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Abstract—This paper introduces a promising new direction
for getting a traffic flow up to speed fast while keeping the
maximum queuing delay that the new flow adds extremely low.
It is therefore most interesting in environments where queue
delay is already fairly low. Nonetheless, it requires no special
network infrastructure, being solely delay-based, so it ought to
be applicable to the general Internet.

Received wisdom from TCP slow-start is that the faster a
flow accelerates, the more it will overshoot the queue before the
sender will notice one round trip later. The proposed technique,
called paced chirping. escapes that dilemma. The sender pulses
the queue increasingly rapidly with trains of packets called
‘chirps’ that it crafts to rapidly estimate available capacity.
Critically, the sender relaxes the queue between chirps, so the
queue never accumulates more than a few packets. Thus, paced
chirping escapes the overshoot dilemma, but still pushes enough
against any pre-existing flows, so they yield their capacity.

The algorithm has been implemented in Linux and shows
great promise from initial evaluation. Work so far has set
aside numerous issues that are all important, but not central to
proving the concept, e.g. handling delayed ACKs, losses, ECN
marking, reordering, variable rate links, etc, The work and
the code is being published at this stage to seek review and
collaboration around this promising direction.

I. INTRODUCTION

This paper introduces a promising new direction for getting
a traffic flow up to speed fast while keeping the maximum
delay that the new flow adds extremely low (2–3 ms over a
typical Internet RTT of 20 ms).

It is therefore most interesting in environments where
a congestion control like Data Centre TCP (DCTCP [2])
already keeps queuing delay extremely low. This might be
in a data centre itself, or over the Internet within the L4S
architecture being standardized at the IETF [4], [6].

The testbed experiments reported in this paper assume
an L4S environment within the Internet. Nonetheless, the
solution requires no special network infrastructure, being
solely delay-based. Therefore we have open-sourced the
code to encourage others to try it within other end-to-end
transports and over other networks.

Received wisdom from TCP slow-start is that the faster a
flow accelerates, the more it will overshoot and cause queuing
delay before the sender will be able to notice one round trip
later. The proposed technique escapes that dilemma.

The sender pulses the bottleneck queue with ‘chirps’
that are short trains of packets sent increasingly close to-
gether [19]. The sender can rapidly estimate the available

capacity using the relative delay of acknowledgements. To
minimize delay to itself and others, the sender prevents the
queue accumulating any more than a few packets by allowing
a guard interval between each chirp so the queue can relax. It
uses the variability of its estimates to adapt the guard interval.
This approach was informed by our experience with TCP
RAPID [14], which doubles its window as in the traditional
slow-start and only uses chirps to determine when to exit
slow start. It also starts each chirp directly after the previous
one, so an overestimate can still overshoot for a whole round.

With paced chirping, each chirp still causes competing
traffic to make space for the new flow. It tracks this increasing
availability of capacity and keeps pushing against it, both
by spacing the packets within a chirp more closely and
by spacing the whole chirps more closely—hence the name
‘paced chirping’.

The paced chirping algorithm has been implemented in
Linux and shows great promise from initial evaluation. This
work solely focuses on proving the concept. If that survives
critical review, there is much further work to do (listed at the
end). The most critical being the need to be able to control
delayed ACKs from the sender and the need to tune and
evaluate over variable rate links.

A. The Problem

Cutting delay in communications is a multifaceted prob-
lem [5]. Most modern applications are latency-sensitive; not
just the usual examples, voice and gaming, but also instant
messaging and most uses of the web, as well as remote
desktop, interactive apps based in the cloud and real-time
apps such as conversational / interactive video, augmented
reality and remote control of industrial processes.

For virtual reality to feel natural, as a rule of thumb the
lag has to stay below about 20 ms end-to-end [1], [7]. The
speed of light equates every millisecond of round-trip delay
to 100 km in glass (or 150 km in air). So, if delays other than
propagation could be reduced from say 15ms to 1ms, for the
same natural perceptual experience, servers would only have
to be distributed to within 1,900 km (19 ms) of each user,
rather than within 500 km (5 ms).

Particularly for real-time apps, it is important to cut the
high delays in the tail of the latency distribution, not just
reduce the average. By far the greatest cause of delay vari-
ation is queuing. Modern active queue management (AQM)
can reduce the average delay under load to 5–15 ms [13].



However, the 99th percentile (P99) queue can still reach
20–100 ms depending on load. Per-flow queuing isolates one
flow from the queuing of another. However, amongst other
problems, it does not protect a flow from its own delay
variation, which is important for emerging interactive real-
time apps that need both low delay and high throughput.

Data centre TCP (DCTCP) proves that flows can start up
with very little extra queuing delay. And the L4S approach
being standardized by the IETF [4], [6] makes it possible
and safe to deploy so-called ‘scalable’ congestion controls
derived from data centre TCP (DCTCP) over the public
Internet. Thus, L4S seems to solve the problem, cutting P99
queuing over the public Internet to about 1 ms [8]. However,
only at the expense of greatly increased convergence time.

In a data centre environment, the convergence problem is
caused by two factors: i) new flows exit slow start early
because of the higher prevailing ECN marking probability
induced by established DCTCP flows and ii) established
DCTCP flows respond 1.5 to 2× more slowly than TCP [3].

[8] achieved ultra-low queuing delay in an Internet envi-
ronment using the Linux DCTCP code that supports mixed
round trip times [3] over an L4S DualQ Coupled AQM [9].
We use the same arrangement in our experiments and show
that DCTCP’s convergence problem is a lot worse than in
a data centre (see Figure 1). The problem is compounded
by the greater typical disparity between the line rate of the
sender and of the bottleneck. While the sender is probing
for the bottleneck rate, it is hard to avoid tripping over the
shallow ECN-marking threshold and exiting slow-start early.

Currently, the paced chirping solution gathers ECN feed-
back to build a moving average level of congestion, but we
have temporarily suppressed any response to ECN until the
congestion avoidance phase starts. We have plans for paced
chirping to improve its precision if ECN signals are available,
but it will respond to their extent, not just the existence of a
single mark.

Paced chirping deliberately depends primarily on delay
measurements because, when it starts, a flow cannot be sure
whether the bottleneck supports L4S-ECN. Usually, if the
sender receives ECN feedback after very little growth in
queue delay, it can assume an L4S-ECN bottleneck. However,
when cross-traffic at the bottleneck is yielding capacity to
a rapidly growing flow, we have to allow for a new node
becoming the bottleneck, which we cannot assume will
support L4S.

B. Contributions

The main contribution of this paper is an algorithm that
should be able to keep the additional queue at flow-start
scale-independent (and it does in our limited experiments).
This is achieved by leaving a guard interval between each
chirp, and reducing it more rapidly, the more consistent
the repeated measurements of available capacity are. Our
understanding of how this adaptation should proceed is
still developing, but even with no adaption, the algorithm
performs extremely well at fixed capacity bottlenecks.
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Fig. 1. Throughput and Queue delay of 4 DCTCP flows in an Internet
environment starting one after another. Each new flow hardly increases
queuing delay at all, but each flow exits slow-start very early making
convergence to steady state very slow. ECN-marking threshold 0.17*BDP;
RTT 15 ms; capacity 120 Mb/s.

The wider contribution is an approach that introduces
closed-loop control after the first round trip. it continually
crafts the spacing between sent packets around measurements
exploiting the patterns used in previous rounds, while allow-
ing for the possibility of change and error.

We have also contributed our Linux code as open-source. It
includes a general facility in the kernel for releasing packets
at a list of times (similar to timing wheels [20]), based on
internal pacing. We have also contributed initial evaluations
of paced chirping in an L4S environment, including compar-
isons with hybrid slow-start and DCTCP.

II. SOLUTION DESIGN

The approach uses existing work on packet chirping to
estimate the available bottleneck capacity of the network
path [19], briefly outlined below. Loosely, the sender sets the
average rate of each chirp to its estimate of available capacity
from previous rounds. However, we pace the start of each
chirp to introduce a guard interval to allow for estimation
error, as also outlined below.
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Fig. 2. Packets in a chirp are sent with decreasing inter-packet interval
(increasing inter-packet rate).

A. Chirping

A flow start mechanism needs to know available capacity
of the bottleneck link, not the maximum capacity. A data
sender can measure available capacity with packet chirps,
which are sequences of packets sent with decreasing inter-
packet interval. Figure 2 shows the inter-packet rates in a
16-packet chirp. The sender measures available capacity by
detecting when the inter-packet delay at the receiver flattens
off. It achieves this by comparing the inter-packet intervals of
the sent and received packets. Ideally one-way delay would
be used but round-trip delay using the TCP timestamp option
is more convenient and it is sufficiently accurate in the
absence of reverse path congestion.

The processing cost can be kept low by using an arithmetic
series for the gaps [15]. We use microsecond precision timers.
Nonetheless, chirping is inherently robust to the actual time
a packet is released as long as the gaps tend to reduce. We
currently use the techniques from pathchirp [19] to filter out
noise.

The alternative of measuring the ACK rate from a line-
rate burst would not be useful. It would measure maximum
capacity as if there were no background traffic, because the
burst would squeeze numerous packets into the gaps between
the background packets then measure their rate as the queue
drains into the link.

Similarly, the alternative of sending at a constantly paced
packet rate that increases each round [16] is not a fruitful
way to resolve the acceleration vs. harm dilemma. Up until
slightly below the available capacity, pacing causes minimal
harm but gathers zero information about capacity. However,
once the sender increases to even slightly above available
capacity, the queue grows for the whole round trip, with no
warning until a round trip later.

B. Paced Chirping

The goal is to create a close-loop flow-start algorithm
from the start of the second round. Then the way flow-start
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Fig. 3. The arrangement of chirps in each round as a flow starts up.

proceeds can depend on the run-time environment, not on ar-
bitrary hard-coded design-time constants. It aims to maximize
the ratio between the rate at which information is gathered
about available capacity and the harm (queue delay) caused
in the process. To this end, we believe there is considerable
scope to further improve the algorithm illustrated in Figure 3
and outlined below or in detail in [18]. Nonetheless, it is
already giving very promising results.

In the following two paragraphs we will first discuss how
the average gap of each chirp is determined, and then discuss
the ‘guard interval’ that the sender introduces to space out
the chirps over the round in order to ensure the queue has
time to relax.

As each round proceeds, the sender determines the average
gap for the next chirp from an EWMA1 of the gap estimates
from previous rounds, where each gap estimate is the inter-
packet gap at which queuing was found to start in each chirp.
In Figure 3, each chirp is labelled with the number of packets
within it. After round 3, the number no longer increases,
but it can be seen that the duration of each chirp reduces.
This is because the available capacity is increasing, due
to background flows yielding in response to the congestion
caused by the peaks of previous chirps.

If the gap estimate were perfect, even sending chirps back-
to-back (as in TCP RAPID [14]) would allow time for the
queue to relax. But the guard interval allows for error in
the estimation. This avoids the queue ratcheting up, which
aims both to avoid harm and to ensure that each chirp starts
from a clear queue. By spreading out the times when samples
of available capacity are taken we also hope to reduce the
chance of completely missing other flows in the process of
starting up.

Figure 3 illustrates the gain increasing from 2 to 2.5
between rounds 3 and 4 as the consistency of the measure-
ments improve. The gain represents how much the window
multiplies from one round to the next, and higher gain leads
to a faster reduction in the guard interval.

This approach aims to ensure that the maximum queue
delay solely depends on chirp geometry. Thus, queue delay
will not depend on the ultimate window of packets per round
trip. Therefore, as flow rates scale into the future, queue delay
will remain scale-independent.

The spikes of each chirp ensure that some congestion
occurs, so that any background flows are induced to yield

1We intend to weight each gap estimate to account for the noisiness of
the measurements within the chirp it came from.
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to a new flow2. As the sender introduces more chirps in each
round, it induces more frequent congestion events, but with
no greater pulse to the queue each time.

The more consistent recent capacity measurements are,
the more the gain can increase. This is an area for futher
experimentation, but even a naı̈ve algorithm significantly
reduced queue delay, albeit with slight loss in performance
(see [18]). We have experimented with the guard interval
reduce dependent on an EWMA of the variability of previous
estimates. In this way, when the estimate repeats solidly (e.g.
when the link is empty), the algorithm will accelerate rapidly
to the available capacity but, when the estimate is noisy,
the algorithm will accelerate more cautiously. We have also
adapted the geometry of the chirp (see [18] for details).

Currently, we continue the paced chirping process until the
chirps are back-to-back (no guard-interval) at which point
the sender gracefully transitions to congestion avoidance
phase. We transition to ACK-clocking rather than pacing the
traffic with the system clock, but other forms of congestion
avoidance would be possible.

III. IMPLEMENTATION

Paced chirping is implemented as two parts in Linux
kernel version 4.13. [18] describes the implementation and
the modifications we have made in more detail.

The first part is a modification to the internal pacing code
introduced in version 4.13 that allows for inter-packet time
gaps. Chirps are realized by controlling the gaps between
subsequent packets. We have added two linked lists to the tcp
sock structure that contains new and used entries with gap
information for individual packets. This enables control of
the earliest release time of each packet, similar to the timing
wheels in Carousel [20], which could be used instead. Indeed,
pressure is building to provide such a facility in hardware on
the NIC [12].

The modification makes it possible to schedule chirps
and guard intervals from a CC module. Figure 4 shows a
schematic of the modification and the two lists we have
added. Each time the kernel sends a packet it check if a
new entry is available, and if so it applies the gap after the
packet had been sent. It also writes a timestamp and the next

2There also has to be enough pressure to trigger the scheduler of any
shared links to open up the capacity, but we have not tested over such links
yet.

sequence number to the entry before putting it in the linked
list for used entries for examination by the CC module. The
timestamps are used by the CC module to get the actual inter-
send time of the packets. Small differences between requested
and actual packet gaps are acceptable, but it is important that
the CC module is made aware of the real gaps.

The second part is the addition of paced chirping logic to
the DCTCP congestion control module that comes with Linux
4.13. DCTCPs congestion avoidance behaviour is unaltered.
The code is available online3.

In addition to the two main parts we have added three tog-
gles as interim measures to disable delayed acks, hide ECN
marks from the kernel stack, and disable kernel calculation
of pacing rate. The first toggle is necessary as the kernel
heuristic starts using delayed acks before paced chirping tran-
sitions to congestion avoidance. The second toggle prevents
the kernel from entering congestion window reduction state
upon receiving a single CE mark, but importantly the CE
mark is still delivered to the congestion control module. The
third toggle is necessary in the transition from paced chirping
to congestion avoidance and ack-clocking.

IV. EVALUATION

We have evaluated paced chirping in a physical testbed
of 5 machines configured in a dumbbell topology to allow
repeatable experimentation but with real equipment. It has
two servers which act as traffic generators, an AQM which
applies network characteristics, and two clients acting as
sinks. The clients are connected to the AQM machine through
a switch to allow them to share a bottleneck. All the machines
are connected through an additional network to prevent
control traffic from interfering with experimental traffic.

The AQM is configured using the tc command. Delay
is introduced by netem, and rate limiting is applied by the
hierarchical token bucket (HTB) qdisc with burst size limited
to 1B.

We will use paced chirping as a term for DCTCP with
paced chirping instead of slow start. If nothing else is
specified the initial gain and geometry are both set to 2. If
nothing else is specified the ECN marking threshold is set to
1ms.

A. Flow Completion Time

The purpose of this experiment is to compare paced chirp-
ing with DCTCP and Cubic using more realistic web traffic.
Each experiment has 1000 flows with Pareto distributed flow
sizes mimicking recent real-world measurements since the
introduction of HTTP/2 [17]. Alpha and mean are set to
0.5 and 900 Bytes respectively, and the sizes are limited
to the range [1KB, 5MB]. The inter-arrival times of the
flows are exponentially distributed with various mean values
configured, called intensity. The network is configured with
a 15 ms RTT and a 100 Mb/s capacity. DCTCP and paced
chirping are run with a 1 ms marking threshold, while Cubic

3https://github.com/JoakimMisund/PacedChirping
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Fig. 5. Flow Completion Time and queueing delay for Cubic, DCTCP
and Paced Chirping. DCTCP and Cubic makes opposite trade-offs between
latency and FCT, while Paced Chirping achieves both low latency and good
FCT. ECN-marking threshold 1 ms or 1 BDP tail-drop; RTT 50 ms; capacity
100 Mb/s.

is run with a tail-drop queue of 1 BDP. We ran Cubic with and
without hystart [10] but, to avoid crowding the plots, we only
show the results with hystart, because both FCT and queueing
delay were slightly worse without it. We vary the intensity
to test performance under various loads. The experiment is
run with and without a greedy background flow.

Figure 5 shows the flow completion time and empirical
CDF of the queueing delay of the 1000 flows under different
conditions. Cubic achieves good FCT, but only at the expense
of a significant queue. DCTCP does not handle the low
marking threshold well and exits slow start early which
reduces the FCT for longer flows. On the other hand the
queuing delay is excellent. Flows that use paced chirping
finish as fast as Cubic but with queueing delay nearly as low

as DCTCP; far lower than Cubic. Paced chirping does not
make the trade-offs that Cubic and DCTCP have to make.

B. Time Series as 4 Flows Arrive
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Fig. 6. Throughput and queue delay of 4 DCTCP flows starting one after
another with paced chirping in an Internet environment. Each flow converges
to steady state very fast with fairly low additional queueing delay. ECN-
marking threshold 1 ms; RTT 15 ms; capacity 150 Mb/s.

The purpose of this experiment is to show visually how
representative runs of paced chirping behave with and with-
out background traffic and with varying number of flows.

Figure 6 shows 4 flows started after one another with
enough time for the existing flows to converge before the next
joins. This is the same experiment as used for motivation in
subsection I-A except for the increased capacity.

The first flow accelerates right to the capacity without
creating a noticeable queue except for the first two bursts
of 5 packets. The flow successfully pulses the queue to get
information about the capacity.

The other flows start in a fully utilized network and have
to push the existing flows back more to claim a share of
the bottleneck faster which builds slightly more queue than
DCTCP does. It is possible to adapt the gain and geometry
to make the flows less aggressive [18].



C. Time series as Mixed Size Flows Arrive

The purpose of this experiment is to visualize how paced
chirping behaves in a run that is more representative of real
user traffic, but still simple enough to see what is going on.

We add UDP traffic roughly equal to 20% of the total
capacity. The inter-send time of the UDP-packets is expo-
nentially distributed with an average corresponding to 20%
of the total capacity. Then we add twelve 1 MB flows and
two long lived flows all starting staggered. The network has
a 20 ms RTT and 120 Mbps capacity.
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Fig. 7. Throughput of various flows including light UDP traffic (not shown).
With paced chirping (bottom plot) the smaller flows complete faster and the
long-lived flows accelerate faster relative to regular DCTCP using slow-start
(top plot). ECN-marking threshold 1 ms; RTT 20 ms; capacity 120 Mb/s.

Figure 7 shows that paced chirping is able to accelerate
faster than DCTCP which improves flow completion time
and throughput when entering congestion avoidance.

V. WHERE PACED CHIRPING FITS

Paced Chirping is not only intended to be used during the
initial start-up of a flow. It is as applicable during a restart
after an idle, although we have not implemented that yet.

So-called scalable congestion controls such as DCTCP also
offer much greater potential to exploit paced chirping at any
point when the ECN signal disappears during congestion
avoidance phase. By definition a scalable congestion control
ensures that the frequency of congestion signal remains
constant (at about 2 marks per RTT) as flow-rate scales.
Thus the sender can detect when the signal has disappeared
within a couple of RTTs. This most likely indicates that
more capacity has become available, perhaps due to a flow
departing or capacity increasing (e.g. radio links).

In contrast, with an ‘unscaleable’ congestion control it
would be infeasible to trigger paced chirping after absence
of any congestion signal had gone on longer than normal,
because very long absences are already normal and they are
getting longer as flow-rates scale. For instance Cubic sees a
loss every 500 RTTs at 800 Mb/s over 20ms RTT.

Thus, with scalable congestion control, it is not necessary
to chirp all the time during stable periods of congestion
avoidance, as TCP RAPID [14] does. This avoids raising
the noise floor during times when established flows have a
frequent closed-loop ECN signal anyway.

VI. CONCLUSIONS

Paced chirping is a new and promising algorithm that seeks
to replace slow start. Slow start is an open-loop algorithm
with heuristics not suitable for low queueing delay environ-
ments. Paced chirping decouples the amount of data sent from
the information it gets. Since paced chirping is purely delay-
based it should be applicable to any environment, not just
ECN-based ones.

A. Future Work

We divide future work into research and engineering.
a) Future research::

• Improving the noise filtering and precision of chirps,
especially over variable-rate links, e.g. DOCSIS, GPON,
LTE, WiFi, etc.

• Termination condition - when to stop pushing in
• Exploit ECN signals if available
• Best strategy during the first round
• Evaluate over wider range of conditions and iterate.

b) Protocol engineering::
• Handling delayed ACKs and ACK thinning, including

the possibility of putting packet arrival time in stretch
ACKs (an idea used in earlier versions of QUIC [11])

• Handling loss and reordering
• Interaction with TCP Fast Open.
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