
Internet Latency: Causes, Solutions and Trade-offs
A digest of Reducing Internet Latency: A Survey of Techniques and their Merits[1]

David Hayes⇤, Ing-Jyh Tsang†, David Ros‡, Andreas Petlund‡, Bob Briscoe§
⇤University of Oslo, Norway, †Alcatel-Lucent Bell-Labs, Belgium ‡Simula Research Laboratory AS, Norway, §BT, UK

Abstract—This paper is a digest of [1], an extensive survey

discussing the merits of over 300 techniques for reducing Internet

latency. It gives a broad overview of the causes, solutions, and

trade-offs involved in reducing latency in the Internet. The

overview covers key sources of delays and proposed solutions:

due to the structural arrangement of the network, how network

end-points interact, along the end-to-end path, related to link

capacities, within end-hosts, and those that address multiple

sources. Trade-offs are discussed in terms of the latency reduction

different techniques provide versus their deployability.

I. INTRODUCTION

Latency is a measure of the responsiveness of an application
... the time it takes for a single critical bit to reach the
destination, measured from when it was first required [1]. The
exact meaning of this depends on the application. For real-time
interactive applications, the critical bit is the last bit of the base
chunk of information (ie a frame for interactive video). Start-
up latency is important for video streaming, where the critical
bit is the first bit of data. For applications that transfer blocks
of information (ie email, instant messaging, downloads) the
critical bit is the last bit in the message.

Latency is becoming a critical issue for application perfor-
mance. It is important to understand the root causes, possible
solutions, and the benefits and costs involved in deploying
them. This paper digests the more substantial work [1] which
addresses these questions.

The remainder of the paper starts by overviewing available
techniques for reducing delays by the sources of delay as
illustrated in Fig. 1. § VII looks at composite solutions that
address several sources of delay. §VIII summarises the relative
merit of different techniques versus the difficulty in deploying
them, and § IX gives conclusions.

Sources of delay

and techniques for

reducing latency

Structural delays § II

Interaction between endpoints § III

Delays along transmission paths § IV

Delays related to link capacities §V

Intra-end-host delays §VI

Fig. 1. Techniques for reducing latency organized by sources of delay. (See [1]
for a more extensive outline)

II. STRUCTURAL DELAYS

Internet communication relies on interactions between a set
of endpoint systems, such as those exemplified in Fig. 2. The
latency experienced by clients is significantly impacted by
the placement of the software components, such as servers,

EJECT

DVD-R
W

DVD-R
W

USB

SATA

PHO
NE

MIC
LIN

E-IN

AUDIO

POWERPOWER

CARD
READE

R

LCD-ProLCD-Pro

SELECT

MENU

- +

NumLock
CapsLock

ScrollLock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-
+ScrollLock

ScrnPrint
SysRq

Pause
Break

Home
End

PageDown
PageUp

Insert

Delete
Enter

End

Home
PgUp

PgDn
Del.

Ins

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Esc
1 2 3 4 5 6 7 8 9 0( )

*&^%$#@!
`~

-_ =+ \|

Ctrl

Ctrl
Alt

A S D F G H J K L

CapsLock

;: '"

Z X C V B N M

Shift

Shift

/?
.>

,< Alt Gr

Q W E R T Y U I O P [{ ]}

Tab

Cabled client

Content server

Proxy cache

Wireless
client

ISP

Middlebox

Home
gateway

Fig. 2. Communication between Internet endpoints must traverse a wide range
of different systems. The choice of routing paths with low latency depends
on the technology residing in the nodes and on peering agreements between
Autonomous Networks. Traffic may also be intercepted by a middlebox or
served by a proxy cache. Buffering and processing in the nodes also impact
the latency observed by the user [1].

caches, databases and proxies in relation to the client endpoint.
We look at this with respect to the following categories: sub-
optimal routes/paths, name resolution, content placement and
service architecture.

a) Sub-optimal routes/paths: Choosing the right route
between hosts can impact latency severely. Although methods
for optimising for latency through routing changes are not
widely deployed, several research results treat this subject. De-
tecting congested links when determining the route is possible,
but not widely deployed. Another option is to exploit multiple
paths between the hosts, either using interfaces connected to
different networks or to use overlay hosts to find a low-latency
path.

b) Name resolution: Name resolution for mapping In-
ternet Protocol (IP) addresses to domain names is necessary
for all new connections. This will create extra delay whenever
connecting to an ”unknown” host name. Common practice is
to store locally all resolved names to save future lookups.
Caching domain names in the gateway is also commonly
done to save time for everyone residing within the gateway’s
domain. Determining the best size of the cache in such cases
has been researched, showing that due to Zipf distribution
of lookup frequency of names, arbitrarily large increases in
cache size will not have significant effect. A way of hiding
the latency of name resolution from the user is to use Domain
Name System (DNS) prefetching. When loading a web page,
the links embedded in the page can be resolved to save delay
when the user clicks the link. Using DNS to redirect the
client to Content Delivery Networks (CDNs) close to their
physical connection is also commonly applied to reduce the
user’s latency.

2015 European Conference on Networks and Communications (EuCNC)

548



c) Content placement: Choosing the right strategy for
where to place the content is of critical importance to the
user’s latency experience. Placing copies of the data (caches)
in between the server and the client is a common way of
saving resources and reducing latency [2]. To offload servers
that experience periods of heavy traffic, load balancing is
applied, redirecting traffic to different copies of the content
in a round-robin manner. It is also possible (at some cost)
to actively push content to the client in anticipation of the
data being needed. CDNs apply many of the known caching
and replication techniques to provide copies of their content
close to users all over the world. Web browsers cache content
locally to be used when similar pages are loaded. Using push
technology, modern webpages often fill such local caches
with data for later use. In real-time applications, like online
games, it is common to hide the actual latency connected to
the placement of the content by using prediction based on
the physical models in the system to give the appearance of
smooth performance.

d) Service architecture: Alternatives to the Client-Server
model can be used to reduce latency. Peer to Peer (P2P)
architectures are generally bad for latency, but structured p2p
can achieve good results while keeping the benefits of the
P2P distribution. Virtualisation can be used to run a chain of
services in a single memory space to avoid serialisation delays
between them. Similarly, caches can be dynamically spawned
in strategic locations using Cloud services.

III. INTERACTION BETWEEN ENDPOINTS

Transport protocols control the transfer of data between
endpoints over a network. This control may involve multiple
control interactions before data communication starts. Higher
layers may also require setup interaction (e.g. for security).
During a session further control interactions may be required,
for instance to recover lost packets to provide reliable transfer.
In small data transactions these interactions may dominate the
total latency, so reducing them can dramatically reduce the
latency of the session.

a) Transport initialisation: At transport layer the startup
latency is a result of protocol handshake (e.g. at the start
of a TCP, SCTP or DCCP connection). Each sequentially
completed handshake incurs a minimum of one Round Trip
Time (RTT) of delay, whereas larger delays are imposed when
the packet is lost (due to congestion, or to unsupported features
in the network and/or a middlebox), requiring retransmission
or a timeout to restart the exchange. Parameters such as
communication or even latency reducing options, may need to
be negotiated at the start of the session, for example: selection
of alternate transport protocols, mechanisms such as Explicit
Congestion Notification (ECN), use of relays to overcome the
limitations of middleboxes, etc. Several techniques can be used
to mitigate the impact of startup latency, such as by redesign
and reducing the number of sequential protocol exchanges, by
multiplexing data over an existing session or by persistent use
of a session (instead of for each transfer opening and closing a
session). For example, TCP Fast Open (TFO [3]) circumvents

without with TFO

TCP connection initialisation

TCP
1 RTT

TFO
1 RTT

tim
e

TCP
1 RTT

TFO
0 RTT

legend: a loop around multiple arrows represents 
messages that can be sent in the same packet

later resumed connection

Fig. 3. TCP Fast Open (TFO) saves a round trip when resuming a connection.

the three-way handshake, by using a TFO cookie to inform
previous connected servers (See Fig. 3).

b) Secure session initialisation: In the present times
security mechanisms are an essential requirement for Internet
communication. Security protocols without modifications can
impose significant latency to setup an application flow, as in
general these protocols were not designed with any focus on
latency. Thus there are several proposals to update security
protocol interactions to reduce the number of RTTs, with
the potential to provide significant latency gains for short
sessions. For example, faster Transport Layer Security (TLS)
negotiation (TLS False Start combined with TFO, TLS Snap
Start) and bootstrapping security from the DNS (Minimal
latency networking, Snap Start client).

c) Packet loss recovery delays: When data traverses
a link with appreciable packet loss/corruption due to link
errors and/or a heavily loaded network bottleneck suffering
congestion, the transport-layer error/loss control can induce
a substantial amount of delay. For example, Flach et al. [4]
show that Web flows experiencing loss can increase fivefold
in average completion time, making loss recovery delays a
dominating factor for Web latency.

There are three types of loss recovery techniques: retrans-
mission, redundancy and loss concealment. Retransmission
technique uses a control loop to identify loss/corruption and
retransmit the missing packets. If the mechanism requires
packet ordering, loss implies Head-Of-Line (HOL) blocking at
the receiver to reorder the retransmitted data. In case retrans-
mission fails a further delay is incurred as a retransmission
timer needs to be triggered. Redundancy methods can be
as simple as packet duplication at the sender (e.g. sending
multiple copies of a single control packet) or by coding a

2015 European Conference on Networks and Communications (EuCNC)

549



combination of packets using Forward Error Correction (FEC).
Fundamentally, FEC imposes a trade-off between decreased
capacity and enhanced reliability, and additional processing
at the sender and receiver. A combination of the following
loss recovery methods may be needed to achieve a tradeoff
between processing, reliability and delay: applications can be
tolerant to loss; techniques to reduce packet loss detection
times can be used (e.g. updating the TCP and SCTP retrans-
mission timeout (RTO) timer); a combination of redundancy
and retransmission (for example ‘hybrid ARQ’); finally, ECN
can be used to propagate an unambiguous congestion signal,
marking packets instead of dropping, thus avoiding loss and
need for retransmission.

d) Message aggregation delays: TCP uses two com-
plementary aggregation methods to reduce the number of
IP packets to be transported, i.e the Nagle algorithm [5]
and the delayed ACK algorithm [6]. The Nagle algorithm
delays the sending of a small segment while a previously-
sent segment has not been acknowledged. It coalesces small
blocks of application data into a larger block, which then
can be sent in a single packet, instead of sending as many
packets as data blocks. The delayed ACK algorithm reduces
the amount of pure ACK messages (i.e. containing no data),
either by piggybacking an ACK signal onto a data-carrying
segment, or by sending a pure ACK only for every two
full-sized data segments. In case the ACKs are lost or no
data is flowing in the reverse direction, a timer as high as
200 ms, ensures that an ACK is always eventually sent. These
mechanisms trade latency for bandwidth efficiency, but used in
combination they may give rise to severe additional delay [7].
To avoid this latency penalty the Nagle algorithm can be
turned off, or a variant [8] can be used, where transmission
of a small segment is delayed only if the previously-sent,
unacknowledged segment is also small.

IV. DELAYS ALONG TRANSMISSION PATHS

The flight latency of a packet is the time it takes from
transmission endpoint to reception endpoint. This includes
delays due to signal propagation speed, gaining access to the
transmission media, serialisation of the sending data, switching
and forwarding, error recovery and queueing.

a) Signal propagation delays: Electromagnetic waves
travel at the speed of light, but this is slower in more dense
media such as optical fibres than it is in less dense media
such as air. The delay encountered depends on this speed
of propagation and the length of media. Propagation delays
can be reduced by: (i) reducing the path length by making it
straighter, and (ii) increasing the speed by using a medium
with faster propagation.

b) Medium acquisition delays: Where communicating
entities share a common medium, access to the media has
to be managed to avoid mutual interference. On demand
contention based mechanisms, such as in Wifi, can cause
significant and unpredictable delays since access to the media
is not guaranteed. They can also aid latency-sensitive traffic
by providing prioritised access to the medium.

c) Serialization, switching and forwarding delays: It
takes time to get data out of a network card and onto the
medium and into the receiver, a process often repeated at
every junction along the network path. Junctions often also add
switching and forwarding delays. Increasing line rates reduces
the serialization delays, while reducing the number of hops
reduces the number of times it is added to the flight latency.
Cut-through and wormhole switching can reduce switching
and forwarding delays.

d) Link error recovery delays: Recovering errors at the
links where they occur can avoid longer end-to-end recovery
delays. Managing link recovery delays is a compromise be-
tween reducing utilisation, adding a constant coding delay to
avoid errors, adding a variable delay to retransmit locally even
if the application doesn’t need it, and avoiding variable end-to-
end retransmission delays to repair losses. Local loss repair is
especially useful on error-prone links, such as microwave and
cellular, where a good compromise can improve the average
latency and make it more consistent.

e) Queueing delay: Queueing delays are often the largest
contributors to the flight latency. The issue has been com-
pounded by an over-abundance of network buffering, an issue
that has been termed bufferbloat [9]. The following paragraphs
outline efforts to reduce these delays.

Flow and circuit scheduling can avoid queueing delays in
the network by pre-scheduling a circuit or flow path for packets
to traverse from end-to-end through the network. This adds an
initial setup delay, however, once the path has been established
the queueing delay is zero, so the flight latency reduces to the
sum of the propagation delays through the network.

Reducing buffers sizes at network switches and in the MAC
layer prevents excessive queue build up. IP layer switches
have been designed to provide roughly one Bandwidth Delay
Product (BDP) of buffering. Buffer sizing is often a compro-
mise between latency and link utilisation, however, switches
for highly aggregated traffic require only a fraction of a BDP
sized buffer to achieve high utilisation. At the edges of the
network where there is a lower degree of flow multiplexing
transport layer burstiness causes queueing. Packet pacing can
reduce the edge network buffer requirements.

Packet scheduling has been an area of active research for
decades. It does not reduce the average delay of all packets, but
instead can give selected packets precedence over others, thus
reducing the latency of those selected packets. Efforts can be
categorised into (i) class based mechanisms which give priority
to particular classes of traffic, (ii) flow based mechanism
which segregate flows such that competing flows cannot inflict
latency on other flows, (iii) latency targeting mechanisms, such
as schemes that schedule packets according to their delay
deadlines, and (iv) hierarchical mechanism which combine
the previously listed mechanisms in a hierarchical manner to
achieve particular Quality of Service (QoS) objectives.

Queue management and in particular Active Queue Man-
agement (AQM) can be used to help keep average queueing
delays low by preemptively marking or dropping packets to
prevent greedy transport protocols like TCP from keeping the

2015 European Conference on Networks and Communications (EuCNC)

550



li
n

e
u

ti
li

sa
ti

o
n

b
u

ff
er

o
cc

u
p

an
cy

b u f f e r    s i z e

AQM
operating

point

shallower
operating
point

good line 
utilisation

lower queuing 
delay and more 
predictably low

buffer kept 
for bursts

TCP saw-teeth 
seeking the 

operating point smooth TCP:
more smaller 

saw-teeth

Today (at best)
TCP on end-systems
AQM at bottlenecks

if change bottlenecks
alone

DCTCP
change bottlenecks 
and TCP

cuts delay but 
poorer line 
utilisation

time also highly insensitive 
to threshold configuration

Fig. 4. How Data Centre TCP (DCTCP) reduces delay without losing
utilisation [1].

buffer full. The focus of recent work, such as the Proportional
Integral Controller Enhanced (PIE) AQM [10], and the Con-
trolled Delay (CoDel) AQM [11] (and fq-CoDel), has been to
reduce parameter sensitivity which was a problem with earlier
proposals. These algorithms buffer transitory bursts of packets,
but try to keep the average queue length to a target delay.

f) Transport-based queue control: Data Centre TCP
(DCTCP) [12] works together with AQMs along the path
using ECN signals to maintain high throughput with low
flight latency (see Fig. 4). Apart from using signals from an
AQM, packet delay can be used as a congestion signal. Delay-
based congestion control mechanisms are able to maintain low
queueing delays along the path, but only when not competing
with protocols that use loss as a congestion signal.

V. DELAYS RELATED TO LINK CAPACITIES

Link capacities along a path can have an impact on latency
in several ways.

a) Insufficient capacity: The available capacity may be
scarce. This could simply be due to a link with an inherently
low capacity, which will lead to high packet serialisation times.
There are a number of different techniques that can reduce
latency due to insufficient capacity.

Increasing capacity is most obvious one, increasing link
speeds, yields smaller serialisation times and helps with al-
leviating persistent congestion, but it may not always be a
feasible solution. Aggregate use of several links or end-to-
end paths results in an effective higher capacity; this can be
done at different layers of the protocol stack (e.g., bundling of
parallel links at the network layer, or use of multipath transport
protocols [13]).

Reducing redundant information sent across the network
makes it possible to utilise scarce capacity in a more efficient
way. The use of multicast or protocol-header compression [14]
are approaches that fall into this category.

b) Underutilised capacity: Capacity may be abundant
yet be poorly utilised. Inefficiencies are typically related to
how end-to-end protocols share a link’s capacity. Congestion
control algorithms such as TCP’s have to sense available

capacity as quickly as possible (to avoid inefficiency). TCP
congestion control mechanisms have well-known limitations
in this regard. Probing for capacity when a flow starts (either
at the beginning of a connection or after a long idle period) can
be improved by e.g. allowing larger initial bursts of packets,
since this can noticeably reduce the transfer time of small to
medium volumes of data.

c) Collateral damage: The goal of sensing and using
capacity as quickly as possible is often at odds with trying to
share it in a fair manner. Allowing larger initial bursts may
induce severe loss—either on the flow sending the burst, or
on other flows, or both—and, therefore, higher delays. Diverse
techniques have been proposed to sense available capacity as
rapidly as possibly while avoiding increased losses and delays.

VI. INTRA-END-HOST DELAYS

Delay caused by bloated buffers within end-hosts needs
to be solved with the same techniques as for buffers in the
network; correct buffer sizing and active queue management
(see §.IV). HOL blocking adds delay when packets are lost or
reordered during transmission. HOL blocking is particularly
harmful when a loss in one ordered stream holds back another
that has not experienced loss, merely because it is multiplexed
into a common sequence with the blocked stream. In addition,
ECN and FEC can remove or hide the losses that are the
underlying cause of the blocking, respectively.

How the host CPU, memory and I/O devices are designed
to exchange and process data has a fundamental impact on
the latency experienced by applications. Techniques such as
parallelization, pipelining and zero-copy can increase perfor-
mance and reduce latency. Bit-level, instruction-level, data or
task parallelism can reduce latency, however this is not always
straightforward [15]. Addressing latency in the host is not just
about having faster hardware, it requires novel architectures
looking at latency as a fundamental system parameter. In this
respect, chip manufacturers already optimize and integrate
frame control, scheduler, memory and data path logic in the
silicon fabric [16].

VII. COMPOSITE SOLUTIONS

Some mechanisms “bundle” different techniques to tackle
several delay sources. Wide Area Network (WAN) accelerators
and Performance-Enhancing Proxies (PEPs) are two widely-
deployed examples. The former may employ techniques that
are either generic (e.g., removal of duplicate data transfers),
or focused on the transport layer (e.g., Secure Socket Layer
(SSL) acceleration or quickly filling available capacity) or on
the application layer (e.g., reducing round trips of application-
layer protocols that behave inefficiently on a WAN). PEPs
are typically found in wireless links, and may leverage cross-
layer information besides implementing mechanisms similar
to those found in WAN accelerators.

SPDY [14] is an application-layer protocol that combines
techniques intended to speed up the load time of web pages.
It employs mechanisms such as protocol-header compression,
stream multiplexing and stream prioritisation.

2015 European Conference on Networks and Communications (EuCNC)

551



CDN

TLS-FS

no DSL 
interleave

AQM
FEC/TCP

TFO

ECN+AQM

DNS
pre-

fetch

DCTCP

Deploy-
ability

reduction in
completion

time

50%

0

100%

StraightforwardVery Hard or Costly

data
pre-fetch

straighter links
hollow fibre

micro-
wave

sender onlyboth ends
network only

both ends
& network

all at 
once

for example...

QS

RTOR
TLP

IW10

(a) Small session (s20 kB) flows over WAN

RTOR
TLP

TLS-FS
DNS
pre-

fetch

reduction in
completion

time

50%

0

100%

Very Hard or Costly
sender onlyboth ends

network only
both ends
& network

all at 
once

for example...
Straightforward

Deploy-
ability

ECN+AQM

DCTCP

data
pre-fetch

CDN
AQM

straighter
links

hollow fibre

IW10TFO

QS

(b) Small session (s20 kB) flows over LAN

Fig. 5. Bubble plots of rough latency gains against ease of deployment for a selection of techniques. The heights of the captions of each bubble represent
typical values, and the vertical extent of the bubble represents variance [1]. QS (Quick-Start), New-CWV (New Congestion Window Validation), IW10 (Initial Window 10), TFO
(TCP Fast Open), TLS-FS (Transport Layre Security/False-start), DNS (Domain Name Service),RTOR (Retransmission TimeOut Restart), TLP (Tail Loss Probe), CDN (Content Distribution Network)

VIII. GAIN VS. DEPLOYABILITY

This section summarizes the benefits of the various tech-
niques by comparing their potential gains versus the difficulty
involved in deploying them. The two independent variables
that affect the impact of all approaches are: the relative
session size and relative distance between end-points. Fig. 5
visualises the merits of a subset of techniques for small session
sizes (⇠ 20 kB) illustrating two representative distances: small
(Local Area Network (LAN)) and large WAN RTTs.

The bubbles in Fig. 5 are positioned according to the
approximate gain vs pain of the different techniques. The ver-
tical position of the caption representing the typical expected
latency reduction of the technique. The further to the right
a technique, the less complex it is to deploy, so in general
high bubbles on the right hand side of the graph are better.
That stated, some research is improving the deployability of
techniques shifting them towards the right side of the graph.

IX. CONCLUSIONS

Reducing network latency is a key challenge for the future
Internet. It is a multifaceted undertaking and will require
combining the various different competencies in the scientific
and industrial communities in a collective effort. [1]. This
paper provides a succinct overview of the issues involved in
addressing this problem. For a more thorough treatment with
extensive references we refer readers to [1].

REFERENCES
[1] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I.-J. Tsang,

S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing
Internet latency: a survey of techniques and their merits,” IEEE Com-
munication Surveys and Tutorials, Nov. 2014. [Online]. Available:
http://dx.doi.org/10.1109/COMST.2014.2375213.

[2] S. Podlipnig and L Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–
398, 2003.

[3] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, TCP Fast Open,
RFC 7413 (Experimental), Internet Engineering Task Force, Dec.
2014.

[4] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y.
Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing
web latency: the virtue of gentle aggression,” in Proc. of ACM
SIGCOMM, (Hong Kong, China), 2013, pp. 159–170.

[5] J. Nagle, Congestion Control in IP/TCP Internetworks, RFC 896,
Internet Engineering Task Force, Jan. 1984.

[6] R. Braden, Requirements for Internet Hosts - Communication Layers,
RFC 1122 (INTERNET STANDARD), Updated by RFCs 1349, 4379,
5884, 6093, 6298, 6633, 6864, Internet Engineering Task Force, Oct.
1989.

[7] S. Cheshire, TCP performance problems caused by interaction be-
tween Nagle’s algorithm and delayed ACK, Self-published online:
http://www.stuartcheshire.org/papers/NagleDelayedAck/, May 2005.

[8] G. Minshall, “A proposed modification to Nagle’s algorithm,” Internet
Draft draft-minshall-nagle, Jun. 1999, Work in progress. [Online].
Available: http://tools.ietf.org/html/draft-minshall-nagle.

[9] J. Gettys, “Bufferbloat: dark buffers in the Internet,” IEEE Internet
Comput., vol. 15, no. 3, pp. 96–96, 2011.

[10] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: a lightweight control scheme to
address the bufferbloat problem,” in Proc. of the IEEE International
Conference on High Performance Switching and Routing (HPSR), Jul.
2013.

[11] K. Nichols and V. Jacobson, “Controlling queue delay,” ACM Queue,
vol. 10, no. 5, May 2012.

[12] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
in Proc. of ACM SIGCOMM, (New Delhi, India), Sep. 2010.

[13] C. Raiciu, M. Handley, and D. Wischik, Coupled Congestion Control
for Multipath Transport Protocols, RFC 6356 (Experimental), Internet
Engineering Task Force, Oct. 2011.

[14] M. Belshe and R. Peon, “SPDY protocol,” Internet Draft draft-
mbelshe-httpbis-spdy, Feb. 2012, Work in progress.

[15] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design, Fourth Edition, Fourth Edition: The Hardware/Software In-
terface (The Morgan Kaufmann Series in Computer Architecture and
Design), 4th. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2008.

[16] U. Cummings and M. Zeile, “Focalpoint II, a low-latency, high
bandwidth switch/router chip,” in Proc. of the Symposium on High
Performance Chips (Hot Chips), (Stanford, Califonia), Aug. 2007.
[Online]. Available: http://www.hotchips.org/wp-content/uploads/hc
archives/hc19/3 Tues/HC19.07/HC19.07.03.pdf.

2015 European Conference on Networks and Communications (EuCNC)

552


