Engineering Task Force, Dec. 1998.

[163] K. Nichols, S. Blake, F. Baker, and D. Black, Defi-
nition of the Differentiated Services Field (DS Field)
in the IPv4 and IPv6 Headers, RFC 2474 (Proposed
Standard), Updated by RFCs 3168, 3260, Internet
Engineering Task Force, Dec. 1998.

[164] R. Braden, D. Clark, and S. Shenker, Integrated Ser-
vices in the Internet Architecture: an Overview, RFC
1633 (Informational), Internet Engineering Task Force,
Jun. 1994.

[165] J. Nagle, “On packet switches with infinite storage,”
IEEE Trans. Commun., vol. 35, no. 4, pp. 435–438,
1987.

[166] A. Demers, S. Keshav, and S. Shenker, “Analysis and
simulation of a fair queueing algorithm,” in Proc. of
ACM SIGCOMM, (Austin, Texas, USA), 1989, pp. 1–
12.

[167] A. K. Parekh and R. G. Gallagher, “A generalized pro-
cessor sharing approach to flow control in integrated
services networks: the multiple node case,” IEEE/ACM
Trans. Netw., vol. 2, no. 2, pp. 137–150, Apr. 1994.

[168] P. McKenney, “Stochastic fairness queueing,” in Proc.
of the IEEE International Conference on Computer
Communications (INFOCOM), vol. 2, 1990, pp. 733–
740.

[169] M. Kallmes, D. Towsley, and C. Cassandras, “Opti-
mality of the last-in-first-out (LIFO) service discipline
in queuing systems with real-time constraints,” in
Proc. of the IEEE Annual Conference on Decision and
Control (CDC), 1989, pp. 1073–1074.

[170] L. Huang, S. Moeller, M. J. Neely, and B. Krish-
namachari, “LIFO-backpressure achieves near-optimal
utility-delay tradeoff,” IEEE/ACM Trans. Netw., vol.
21, no. 3, pp. 831–844, Jun. 2013.

[171] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment,” J. ACM, vol. 20, no. 1, pp. 46–61, Jan. 1973.

[172] D. Ferrari and D. Verma, “A scheme for real-time
channel establishment in wide-area networks,” IEEE
J. Sel. Areas Commun., vol. 8, no. 3, pp. 368–379,
1990.

[173] N. Benameur, F. Guillemin, and L. Muscariello,
Latency reduction in home access gateways with
shortest queue first, ISOC Workshop on Reduc-
ing Internet Latency, Sep. 2013. [Online]. Avail-
able: http://www.internetsociety.org/sites/default/files/
pdf/accepted/4 sqf isoc.pdf.

[174] G. Carofiglio and L. Muscariello, “On the impact
of TCP and per-flow scheduling on Internet perfor-
mance,” IEEE/ACM Trans. Netw., vol. 20, no. 2,
pp. 620–633, Apr. 2012.

[175] S. Floyd and V. Jacobson, “Link-sharing and resource
management models for packet networks,” IEEE/ACM
Trans. Netw., vol. 3, no. 4, pp. 365–386, Aug. 1995.

[176] J. C. R. Bennett and H. Zhang, “Hierarchical packet
fair queueing algorithms,” IEEE/ACM Trans. Netw.,
vol. 5, no. 5, pp. 675–689, Oct. 1997.

[177] I. Stoica, H. Zhang, and T. S. E. Ng, “A hierarchical
fair service curve algorithm for link-sharing, real-time,
and priority services,” IEEE/ACM Trans. Netw., vol. 8,
no. 2, pp. 185–199, Apr. 2000.

[178] “Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications - amendment 8:
medium access control (MAC) quality of service en-
hancements,” IEEE, Std. 802.11e, 2005.

[179] F. Baker, J. Polk, and M. Dolly, A Differentiated
Services Code Point (DSCP) for Capacity-Admitted
Traffic, RFC 5865 (Proposed Standard), Internet En-
gineering Task Force, May 2010.

[180] J. Turner, “New directions in communications (or
which way to the information age?)” IEEE Commun.
Mag., vol. 24, no. 10, pp. 8–15, 1986.

[181] P. Kanuparthy and C. Dovrolis, “Shaperprobe: end-
to-end detection of ISP traffic shaping using active
methods,” in Proc. of the ACM Internet Measurement
Conference (IMC), (Berlin, Germany), 2011, pp. 473–
482.

[182] M. Marcon, M. Dischinger, K. Gummadi, and A.
Vahdat, “The local and global effects of traffic shap-
ing in the internet,” in Proc. of the International
Conference on COMmunication System & NETworkS
(COMSNETS), 2011, pp. 1–10.

http://www.internetsociety.org/sites/default/files/pdf/accepted/4_sqf_isoc.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/4_sqf_isoc.pdf

REFERENCES 49

[183] F. Guillemin, P. Boyer, A. Dupuis, and L. Romoeuf,
“Peak rate enforcement in ATM networks,” in Proc.
of the IEEE International Conference on Computer
Communications (INFOCOM), 1992, pp. 753–758.

[184] B. Briscoe, A. Jacquet, C. Di Cairano-Gilfedder,
A. Salvatori, A. Soppera, and M. Koyabe, “Polic-
ing congestion response in an internetwork using re-
feedback,” ACM SIGCOMM Computer Communica-
tions Review (CCR), vol. 35, no. 4, pp. 277–288, Aug.
2005.

[185] B. Briscoe, R. Woundy, and A. Cooper, Congestion
Exposure (ConEx) Concepts and Use Cases, RFC
6789 (Informational), Internet Engineering Task Force,
Dec. 2012.

[186] T. V. Lakshman, A. Neidhardt, and T. Ott, “The drop
from front strategy in TCP and in TCP over ATM,”
in Proc. of the IEEE International Conference on
Computer Communications (INFOCOM), vol. 3, 1996,
pp. 1242–1250.

[187] R. Adams, “Active queue management: a survey,”
IEEE Commun. Surveys Tuts., vol. 15, pp. 1425–1476,
2013.

[188] S. Floyd and V. Jacobson, “Random early detection
gateways for congestion avoidance,” IEEE/ACM Trans.
Netw., vol. 1, no. 4, pp. 397–413, Aug. 1993.

[189] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subra-
manian, F. Baker, and B. VerSteeg, “PIE: a lightweight
control scheme to address the bufferbloat problem,”
in Proc. of the IEEE International Conference on
High Performance Switching and Routing (HPSR), Jul.
2013.

[190] K. Nichols and V. Jacobson, “Controlling queue de-
lay,” ACM Queue, vol. 10, no. 5, May 2012.

[191] D. Y. Eun and X. Wang, “Achieving 100% throughput
in TCP/AQM under aggressive packet marking with
small buffer,” IEEE/ACM Trans. Netw., vol. 16, no. 4,
pp. 945–956, Aug. 2008.

[192] Ł. Chróst, A. Brachman, and A. Chydziński, “On the
performance of AQM algorithms with small buffers,”
in Springer Computer Networks, ser. Communications
in Computer and Information Science, A. Kwiecień,
P. Gaj, and P. Stera, Eds., vol. 39, Springer Berlin
Heidelberg, 2009, pp. 168–173.

[193] N. Beheshti, Y. Ganjali, A. Goel, and N. McKeown,
“Obtaining high throughput in networks with tiny
buffers,” in Proc. of the IEEE International Workshop
on Quality of Service (IWQoS), 2008, pp. 65–69.

[194] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P.
Patel, B. Prabhakar, S. Sengupta, and M. Sridharan,
“Data Center TCP (DCTCP),” in Proc. of ACM SIG-
COMM, (New Delhi, India), Sep. 2010.

[195] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda, “Less is more: trading
a little bandwidth for ultra-low latency in the data
center,” in Proc. of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
Apr. 2012.

[196] B. Briscoe, G. Corlianó, and B. Strulo, “How
to build a virtual queue from two leaky buck-
ets (and why one is not enough),” BT, Techni-
cal Report TR-DES8-2011-001, Apr. 2012. [On-
line]. Available: http://www.bobbriscoe.net/projects/
ipe2eqos/pcn/vq2lb/vq2lb tr.pdf.

[197] S. Islam, M. Welzl, and S. Gjessing, “One control
to rule them all - coupled congestion control for
RTP media,” in Packet Video Workshop, (San
Jose, CA), poster, Dec. 2013. [Online]. Available:
http://heim.ifi.uio.no/∼michawe/research/publications/
pv2013-fse-poster-final.pdf.

[198] M. Welzl, F. Niederbacher, and S. Gjessing, “Bene-
ficial transparent deployment of SCTP: the missing
pieces,” in Proc. of IEEE GLOBECOM, 2011, pp. 1–5.

[199] IETF, Charter for ”RTP Media Congestion Avoidance
Techniques” (rmcat) WG, Sep. 2012. [Online]. Avail-
able: http://datatracker.ietf.org/doc/charter-ietf-rmcat/.

[200] H. Jiang and C. Dovrolis, “Why is the internet traffic
bursty in short time scales?” In Proc. of ACM SIG-
METRICS, (Banff, Alberta, Canada), 2005, pp. 241–
252.

[201] K. Fall and S. Floyd, “Simulation-based comparisons
of Tahoe, Reno and SACK TCP,” ACM SIGCOMM
Computer Communications Review (CCR), vol. 26, no.
3, pp. 5–21, Jul. 1996.

[202] K. Kobayashi, “Transmission timer approach for rate-
based pacing TCP with hardware support,” in Proc. of
the International Workshop on Protocols for Future,
Large-Scale & Diverse Network Transports (PFLD-
net), Feb. 2006. [Online]. Available: http://www.hpcc.
jp/pfldnet2006/paper/s3 01.pdf.

[203] A. Aggarwal, S. Savage, and T. Anderson, “Under-
standing the performance of TCP pacing,” in Proc.
of the IEEE International Conference on Computer
Communications (INFOCOM), vol. 3, 2000, pp. 1157–
1165.

[204] D. Wischik, “Buffer sizing theory for bursty TCP
flows,” in International Zurich Seminar on Commu-
nications, 2006, pp. 98–101.

[205] D. X. Wei, P. Cao, and S. H. Low, TCP pacing
revisited, 2006. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.92.2658&
rep=rep1&type=pdf.

[206] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown,
and T. Roughgarden, “Part III: routers with very small
buffers,” ACM SIGCOMM Computer Communications
Review (CCR), vol. 35, no. 3, pp. 83–90, Jul. 2005.

[207] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-
aware datacenter TCP (D2TCP),” in Proc. of ACM
SIGCOMM, Aug. 2012, pp. 115–126.

[208] A. Munir, I. Qazi, Z. Uzmi, A. Mushtaq, S. Ismail,
M. Iqbal, and B. Khan, “Minimizing flow completion
times in data centers,” in Proc. of the IEEE Inter-
national Conference on Computer Communications
(INFOCOM), Apr. 2013.

[209] B. Briscoe, M. Kühlewind, D. Wagner, and J. M. R.
Espinosa, Immediate ECN, Presentation in IETF Pro-

http://www.bobbriscoe.net/projects/ipe2eqos/pcn/vq2lb/vq2lb_tr.pdf
http://www.bobbriscoe.net/projects/ipe2eqos/pcn/vq2lb/vq2lb_tr.pdf
http://heim.ifi.uio.no/~michawe/research/publications/pv2013-fse-poster-final.pdf
http://heim.ifi.uio.no/~michawe/research/publications/pv2013-fse-poster-final.pdf
http://datatracker.ietf.org/doc/charter-ietf-rmcat/
http://www.hpcc.jp/pfldnet2006/paper/s3_01.pdf
http://www.hpcc.jp/pfldnet2006/paper/s3_01.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2658&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2658&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2658&rep=rep1&type=pdf

REFERENCES 50

ceedings, Nov. 2013. [Online]. Available: http://www.
ietf.org/proceedings/88/slides/slides-88-tsvwg-20.pdf.

[210] C. Jin, D. Wei, and S. Low, “The case for delay-based
congestion control,” in Proc. of the IEEE Computer
Communications Workshop (CCW), 2003, pp. 99–104.

[211] D. Clark, M. Lambert, and L. Zhang, NETBLT: A
bulk data transfer protocol, RFC 998 (Experimental),
Internet Engineering Task Force, Mar. 1987.

[212] L. Brakmo and L. Peterson, “TCP Vegas: end to end
congestion avoidance on a global Internet,” IEEE J.
Sel. Areas Commun., vol. 13, no. 8, pp. 1465–1480,
1995.

[213] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind,
Low Extra Delay Background Transport (LEDBAT),
RFC 6817 (Experimental), Internet Engineering Task
Force, Dec. 2012.

[214] D. A. Hayes and D. Ros, Delay-based congestion
control for low latency, ISOC Workshop on Re-
ducing Internet Latency, Sep. 2013. [Online]. Avail-
able: http://www.internetsociety.org/sites/default/files/
pdf/accepted/17 delay cc pos-v2.pdf.

[215] D. Hayes and G. Armitage, “Revisiting TCP conges-
tion control using delay gradients,” in Proc. of IFIP
Networking, ser. Springer Lecture Notes in Computer
Science, vol. 6641, May 2011, pp. 328–341.

[216] “Link aggregation,” IEEE, Std. 802.1AX, 2008.
[217] M. Blanchet and P. Seite, Multiple Interfaces and

Provisioning Domains Problem Statement, RFC 6418
(Informational), Internet Engineering Task Force, Nov.
2011.

[218] M. Wasserman and P. Seite, Current Practices for
Multiple-Interface Hosts, RFC 6419 (Informational),
Internet Engineering Task Force, Nov. 2011.

[219] C. Raiciu, M. Handley, and D. Wischik, Coupled
Congestion Control for Multipath Transport Protocols,
RFC 6356 (Experimental), Internet Engineering Task
Force, Oct. 2011.

[220] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and
J.-Y. Le Boudec, “MPTCP is not Pareto-optimal: per-
formance issues and a possible solution,” in Proc.
of the ACM international conference on Emerging
Networking Experiments and Technologies (CoNEXT),
Dec. 2012, pp. 1–12.

[221] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec,
“Opportunistic linked-increases congestion control al-
gorithm for MPTCP,” Internet Draft draft-khalili-
mptcp-congestion-control, Jul. 2014, Work in progress.

[222] J. Iyengar, P. Amer, and R. Stewart, “Concurrent
multipath transfer using SCTP multihoming over in-
dependent end-to-end paths,” IEEE/ACM Trans. Netw.,
vol. 14, no. 5, pp. 951–964, Oct. 2006.

[223] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic
window coupling for multipath congestion control,”
in Proc. of the IEEE International Conference on
Network Protocols (ICNP), (Vancouver), Oct. 2011.

[224] V. Sharma, S. Kalyanaraman, K. Kar, K. Ramakr-
ishnan, and V. Subramanian, “MPLOT: a transport
protocol exploiting multipath diversity using erasure

codes,” in Proc. of the IEEE International Conference
on Computer Communications (INFOCOM), (Phoenix
(AZ), USA), Apr. 2008, pp. 592–600.

[225] A. Vulimiri, O. Michel, P. Godfrey, and S. Shenker,
“More is less: reducing latency via redundancy,” in
Proc. of the ACM Workshop on Hot Topics in Networks
(HotNets), Oct. 2012, pp. 13–18.

[226] Y.-C. Chen, Y.-S. Lim, R. Gibbens, E. Nahum, R.
Khalili, and D. Towsley, “A measurement-based study
of multipath TCP performance over wireless net-
works,” in Proc. of the ACM Internet Measurement
Conference (IMC), (Barcelona), Oct. 2013.

[227] T. Zinner, K. Tutschku, A. Nakao, and P. Tran-
Gia, “Performance evaluation of packet re-ordering
on concurrent multipath transmissions for transport
virtualization,” in Proc. of the ITC Specialist Seminar
on Network Virtualization - Concept and Performance
Aspects, May 2009.

[228] F. Perotto, C. Casetti, and G. Galante, “SCTP-based
transport protocols for concurrent multipath trans-
fer,” in Proc. of the IEEE Wireless Communications
and Networking Conference (WCNC), Mar. 2007,
pp. 2971–2976.

[229] A. Gurtov and T. Polishchuk, “Secure multipath trans-
port for legacy Internet applications,” in Proc. of
the International Conference on Broadband Com-
munications, Networks, and Systems (BROADNETS),
(Madrid), Sep. 2009.

[230] K. Evensen, D. Kaspar, A. Hansen, C. Griwodz, and
P. Halvorsen, “Using multiple links to increase the
performance of bandwidth-intensive UDP-based appli-
cations,” in Proc. of the IEEE Symposium on Comput-
ers and Communications (ISCC), (Corfu, Greece), Jun.
2011, pp. 1117–1122.

[231] M. Coudron, S. Secci, G. Pujolle, P. Raad, and P.
Gallard, “Cross-layer cooperation to boost multipath
TCP performance in cloud networks,” in Proc. of the
IEEE International Conference on Cloud Networking
(CloudNet), Nov. 2013, pp. 58–66.

[232] D. Li, A. Desai, Z. Yang, K. Mueller, S. Morris, and
D. Stavisky, “Multicast cloud with integrated multicast
and unicast content distribution routing,” in Proc. of
the International Workshop on Web Content Caching
and Distribution, F. Douglis and B. D. Davison, Eds.,
2004, pp. 109–118.

[233] M. Hosseini, D. Ahmed, S. Shirmohammadi, and N. D.
Georganas, “A survey of application-layer multicast
protocols,” IEEE Commun. Surveys Tuts., vol. 9, no.
3, pp. 58–74, 2007.

[234] J. Ni and D. H. K. Tsang, “Large-scale cooperative
caching and application-level multicast in multimedia
content delivery networks,” IEEE Commun. Mag., vol.
43, no. 5, pp. 98–105, 2005.

[235] V. Jacobson, Compressing TCP/IP Headers for Low-
Speed Serial Links, RFC 1144 (Proposed Standard),
Internet Engineering Task Force, Feb. 1990.

http://www.ietf.org/proceedings/88/slides/slides-88-tsvwg-20.pdf
http://www.ietf.org/proceedings/88/slides/slides-88-tsvwg-20.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/17_delay_cc_pos-v2.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/17_delay_cc_pos-v2.pdf

REFERENCES 51

[236] M. Degermark, B. Nordgren, and S. Pink, IP Header
Compression, RFC 2507 (Proposed Standard), Internet
Engineering Task Force, Feb. 1999.

[237] G. Pelletier, K. Sandlund, L.-E. Jonsson, and M. West,
RObust Header Compression (ROHC): A Profile for
TCP/IP (ROHC-TCP), RFC 6846 (Proposed Stan-
dard), Internet Engineering Task Force, Jan. 2013.

[238] G. Pelletier and K. Sandlund, RObust Header Com-
pression Version 2 (ROHCv2): Profiles for RTP, UDP,
IP, ESP and UDP-Lite, RFC 5225 (Proposed Stan-
dard), Internet Engineering Task Force, Apr. 2008.

[239] M. Allman, V. Paxson, and E. Blanton, TCP Con-
gestion Control, RFC 5681 (Draft Standard), Internet
Engineering Task Force, Sep. 2009.

[240] S. Floyd, HighSpeed TCP for Large Congestion Win-
dows, RFC 3649 (Experimental), Internet Engineering
Task Force, Dec. 2003.

[241] T. Kelly, “Scalable TCP: improving performance in
highspeed wide area networks,” ACM SIGCOMM
Computer Communications Review (CCR), vol. 33, no.
2, pp. 83–91, Apr. 2003.

[242] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-
friendly high-speed TCP variant,” ACM SIGOPS Oper.
Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul. 2008.

[243] D. X. Wei, C. Jin, S. H. Low, and S. Hegde,
“FAST TCP: motivation, architecture, algorithms, per-
formance,” IEEE/ACM Trans. Netw., vol. 14, no. 6,
pp. 1246–1259, Dec. 2006.

[244] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Com-
pound TCP approach for high-speed and long distance
networks,” in Proc. of the IEEE International Con-
ference on Computer Communications (INFOCOM),
(Barcelona, Spain), Apr. 2006.

[245] S. Ha and I. Rhee, “Taming the elephants: new TCP
slow start,” Elsevier Computer Networks, vol. 55, no.
9, pp. 2092–2110, Jun. 2011.

[246] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert,
A. Agarwal, A. Jain, and N. Sutin, “An argument
for increasing TCP’s initial congestion window,” ACM
SIGCOMM Computer Communications Review (CCR),
vol. 40, no. 3, pp. 26–33, Jun. 2010.

[247] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis,
Increasing TCP’s Initial Window, RFC 6928 (Experi-
mental), Internet Engineering Task Force, Apr. 2013.

[248] R. Sallantin, C. Baudoin, F. Arnal, E. Dubois,
E. Chaput, and A.-L. Beylot, “Safe increase of the
TCP’s Initial Window Using Initial Spreading,”
Internet Draft draft-irtf-iccrg-sallantin-initial-
spreading-00, Jan. 2014, Work in progress. [Online].
Available: http://tools.ietf.org/html/draft-irtf-iccrg-
sallantin-initial-spreading.

[249] D. Liu, M. Allman, S. Jiny, and L. Wang, “Congestion
control without a startup phase,” in Proc. of the In-
ternational Workshop on Protocols for Future, Large-
Scale & Diverse Network Transports (PFLDnet), Feb.
2007.

[250] M. Scharf, “Comparison of end-to-end and network-
supported fast startup congestion control schemes,”

Elsevier Computer Networks, vol. 55, no. 8, pp. 1921–
1940, Jun. 2011.

[251] C. Partridge, D. Rockwell, M. Allman, R. Krishnan,
and J. Sterbenz, “A swifter start for TCP,” BBN, Tech.
Rep. 8339, Mar. 2002.

[252] S. Keshav, “A control-theoretic approach to flow con-
trol,” in Proc. of ACM SIGCOMM, (Zurich, Switzer-
land), 1991, pp. 3–15.

[253] V. Konda and J. Kaur, “RAPID: shrinking the
congestion-control timescale,” in Proc. of the IEEE In-
ternational Conference on Computer Communications
(INFOCOM), (Rio de Janeiro, Brazil), Apr. 2009.

[254] M. Kuehlewind and B. Briscoe, “Chirping for conges-
tion control – implementation feasibility,” in Proc. of
the International Workshop on Protocols for Future,
Large-Scale & Diverse Network Transports (PFLD-
net), Nov. 2010.

[255] J. Touch, TCP Control Block Interdependence, RFC
2140 (Informational), Internet Engineering Task Force,
Apr. 1997.

[256] H. Balakrishnan and S. Seshan, The Congestion Man-
ager, RFC 3124 (Proposed Standard), Internet Engi-
neering Task Force, Jun. 2001.

[257] RTP media congestion avoidance techniques (rmcat),
2014. [Online]. Available: http://datatracker.ietf.org/
wg/rmcat/.

[258] V. N. Padmanabhan and R. H. Katz, “TCP Fast Start:
A technique for speeding up web transfers,” in Proc.
IEEE Globecom Internet Mini-Conference, 1998.

[259] I. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach:
A new flow control scheme for satellite networks,”
IEEE/ACM Trans. Netw., vol. 9, no. 3, pp. 307–321,
Jun. 2001.

[260] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker,
“Recursively cautious congestion control,” in
Proc. of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI),
Apr. 2014, pp. 373–385. [Online]. Available:
https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/mittal.

[261] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, Quick-
Start for TCP and IP, RFC 4782 (Experimental),
Internet Engineering Task Force, Jan. 2007.

[262] G. Fairhurst and A. Sathiaseelan, Quick-Start for the
Datagram Congestion Control Protocol (DCCP), RFC
5634 (Experimental), Internet Engineering Task Force,
Aug. 2009.

[263] P. Sarolahti, M. Allman, and S. Floyd, “Determining
an appropriate sending rate over an underutilized net-
work path,” Elsevier Computer Networks, vol. 51, no.
7, pp. 1815–1832, May 2007.

[264] D. Katabi, M. Handley, and C. Rohrs, “Congestion
control for high bandwidth-delay product networks,” in
Proc. of ACM SIGCOMM, (Pittsburgh, Pennsylvania,
USA), 2002, pp. 89–102.

[265] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and
N. McKeown, “Processor sharing flows in the In-
ternet,” in Proc. of the International Workshop on

http://tools.ietf.org/html/draft-irtf-iccrg-sallantin-initial-spreading
http://tools.ietf.org/html/draft-irtf-iccrg-sallantin-initial-spreading
http://datatracker.ietf.org/wg/rmcat/
http://datatracker.ietf.org/wg/rmcat/
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/mittal
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/mittal

REFERENCES 52

Quality of Service (IWQoS), (Passau, Germany), ser.
Springer Lecture Notes in Computer Science, Jun.
2005, pp. 271–285.

[266] L. Eggert and G. Fairhurst, Unicast UDP Usage
Guidelines for Application Designers, RFC 5405 (Best
Current Practice), Internet Engineering Task Force,
Nov. 2008.

[267] A. Vainshtein and Y. Stein, Structure-Agnostic Time
Division Multiplexing (TDM) over Packet (SAToP),
RFC 4553 (Proposed Standard), Internet Engineering
Task Force, Jun. 2006.

[268] I. Järvinen, B. Chemmagate, A. Y. Ding, L. Daniel,
M. Isomäki, J. Korhonen, and M. Kojo, “Effect of
competing TCP traffic on interactive real-time com-
munication,” in Proc. of the International Conference
on Passive and Active Measurement (PAM), 2013.

[269] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP
Nice: a mechanism for background transfers,” ACM
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 329–343,
Dec. 2002.

[270] A. Kuzmanovic and E. Knightly, “TCP-LP: a dis-
tributed algorithm for low priority data transfer,” in
Proc. of the IEEE International Conference on Com-
puter Communications (INFOCOM), vol. 3, 2003,
pp. 1691–1701.

[271] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti,
“The quest for LEDBAT fairness,” in Proc. of IEEE
GLOBECOM, (Miami, USA), Dec. 2010.

[272] J. Schneider, J. Wagner, R. Winter, and H.-J. Kolbe,
“Out of my way – evaluating Low Extra Delay Back-
ground Transport in an ADSL access network,” in
Proc. of the International Teletraffic Congress (ITC),
Sep. 2010.

[273] D. Ros and M. Welzl, “Assessing LEDBAT’s delay
impact,” IEEE Commun. Lett., vol. 17, no. 5, pp. 1044–
1047, May 2013.

[274] R. Jesup, “Issues with LEDBAT in wide deploy-
ment,” in Proc. of the IETF, (Vancouver, BC, Canada),
Jul. 2012. [Online]. Available: http://www.ietf.org/
proceedings/84/slides/slides-84-tsvarea-2.pdf.

[275] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M.
Täht, “Fighting the bufferbloat: on the coexistence of
AQM and low priority congestion control,” in Proc.
of the IEEE International Conference on Computer
Communications (INFOCOM), 2013, pp. 3291–3296.

[276] M. Handley, J. Padhye, and S. Floyd, TCP Congestion
Window Validation, RFC 2861 (Experimental), Inter-
net Engineering Task Force, Jun. 2000.

[277] A. Sathiaseelan, R. Secchi, and G. Fairhurst, “Enhanc-
ing TCP to support rate-limited traffic,” in Proc. of
the ACM SIGCOMM Workshop on Capacity Sharing
(CSWS), (Nice, France), 2012, pp. 39–44.

[278] G. Fairhurst and A. Sathiaseelan, “Updating TCP to
support rate-limited traffic,” Internet Draft draft-ietf-
tcpm-newcwv, Mar. 2013, Work in progress.

[279] G. Fairhurst, A. Sathiaseelan, and R. Secchi, “Up-
dating TCP to support rate-limited traffic,” Internet
Draft draft-fairhurst-tcpm-newcwv, Sep. 2012, Work

in progress. [Online]. Available: http://tools.ietf.org/
html/draft-fairhurst-tcpm-newcwv.

[280] S. Floyd, Limited Slow-Start for TCP with Large Con-
gestion Windows, RFC 3742 (Experimental), Internet
Engineering Task Force, Mar. 2004.

[281] N. Hu and P. Steenkiste, “Improving TCP startup
performance using active measurements: algorithm
and evaluation,” in Proc. of the IEEE International
Conference on Network Protocols (ICNP), Nov. 2003,
pp. 107–118.

[282] D. Cavendish, K. Kumazoe, M. Tsuru, Y. Oie, and M.
Gerla, “CapStart: an adaptive TCP slow start for high
speed networks,” in Proc. of the iaria International
Conference on Evolving Internet (INTERNET), (Los
Alamitos, CA, USA), vol. 0, 2009, pp. 15–20.

[283] R. Wang, G. Pau, K. Yamada, M. Y. Sanadidi, and
M. Gerla, “TCP start up performance in large band-
width delay networks.,” in Proc. of the IEEE Inter-
national Conference on Computer Communications
(INFOCOM), (Hong Kong), Mar. 2004.

[284] S. Giordano, G. Procissi, F. Russo, and R. Secchi, “On
the use of pipesize estimators to improve TCP transient
behavior,” in Proc. of the IEEE International Con-
ference on Communications Workshops (ICC), 2005,
pp. 16–20.

[285] The bufferbloat projects, Oct. 2013. [Online]. Avail-
able: http://www.bufferbloat.net/.

[286] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP
buffer tuning,” ACM SIGCOMM Computer Communi-
cations Review (CCR), vol. 28, no. 4, pp. 315–323,
Oct. 1998.

[287] J. Corbet, TCP small queues, Linux Weekly News,
Jul. 2012. [Online]. Available: https://lwn.net/Articles/
507065/.

[288] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole,
“Supporting time-sensitive applications on a commod-
ity OS,” ACM SIGOPS Oper. Syst. Rev., vol. 36, no.
SI, pp. 165–180, Dec. 2002.

[289] B. P. Swenson and G. F. Riley, “A new approach to
zero-copy message passing with reversible memory
allocation in multi-core architectures,” in Proc. of the
IEEE/ACM/SCS Workshop on Principles of Advanced
and Distributed Simulation (PADS), 2012, pp. 44–52.

[290] T. Suzumura, M. Tatsubori, S. Trent, A. Tozawa, and T.
Onodera, “Highly scalable web applications with zero-
copy data transfer,” in Proc. of the ACM International
Conference on World wide web, (Madrid, Spain), 2009,
pp. 921–930.

[291] E. Kohler, M. Handley, and S. Floyd, “Designing
DCCP: congestion control without reliability,” ACM
SIGCOMM Computer Communications Review (CCR),
vol. 36, no. 4, pp. 27–38, Aug. 2006.

[292] M. Welzl, S. Jorer, and S. Gjessing, “Towards a
protocol-independent Internet transport API,” in Proc.
of the IEEE International Conference on Communica-
tions Workshops (ICC), 2011, pp. 1–6.

[293] L. Eggert and W. M. Eddy, “Towards more expres-
sive transport-layer interfaces,” in Proc. of the ACM

http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-2.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-2.pdf
http://tools.ietf.org/html/draft-fairhurst-tcpm-newcwv
http://tools.ietf.org/html/draft-fairhurst-tcpm-newcwv
http://www.bufferbloat.net/
https://lwn.net/Articles/507065/
https://lwn.net/Articles/507065/

REFERENCES 53

Workshop on Mobility in the Evolving Internet Archi-
tecture (MobiArch), (San Francisco, California), 2006,
pp. 71–74.

[294] A. Petlund, “Transport services and low latency,”
Internet Draft draft-petlund-latency-transport-services,
Feb. 2014, Work in progress. [Online]. Available: http:
//tools.ietf.org/html/draft-petlund-latency-transport-
services.

[295] G. De Micheli, R. Ernst, and W. Wolf, Eds., Readings
in hardware/software co-design. Norwell, MA, USA:
Kluwer Academic Publishers, 2002.

[296] D. E. Culler, A. Gupta, and J. P. Singh, Parallel Com-
puter Architecture: A Hardware/Software Approach,
1st. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997.

[297] D. A. Patterson and J. L. Hennessy, Computer Organi-
zation and Design, Fourth Edition, Fourth Edition: The
Hardware/Software Interface (The Morgan Kaufmann
Series in Computer Architecture and Design), 4th. San
Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2008.

[298] R. H. B. Netzer and B. P. Miller, “What are race
conditions?: some issues and formalizations,” ACM
Lett. Program. Lang. Syst., vol. 1, no. 1, pp. 74–88,
Mar. 1992.

[299] S. Carr, J. Mayo, and C.-K. Shene, “Race conditions:
a case study,” Journal of Computing Sciences in Col-
leges, vol. 17, no. 1, pp. 90–105, Oct. 2001.

[300] U. Cummings and M. Zeile, “Focalpoint II, a
low-latency, high bandwidth switch/router chip,”
in Proc. of the Symposium on High Performance
Chips (Hot Chips), (Stanford, Califonia), Aug. 2007.
[Online]. Available: http://www.hotchips.org/wp-
content/uploads/hc archives/hc19/3 Tues/HC19.07/
HC19.07.03.pdf.

[301] A. I. C. Grecu, P. Pande, A. Jantsch, E. Salmi-
nen, U. Ogras, and R. Marculescu, “Towards
open network-on-chip benchmarks,” in Proc. of the
IEEE/ACM International Symposium on Networks-on-
Chip (NOCS), (Princeton, New Jersey), May 2007.
[Online]. Available: http://web.it.kth.se/∼axel/papers/
2007/NOCS-Benchmarks.pdf.

[302] G. P. Nychis, C. Fallin, T. Moscibroda, O. Mutlu,
and S. Seshan, “On-chip networks from a networking
perspective: congestion and scalability in many-core
interconnects,” ACM SIGCOMM Computer Communi-
cations Review (CCR), vol. 42, no. 4, pp. 407–418,
Aug. 2012.

[303] J. Owens, W. Dally, R. Ho, D. N. Jayasimha, S.
Keckler, and L.-S. Peh, “Research challenges for on-
chip interconnection networks,” IEEE Micro, vol. 27,
no. 5, pp. 96–108, Sep. 2007.

[304] M. Ali, M. Welzl, and M. Zwicknagl, “Networks
on chips: scalable interconnects for future systems
on chips,” in Proc. of the European Conference on
Circuits and Systems for Communications, Jul. 2008,
pp. 240–245.

[305] S. Rumble, D. Ongaro, S. Stutsman, M. Rosenblum,
and J. Ousterhout, “It’s time for low latency,” in
Proc. of the USENIX Workshop on Hot Topics in
Operating Systems (HotOS), (Napa Valley, Califonia),
May 2011. [Online]. Available: https://www.usenix.
org/legacy/events/hotos11/tech/final files/Rumble.pdf.

[306] SPDY: an experimental protocol for a faster web,
White paper. [Online]. Available: http://dev.chromium.
org/spdy/spdy-whitepaper.

[307] Y. Elkhatib, G. Tyson, and M. Welzl, “Can SPDY
really make the web faster?” In Proc. of IFIP Net-
working, Jun. 2014.

[308] J Roskind, QUIC: quick UDP Internet connections,
(Living document), Dec. 2013. [Online].
Available: https://docs.google.com/document/
d/1RNHkx VvKWyWg6Lr8SZ-saqsQx7rFV-
ev2jRFUoVD34/edit.

[309] A. Langley and W. T. Chang, QUIC crypto,
Mar. 2014. [Online]. Available: https://
docs.google.com/document/d/1g5nIXAIkN Y-
7XJW5K45IblHd L2f5LTaDUDwvZ5L6g/edit.

[310] Google, The chromium project. [Online]. Available:
http://www.chromium.org/Home.

[311] Connectify, Taking Google’s QUIC for a test drive,
Nov. 2013. [Online]. Available: http://www.connectify.
me/taking-google-quic-for-a-test-drive/.

[312] Riverbed, Riverbed optimization system (RiOS) 6.1;
a technical overview, White Paper, 2010. [Online].
Available: http://www.riverbed.com/about/document-
repository/riverbed-optimization-system-rios-version-
61.html.

[313] T. Grenot, F. Bonnet, B. Imbert, and J. Provost,
“Method and device for remotely controlling the con-
gestion of meshed flow in a packet mode telecommu-
nication network,” pat. 2008/0304414, 2008.

[314] T. Grenot, “Method for optimising the sharing of a
plurality of network resources between a plurality of
application flows,” pat. 2010/0067542, 2010.

[315] M. Delattre and B. Imbert, “Method for management
of data stream exchanges in an autonomic telecommu-
nications network,” pat. 2012/0023213, Feb. 2012.

[316] G. Henke, Acceleration; bottlenecks, pitfalls
and tips, White Paper. [Online]. Available:
http://cdn.crn.de/fileadmin/whitepapers/files/
ipanema acceleration bottleneck pitfalls tips.pdf.

[317] Ipanema, Guarantee applications performance with
dynamic hybrid networking, White Paper, 2013.
[Online]. Available: http://response.ipanematech.com/
WP Dynamic Hybrid Networking EN?i=165.

[318] C. D. Sutton, “Using QoS tunnels for TCP latency
optimization,” pat. 2008/0069111, 2008.

[319] Infinita, Overcoming the limits of TCP on high-speed
WANs, White Paper, 2011. [Online]. Available: http:
//www.dabcc.com/downloadfile.aspx?id=1162.

[320] J. Pinkerton, SMB2 - Big improvements
in the remote filesystem protocol, Storage
Networking Industry Assoication (SNIA) Online
Educational Resource, 2008. [Online]. Available:

http://tools.ietf.org/html/draft-petlund-latency-transport-services
http://tools.ietf.org/html/draft-petlund-latency-transport-services
http://tools.ietf.org/html/draft-petlund-latency-transport-services
http://www.hotchips.org/wp-content/uploads/hc_archives/hc19/3_Tues/HC19.07/HC19.07.03.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc19/3_Tues/HC19.07/HC19.07.03.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc19/3_Tues/HC19.07/HC19.07.03.pdf
http://web.it.kth.se/~axel/papers/2007/NOCS-Benchmarks.pdf
http://web.it.kth.se/~axel/papers/2007/NOCS-Benchmarks.pdf
https://www.usenix.org/legacy/events/hotos11/tech/final_files/Rumble.pdf
https://www.usenix.org/legacy/events/hotos11/tech/final_files/Rumble.pdf
http://dev.chromium.org/spdy/spdy-whitepaper
http://dev.chromium.org/spdy/spdy-whitepaper
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
http://www.chromium.org/Home
http://www.connectify.me/taking-google-quic-for-a-test-drive/
http://www.connectify.me/taking-google-quic-for-a-test-drive/
http://www.riverbed.com/about/document-repository/riverbed-optimization-system-rios-version-61.html
http://www.riverbed.com/about/document-repository/riverbed-optimization-system-rios-version-61.html
http://www.riverbed.com/about/document-repository/riverbed-optimization-system-rios-version-61.html
http://cdn.crn.de/fileadmin/whitepapers/files/ipanema_acceleration_bottleneck_pitfalls_tips.pdf
http://cdn.crn.de/fileadmin/whitepapers/files/ipanema_acceleration_bottleneck_pitfalls_tips.pdf
http://response.ipanematech.com/WP_Dynamic_Hybrid_Networking_EN?i=165
http://response.ipanematech.com/WP_Dynamic_Hybrid_Networking_EN?i=165
http://www.dabcc.com/downloadfile.aspx?id=1162
http://www.dabcc.com/downloadfile.aspx?id=1162

54

http://www.snia.org/sites/default/education/
tutorials/2008/fall/networking/JimPinkerton-
SMB2 Big Improvements Remote FS Protocol-
v3.pdf.

[321] J. Border, M. Kojo, J. Griner, G. Montenegro, and
Z. Shelby, Performance Enhancing Proxies Intended
to Mitigate Link-Related Degradations, RFC 3135
(Informational), Internet Engineering Task Force, Jun.
2001.

[322] J. Touch, Two Ways to Trade Bandwidth for Latency,
ISOC Workshop on Reducing Internet Latency, Sep.
2013. [Online]. Available: http://www.internetsociety.
org/sites/default/files/pdf/accepted/11 touch-isoc-
latency-2013.pdf.

[323] M. Chetty, S. Sundaresan, S. Muckaden, N. Feamster,
and E. Calandro, “Measuring broadband performance
in South Africa,” in Proc. of the ACM Annual Sym-
posium on Computing for Development (DEV), ACM,
2013. [Online]. Available: http://sites.noise.gatech.edu/
∼srikanth/docs/broadband-sa-dev4.pdf.

[324] DNS prefetching (or pre-resolving), Jan. 2014.
[Online]. Available: http://blog.chromium.org/2008/
09/dns-prefetching-or-pre-resolving.html.

[325] T. Everts, 11 questions (and answers) about content
delivery networks and web performance, Jan. 2014.
[Online]. Available: http://www.webperformancetoday.
com/2013/06/12/11-faqs-content-delivery-networks-
cdn-web-performance/.

[326] I. Rhee, L. Xu, and S. Ha, “CUBIC for fast long-
distance networks,” Internet Draft draft-rhee-tcpm-
cubic, Aug. 2008. [Online]. Available: \url{http://
tools.ietf.org/html/draft-rhee-tcpm-cubic}.

[327] J. Vardakas, I. Papapanagiotou, M. Logothetis, and
S. Kotsopoulos, “On the end-to-end delay analysis of
the IEEE 802.11 distributed coordination function,” in
Proc. of the International Conference on Internet Mon-
itoring and Protection (ICIMP), Jul. 2007, pp. 16–16.

[328] T. Selvam and S. Srikanth, “A frame aggregation
scheduler for IEEE 802.11n,” in National Conference
on Communications (NCC), Jan. 2010, pp. 1–5.

[329] B. Ginzburg and A. Kesselman, “Performance analy-
sis of A-MPDU and A-MSDU aggregation in IEEE
802.11n,” in Proc. of the IEEE Sarnoff Symposium,
Apr. 2007, pp. 1–5.

[330] G. Bhanage, R. Mahindra, I. Seskar, and D. Ray-
chaudhuri, “Implication of MAC frame aggregation on
empirical wireless experimentation,” in Proc. of IEEE
GLOBECOM, Nov. 2009, pp. 1–7.

[331] S. Gubner and C. Lindemann, “Evaluating the impact
of frame aggregation on video-streaming over ieee
802.11n multihop networks,” in Proc. of the IEEE
International Symposium on a World of Wireless, Mo-
bile and Multimedia Networks (WoWMoM), Jun. 2012,
pp. 1–6.

[332] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira,
S. Crawford, and A. Pescapè, “Broadband Internet
performance: a view from the gateway,” in Proc. of
ACM SIGCOMM, (Toronto, Ontario, Canada), 2011,

pp. 134–145. [Online]. Available: http://doi.acm.org/
10.1145/2018436.2018452.

[333] D. Newman, “Latency and jitter: Cut-through design
pays off for Arista, Blade,” IDG Network World, Jan.
2010. [Online]. Available: http://www.networkworld.
com/reviews/2010/011810-ethernet-switch-test-
latency.html.

[334] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive
RED: an algorithm for increasing the robustness of
RED’s active queue management,” ICIR, Technical
report, Aug. 2001. [Online]. Available: http://www.icir.
org/floyd/red.html.

[335] B. Briscoe, “Review: Quick-Start for TCP and
IP,” BT, Technical Report TR-CXR9-2005-007, Nov.
2005. [Online]. Available: http://www.bobbriscoe.net/
projects/2020comms/refb/jain05 rvw rjb.pdf.

[336] I. Biswas, A. Sathiaseelan, R. Secchi, and G. Fairhurst,
“Analysing TCP for bursty traffic,” Inderscience Inter-
national Journal of Advanced Media and Communica-
tion (IJAMC), vol. 7, no. 3, Jun. 2010.

[337] A. Angelogiannopoulos, “Implementation and
performance evaluation of TCP extensions in
FreeBSD,” Master’s Thesis, Technische Universität
München Lehrstuhl für Kommunikationsnetze, Oct.
2013. [Online]. Available: https://eggert.org/students/
angelogiannopoulos-thesis.pdf.

[338] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park, “mTCP: a highly scalable
user-level TCP stack for multicore systems,” in
Proc. of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI),
Apr. 2014, pp. 489–502. [Online]. Available:
https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/jeong.

[339] B. Briscoe, A. Brunstrom, D. Ros, D. Hayes,
A. Petlund, I.-J. Tsang, S. Gjessing, and G.
Fairhurst, A Survey of Latency Reducing Tech-
niques and their Merits, ISOC Workshop on Re-
ducing Internet Latency, Sep. 2013. [Online]. Avail-
able: http://www.internetsociety.org/sites/default/files/
pdf/accepted/16 rite-latency survey pos.pdf.

[340] J. P. G. Sterbenz and J. D. Touch, High-speed net-
working — A systematic approach to high-bandwidth
low-latency communication. Wiley, 2001.

http://www.snia.org/sites/default/education/tutorials/2008/fall/networking/JimPinkerton-SMB2_Big_Improvements_Remote_FS_Protocol-v3.pdf
http://www.snia.org/sites/default/education/tutorials/2008/fall/networking/JimPinkerton-SMB2_Big_Improvements_Remote_FS_Protocol-v3.pdf
http://www.snia.org/sites/default/education/tutorials/2008/fall/networking/JimPinkerton-SMB2_Big_Improvements_Remote_FS_Protocol-v3.pdf
http://www.snia.org/sites/default/education/tutorials/2008/fall/networking/JimPinkerton-SMB2_Big_Improvements_Remote_FS_Protocol-v3.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/11_touch-isoc-latency-2013.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/11_touch-isoc-latency-2013.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/11_touch-isoc-latency-2013.pdf
http://sites.noise.gatech.edu/~srikanth/docs/broadband-sa-dev4.pdf
http://sites.noise.gatech.edu/~srikanth/docs/broadband-sa-dev4.pdf
http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html
http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html
http://www.webperformancetoday.com/2013/06/12/11-faqs-content-delivery-networks-cdn-web-performance/
http://www.webperformancetoday.com/2013/06/12/11-faqs-content-delivery-networks-cdn-web-performance/
http://www.webperformancetoday.com/2013/06/12/11-faqs-content-delivery-networks-cdn-web-performance/
\url{http://tools.ietf.org/html/draft-rhee-tcpm-cubic}
\url{http://tools.ietf.org/html/draft-rhee-tcpm-cubic}
http://doi.acm.org/10.1145/2018436.2018452
http://doi.acm.org/10.1145/2018436.2018452
http://www.networkworld.com/reviews/2010/011810-ethernet-switch-test-latency.html
http://www.networkworld.com/reviews/2010/011810-ethernet-switch-test-latency.html
http://www.networkworld.com/reviews/2010/011810-ethernet-switch-test-latency.html
http://www.icir.org/floyd/red.html
http://www.icir.org/floyd/red.html
http://www.bobbriscoe.net/projects/2020comms/refb/jain05_rvw_rjb.pdf
http://www.bobbriscoe.net/projects/2020comms/refb/jain05_rvw_rjb.pdf
https://eggert.org/students/angelogiannopoulos-thesis.pdf
https://eggert.org/students/angelogiannopoulos-thesis.pdf
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
http://www.internetsociety.org/sites/default/files/pdf/accepted/16_rite-latency_survey_pos.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/16_rite-latency_survey_pos.pdf

55

Bob Briscoe attained a PhD from University College
London in 2009 through part-time study. He is
BT’s Chief Researcher in Network Infrastructure
and a member of BT’s Network Strategy team. His
expertise is in engineering, economic and social
control of computer networks. In the late-1980s,
he managed the transition to IP of many of BT’s
R&D Labs. In 2000, he set-up and led the Market
Managed Multi-service Internet (M3I) consortium
and incubated a start-up that BT absorbed into its
Internet QoS products. In 2007 he helped initiate

the Trilogy project, which successfully delivered re-definition of the Internet
architecture through IETF standardization. His recent work is on reducing
latency and on virtualizing network functions (NFV), particularly security
aspects.

Anna Brunstrom received a B.Sc. in Computer
Science and Mathematics from Pepperdine Uni-
versity, CA, in 1991, and a M.Sc. and Ph.D. in
Computer Science from College of William & Mary,
VA, in 1993 and 1996, respectively. She joined
the Department of Computer Science at Karlstad
University, Sweden, in 1996, where she is currently
a Full Professor and Research Manager for the
Distributed Systems and Communications Research
Group. She has a background in distributed systems,
but her main area of work over the last years has

been in computer networking with a focus on transport protocol design,
QoS/QoE issues, cross-layer interactions and wireless communication. She
has authored/coauthored ten book chapters and over 100 international journal
and conference papers.

Andreas Petlund got his PhD from the University
of Oslo in 2009 and is currently a Research Scien-
tist at Simula Research Laboratory. He is currently
coordinating the ”Reducing Internet Transport La-
tency” (RITE) FP7 EU project and leading a national
project on low latency for thin-stream applications.
His PhD thesis focused on low-latency transport
for interactive and time-dependant applications. His
work on retransmission mechanisms to reduce la-
tency has resulted in a suite of mechanisms, several
of which is available in the Linux kernel. The main

topic of his current work is systems and network optimizations for time-
dependant applications, but he also has experience in kernel-level optimiza-
tions, embedded systems and heterogeneous processor systems.

David Hayes received a BE(Elect) from Queens-
land University of Technology (Australia) in 1987.
Initially he worked with Telstra (Australia) and
then with Ngee Ann Polytechnic (Singapore). He
received his PhD in 2002 from the University of
Melbourne (Australia). Since then David has had
a number of positions including those with the
University of Melbourne, Queensland University of
Technology, Swinburne University of Technology
(Australia), and his current position at the University
of Oslo (Norway) working on the ”Reducing Internet

Transport Latency” (RITE) FP7 EU project. He has interests in various aspects
of network performance research, analysis and protocol implementation —
he has authored delay-based TCP congestion controls and SCTP NAT in
FreeBSD.

David Ros received his B.Sc. (with honors) and
M.Sc. degrees, both in Electronics Engineering, from
the Simón Bolı́var University, Caracas, Venezuela,
and his Ph.D. in Computer Science from the In-
stitut National de Sciences Appliquées, Rennes,
France. After a long tenure as Associate Professor
in Télécom Bretagne’s Networks, Security and Mul-
timedia Dept., he moved to Simula Research Labo-
ratory, where he is currently working as Coordinator
of EU Research for the Section in Communication
Systems. David Ros is currently co-chairing the

Internet Congestion Control Research Group at the IRTF. His active research
interests include: transport-layer issues, congestion control, as well as quality
of service and architectural issues in IP networks.

Ing-Jyh Tsang received the B.Sc. degree in elec-
tronic engineering from the Federal University of
Pernambuco, Recife, Brazil, and the Ph.D. degree in
physics from the University of Antwerp, Antwerp,
Belgium. He joined Alcatel-Lucent in 2000, starting
at the former Research and Innovation department
working on BPON/GPON and IPTV services. He
worked in several departments, as system engineer
at wireline division, solution architect within the
service routing department and consultant network
architect within a major operator. He is a senior

research engineer at Bell-Labs - Network Algorithms, Protocols and Security
(NAPS) group, and having participated in several EU funded projects such as
GIANT, ECODE, at present he is working on the ”Reducing Internet Transport
Latency” (RITE) FP7 EU project.

Stein Gjessing is a professor of Computer Science
in Department of Informatics, University of Oslo. He
received his the Cand. Real. degree in 1975 and his
Dr. Philos. degree in 1985, both form the University
of Oslo. He acted as head of the Department of
Informatics for 4 years from 1987. From February
1996 to October 2001 he was the chairman of the
national research program ”Distributed IT-System”,
founded by the Research Council of Norway. Steins
original work was in the field of programming
languages and programming language semantics, in

particular related to object oriented concurrent programming. He has worked
with computer interconnects and computer architecture for cache coherent
shared memory, with DRAM organization, with ring based LANs (IEEE
Standard 802.17) and with IP fast reroute. His current research interests are
transport, routing and network resilience both in Internet-like networks and
in sensor networks.

Gorry Fairhurst received his first degree in Ap-
plied Physics and Electronics from the University
of Durham, UK, and a PhD in Communications
Engineering from the University of Aberdeen, UK.
He is now a Professor in the School of Engineering
at the University of Aberdeen. His research interests
include link communications protocols, TCP trans-
port, development of multicast transport protocols,
networking techniques for low latency Internet com-
munication and performance evaluation of broad-
band satellite systems. He has worked on a range

of IP-based satellite projects funded by national, European and ESA funding,
and contributed to DVB on networking standards for IP transmission over
DVB and the HLS for DVB-RCS2. Gorry actively participates in developing
networking standards with the Internet Engineering Task Force, where he
chairs the Transport and Services Working Group (TSVWG) and is a member
of the IETF Transport Directorate.

56

Carsten Griwodz received his Diploma in Com-
puter Science from the University of Paderborn, Ger-
many, in 1993. From 1993 to 1997, he worked at the
IBM European Networking Center in Heidelberg,
Germany. In 1997 he joined the Multimedia Com-
munications Lab at Darmstadt University of Tech-
nology, Germany, where he obtained his doctoral
degree in 2000. He joined the University of Oslo
in 2000 and research company Simula Research
Laboratory in 2005. He is Full Professor at the
University of Oslo since 2006 and leads the Media

Department at Simula Research Laboratory since 2009. His research interest
is the performance of multimedia systems. He is concerned with streaming
media, which includes all kinds of media that are transported over the Internet
with a temporal demands, including stored and live video as well as games
and immersive systems.

Michael Welzl passed his Ph.D. defense at the
University of Darmstadt / Germany with distinction
in November 2002, and received his habilitation
from the same University in June 2007. He spent two
years as a research assistant at the Telecooperation
department, University of Linz / Austria, before
joining the faculty of the newly founded Institute of
Computer Science at the University of Innsbruck /
Austria in November 2001, where he led a research
team on Network Support for Grid Computing. In
May 2009, he joined the Department of Informatics

of the University of Oslo as Associate Professor. He was appointed to a Full
Professorship in September 2009. Since October 2011, he is also an Adjunct
Professor at Swinburne University of Technology.

	Introduction
	Importance of latency to applications
	Scope
	Paper outline
	Organization of survey

	Structural delays
	Sub-optimal routes/paths
	Name resolution
	Content placement
	Network proxies and caches
	Client caches
	Prediction and latency-hiding

	Service architecture
	Structured peer-to-peer
	Cloud server placement
	Cloud cache placement
	Virtualizing chains of network functions

	Interaction between endpoints
	Transport Initialization
	Parallel option negotiation
	Reducing NAT setup delay
	Fast opening of TCP connections
	Application pipelining
	Path MTU discovery

	Secure session initialization
	Faster transport security negotiation
	Building encryption into TCP
	Bootstrapping security from the DNS

	Packet loss recovery delays
	Application tolerance to loss
	Reduce packet loss detection times
	Combining redundancy and retransmission
	Explicit congestion notification

	Message aggregation delays

	Delays along transmission paths
	Signal propagation delay
	Straighter cable paths
	Higher signal velocity
	Higher velocity with straighter routes

	Medium acquisition delays
	Serialization delay
	Link error recovery delays
	Switching/forwarding delay
	Queuing delay
	Flow and circuit scheduling
	Reducing MAC buffering
	Smaller network buffers
	Packet scheduling
	Traffic shaping and policing
	Queue management
	Transport-based queue control

	Delays related to link capacities
	Insufficient capacity
	Leveraging multiple links / interfaces

	Redundant information
	Under-utilized capacity
	More aggressive congestion control
	Rapidly sensing available capacity

	Collateral damage
	Low priority congestion control
	Congestion window validation
	Avoiding slow start overshoot

	Intra-end-host delays
	Transport protocol stack buffering
	Transport head-of-line (HOL) blocking
	Operating system delays

	Composite solutions
	SPDY
	QUIC
	WAN accelerators
	Structural Arrangements for WAN Acceleration
	WAN Acceleration Features
	Performance enhancing proxies (PEPs)

	Classifying solutions in different ways
	Gain vs. deployability
	Gain
	Pain
	Caveats and Scenarios
	Commentary
	Structural
	Interactions between Endpoints
	Transmission Path
	Related to Link Capacities
	Intra-End-Host

	Conclusions
	Acknowledgements
	Biographies
	Bob Briscoe
	Anna Brunstrom
	Andreas Petlund
	David Hayes
	David Ros
	Ing-Jyh Tsang
	Stein Gjessing
	Gorry Fairhurst
	Carsten Griwodz
	Michael Welzl

