
Discussion Paper

Per-Flow Scheduling and the End-to-End Argument

Bob Briscoe∗

22 Jul 2019

Abstract

The primary message of this paper is that rough equal-
ity between flow rates is only needed in times of famine
(when congestion is high). It is a common misunder-
standing to interpret this guidance for end-to-end trans-
ports as a requirement that the network ought to en-
force precisely, whether in times of plenty or famine.
In times of plenty, unequal flow rates are a feature not
a bug. This puts the end system in control, allowing
innovation without asking the network’s permission.

This paper was written now because two approaches
have been proposed to enable end-systems to maintain
extremely low queuing delay: L4S and SCE. Without
explaining the abbreviations here, the high level point
is that they both compete for the same last ECN code-
point in the IP header. SCE seems to require per-flow
scheduling in the network in order to provide bene-
fit. Whereas L4S provides benefit either with per-flow
scheduling or with a DualQ Coupled AQM.

One of the reasons that the DualQ approach was devel-
oped was so that those who want extremely low latency
would not be forced to have to use per-flow schedul-
ing (but they still could if they wanted to). To those
who see per-flow scheduling as a panacea, it does not
seem important to allow this choice. That is why it was
thought necessary to explain the concerns that people
have about per-flow scheduling.

CCS Concepts

•Networks → Network Architecture, Net-
work algorithms;

Keywords

Data Communication, Networks, Internet, Control,
Congestion Control, Scheduling, Quality of Ser-
vice, Performance, Latency, Algorithms, Network
Architecture,End-to-End Argument, Active Queue
Management, AQM, Explicit Congestion Notificia-
tion, ECN

∗research@bobbriscoe.net,

1 Introduction

This paper is about scheduling the packets of indi-
vidual application flows (termed just ‘flows’ in this
paper). It concerns the choice between scheduling
between flows in the network or in a distributed way
by the end-to-end transport layer. Even though the
end-to-end approach is a form of scheduling, we will
solely use the term ‘per-flow scheduling’ to imply ‘in
the network’, which is its normal usage.

Coupled DualQ AQMs [DSBEAT19] were devel-
oped so that extremely low (sub-millisecond) queu-
ing delay could be achieved without per-flow
scheduling. DualQ AQMs use the L4S Low La-
tency Low Loss Scalable throughput (L4S) defini-
tion [DSBET19] of the last remaining ECN code-
point in the IP header, which is also compatible
with per-flow scheduling.

An alternative approach with similar goals has
been proposed called Some Congestion Experienced
(SCE [MT19]). It competes for the same ECN
codepoint.

SCE-ECN requires per-flow scheduling to provide
benefit.1 In contrast, L4S-ECN supports either
per-flow scheduling or the DualQ approach.

One of the reasons that the DualQ approach was
developed was so that those who want extremely
low latency would not be forced to use per-flow
scheduling. To those who see per-flow scheduling
as a panacea, it does not seem important to allow a
choice. Therefore, this paper explains the concerns
that people have about per-flow scheduling.

This paper could also be seen as a set of arguments
against deploying per-flow scheduling at all. That
boat has already sailed, given the widespread de-
ployment of FQ CoDel since about 2017. The in-
tent is solely that “the market (not the IETF) can

1 An attempt to show that SCE can provide benefit with-
out per-flow queues [MH19] it still meant to do per-flow
scheduling. (Not relevant to this paper but, at the time
of writing, it is questionable whether it schedules as in-
tended anyway.)

c© bobbriscoe.net Ltd, 2019 Version 01 1 of 8

mailto:research@bobbriscoe.net


TR-BB-2019-001 Per-Flow Scheduling and the End-to-End Argument

choose” between per-flow scheduling by the net-
work and by end-systems.

Some of the concerns with per-flow scheduling
are because it runs counter to the commonly
accepted way that networks are designed—what
might be called the accepted architectural norms
in networking—particularly layering. That is not
such a concern if per-flow-scheduling is one of many
ways to provide extremely low latency. It would be
of great concern if SCE were to use the last ECN
codepoint so that per-flow scheduling became the
only way.

This is the purpose of the end-to-end argu-
ment [SRC84] — not to say “Thou shalt not,”
about embedding functions in the network; rather
to say “Are you sure there is not a an end-to-
end way of doing that, which will allow the net-
work to remain more generic for innovative new
behaviours?”

2 Rate Inequality is Desirable

Flow rate inequality is a feature not a bug. Equality
of flow rates has been a rough goal of transport
protocols. But it is a misconception to translate
that into a requirement for the network to enforce
precise equality. The ‘rough’ aspect of the goal is
more important than the equality. As we shall see,
giving applications and transports no wriggle room
means they cannot innovate without the permission
of the network, which is the teaching of the end-to-
end argument.

To be clear, we are talking here about the relative
rates of all the flows of one user, or one household,
or perhaps one small business. Inter-customer rate
limits are not in question here; only intra-customer.

In 2007–8, a debate raged in the research commu-
nity and the IETF, triggered by the provocative
paper entitled “Flow Rate Fairness: Dismantling a
Religion” [Bri07]. That paper made the point that
rate equality had no basis as a goal. The unfor-
tunate choice of the word ‘fairness’ has led genera-
tions coming new into networking to think that rate
equality really is fair in some sense. Whereas gen-
erally accepted analysis (e.g. Kelly’s model link-
ing congestion control to economics [KMT98], or
Doyle’s similar work) has shown that a fair allo-
cation in the economic sense would likely involve
significantly unequal rates. [Bri07] made the point
that fairness can be judged on other criteria than
economics, but that economics is the best discipline
to judge fairness for a global scale system, as long as
other views of fairness can be applied within that.

[Bri07] threw down a challenge for someone to jus-
tify the goal of flow rate equality. Floyd and All-
man responded, publishing on the IETF’s indepen-
dent stream [FA08]. They argued that, although
unequal rates might be optimal, rate equality was
simpler2, particularly when ensuring that no one
flow starves any more than any other

The important take-away from that episode in his-
tory is that flow rate equality is not a goal to be
enforced in the network, except perhaps at high lev-
els of congestion. It would be presumptuous to say
that has become the accepted view. It would be
more accurate to say that those involved in con-
gestion control design are converging on consensus
around this view.

A corollary is that rate equality should only be a
‘famine response’—should only really be important
if congestion is high. This is recognized in end-to-
end approaches like BBRv2, in which it has been
proposed to only respond to loss above a threshold
level3.

As capacity is becoming more plentiful, it would
be a great shame if we introduced widespread en-
forcement of equality between the rates of one cus-
tomer’s flows.4

For instance, without per-flow equality enforce-
ment, someone with 400 Mb/s to and from their
home could enjoy a VR/AR application that used
say 60–80% of their capacity and still have 80–
160 Mb/s available for everything else. As long as
the VR app adapted if absolute levels of conges-
tion became high (e.g. many TCP flows competing,
or two VR sessions), there would be no starvation.
This example is not given as exceptional. One as-
sumes it will be normal in future for many activi-
ties, e.g. online shopping, to be possible over a VR
platform.

In contrast, with per-flow scheduling enforcement,
every time one or two flows in the same home as
the VR app transferred a reasonably large amount
of data, even briefly, per-flow scheduling would cut
down the VR/AR app to 200 Mb/s or 133 Mb/s
for the duration of the other flow(s).

Then, to make the VR app deployable, some way to
request an exception to per-flow scheduling would
have to be deployed. A WiFi policy enforce-
ment approach called PoliFi is proposed in Høiland-
Jørgensen’s thesis [HJ18]. However, that would

2 There was a misunderstanding about the simplicity
of mechanisms needed for flow-rate inequality—just
weighted congestion controls. But there’s no need to
labour that point here.

3 A more gradual threshold would be preferable, but again,
that’s straying into secondary arguments

4 We can be relaxed about the large deployment of
FQ CoDel, which is on software routers that can be re-
visited if needed.

2 of 8 Version 01 c© bobbriscoe.net Ltd, 2019



Per-Flow Scheduling and the End-to-End Argument TR-BB-2019-001

not be sufficient if the user’s ISP (or the ISP of
a remote peer) had deployed per-flow scheduling
into the downlink of the user’s access—an approach
akin to RSVP signalling would be needed. Alter-
natively, per-flow scheduling would have to be sub-
verted using multiple flow IDs and stitching pack-
ets back into order later. If the flow rate equalizing
aspect of per-flow scheduling was routinely over-
ridden with multiple flows, it would have become
an irritating encumbrance, just making application
programming unnecessarily complicated.

Once the network intervenes to do the job that end-
systems are capable of (allocating themselves band-
width and pacing) the complexity consequences
snow-ball. The point of the end-to-end argument
is not to follow it blindly but, if you need to vi-
olate it, it reminds you to think carefully about
the consequences—you’re probably doing some-
thing you (or those who come after you) will regret.

2.1 Unequal average flow rates

2.1.1 Elastic Flows

As a thought experiment, consider the example
elastic flows in Figure 1a) with a pure ’fair’ queuing
scheduler, where the dashed horizontal line repre-
sents the maximum capacity. The figure shows a
few relatively small flows using the capacity in an
idealized schematic (not showing the dynamics—
just instantly getting up to speed or cutting speed).
There is only one period of contention between
flows, due to the slightly longer third (light green)
flow, which shares the capacity with the fourth
(dark blue) flow.

Figure 1b) shows how the same flows would be
treated by the scheduler if a long-running flow were
added to the mix. The scheduler halves the rate
and therefore doubles the completion time of the
first two short flows. Once the scheduler forces the
light green flow to halve its rate, there is a knock-
on effect where the light green flow contends with
all the remaining short flows and they, in turn, con-
tend with the next. So all the later flows take 3 or
4 times longer to complete (in this example).

Figure 1c) shows the outcome of a different ar-
rangement of the same flows. Here the larger each
flow’s volume the lower its weight. For the point
we’re trying to make, it doesn’t matter whether a
weighted priority scheduler or weighted congestion
controllers are being used. The point is that these
highly unequal flow rates have led to flow comple-
tion times considerably better than with equal flow
rates, indeed nearly as good as they were before the
contending long-running flow was introduced.

Figure 1: Is Equal Flow Rates a Valid Goal?

Even the longest-running (dark green) flow should
complete at about the same time. This is because
the area of each plot represents the amount of bytes
in each flow (rate×time), so the sum of their areas
is the same whether they are slower and last longer,
or faster and complete sooner.

The inefficiency of the dynamics cannot be ignored,
but the purpose of this thought experiment is to
undermine the idea that equality between flow rates
is a desirable goal, or indeed ’fair’.

This is not a new idea; it is an translation of
Shortest Remaining Processing Time scheduling
into bandwidth scheduling. [GM02] showed that,
with a heavy-tailed flow-size distribution, response
times can be improved by an order of magnitude.
Even without foresight of the length of all the flows,
it is possible to start high then decay the weight the
more bytes there are in a flow. PIAS [B+15] is a
practical realization of the approach for data cen-
tres that steps down a set of priority queues based
on the number of bytes sent per-flow. It can roughly
halve flow completion time for short flows relative
to DCTCP or L2DCT.

However, on the public Internet, such a sched-
uler in the network would harm less-elastic ap-
plications (e.g. streaming or conversational video),
which would require exceptions to be allowed,
which would open a can of management and secu-
rity worms. In other words, such a scheduler is not
generic, and therefore not advisable to be embed-
ded in the network, by the end-to-end argument.

In contrast, a similar e2e solution would be more
feasible. To my knowledge, three variants of TCP
have been proposed that decay from higher to lower
aggressiveness as a flow proceeds [Sd02, ZTH04,
MSSM12]. Only the last of these ends up less ag-
gressive than a TCP-Friendly flow, but unfortu-
nately the authors have not investigate this aspect
of the implementation. There is an incentive for

c© bobbriscoe.net Ltd, 2019 Version 01 3 of 8



TR-BB-2019-001 Per-Flow Scheduling and the End-to-End Argument

Figure 2: Bit Rate Variation of an Example Constant Quality Video

long flows to be less aggressive — to improve the
completion time of a user’s own shorter flows. Be-
cause this is an e2e solution, in any scenario where
relaxing aggression is not appropriate, the end-
system doesn’t have to, e.g. not for video, and not
if throughput continually reduces (which would im-
ply competition with an incompatible long-running
flow with constant aggressiveness).

Also, the network-based solution would only work
where it was deployed, whereas the e2e solution
would work for its user anywhere (except where
per-flow scheduling is deployed.

2.1.2 Scavenger Flows

Note that the lower weight higher volume thought-
experiment introduced in § 2.1.1 was applicable to
flows of the same importance. Less than best efforts
(LBE) or ‘scavenger’ service is intended traffic with
a less important deadline.5

LBE can be implemented either with priority
scheduling at a bottleneck link or end-to-end using
an LBE congestion control [RW13]. Nonetheless, as
above, network-based LBE would only work where
it was deployed, whereas e2e LBE works without
any special network equipment...

...Except certain special network equipment, namely
per-flow scheduling, prevents e2e protocols from
scavenging capacity.6

2.2 Unequal dynamic flow rates

The information rate arriving at the human eye, or
at a video camera, varies continually and widely de-
pending on the complexity of the scene (Figure 2).

5 Which could still use an even lower weight for larger flows.
6 Any AQM that cuts queuing delay significantly confounds

delay-based scavenger protocols [ASAB17], but per-flow
scheduling unnecessarily confounds non-delay-based scav-
enger protocols as well, such as 4CP [LVG07], MulT-
FRC [DW11] or DA-LBE [HRPA17].

Despite this, video is often packaged into constant
bit-rate containers—whether by DVD, or commu-
nication link—but that’s for the distributor’s con-
venience. Then the quality of complex scenes (the
most complex being rapid uncoordinated motion
such as moving leaves or water, sports action, re-
mote viewing via a drone) has to be degraded, clip-
ping the bit-rate peaks to fit into a set size of pipe.

Studies have repeatedly found that, if quality
varies, humans perceive the quality of the whole
video as if it was close to the minimum quality,
not the average. Consequently, increases in net-
work capacity have been exploited to use scalable
video coding, e.g. as available in x264, to maintain
near-constant quality but varying bit-rate. When
live interactive video is being transferred the varia-
tions cannot be buffered without harming latency.
It is easier to hide the degradation in quality from
human perception when short spikes of bit-rate are
clipped. However, flattening the longer term bit-
rate variations is much more noticeable as quality
degradation.

When a variable bit rate (VBR) video shares a
FIFO with an elastic flow, the elastic flow moulds
itself around the peaks and troughs of the video,
and the video responds to the resulting congestion
on a slower time-scale to ensure that their rates are
roughly equal.

In contrast, with a per-flow scheduler, whenever the
video consumes more than half the capacity (or 1/n
with n-1 other flows), the scheduler only allows the
video 1/n of the capacity. During periods when it
needs more than 1/n, the focused squeezing of the
video flow by the scheduler rapidly grows its per-
flow queue, and any AQM applied to that queue in-
troduces sufficient loss (or ECN) to cause the video
codec to adapt down to a lower quality level. In a
brief trough below 1/n of capacity, the codec will
stick at lower quality. In a longer trough it will
adapt up. So the per-flow scheduler either causes
the codec to unnecessarily use a lower quality codec,
or it shaves off the quality of the more complex,

4 of 8 Version 01 c© bobbriscoe.net Ltd, 2019



Per-Flow Scheduling and the End-to-End Argument TR-BB-2019-001

higher bit rate scenes [TE+15, Figs 3.15 & 3.16].
Thus, instead of constant quality, the video expe-
riences high levels of loss, even though the other
flows would temporarily yield if left in control.

The effect is similar when the throughput of two or
more interactive VBR videos is high enough to com-
pete for capacity. With a FIFO queue they mul-
tiplex more efficiently together when peaks meet
troughs, and the end systems adapt to the con-
gestion when peaks meet peaks [MANC09]. How-
ever, with a per-flow scheduler, both (all) videos
frequently lose quality during their more complex
higher bit rate scenes.

2.3 Policy vs. Mechanism

The problem with using per-flow scheduling to iso-
late latency can be characterized as embedding pol-
icy where there should only be mechanism. Sep-
arating each flow into its own queue or bucket
achieves inter-flow latency isolation, but then flows
have to be merged back together into the link. So
something has to decide what share of the capac-
ity each flow gets. The introduction of bandwidth
allocation between flows raises controversial policy
questions—no choice is neutral.

Rough consensus around an equal rate policy could
probably be achieved for a capacity famine sce-
nario. But during normal times of plenty, users and
applications will want other policies—as we have
seen above.

So far, with FIFO queues, the intra-customer tus-
sle between applications for a customer’s capacity
has not been a great problem for the Internet. As
the saying goes, if it ain’t broke, don’t fix it. And
certainly be wary of involving the network in medi-
ating that question—that would raise genuine net
neutrality concerns.

Although it ain’t broke, it’s worth having a solution
in reserve in case it breaks. For the task of latency
isolation, a policer is a more appropriate policy tool
than a scheduler. The per-flow queue protection
function (QProt [BW19]) introduced into DOCSIS
to be able to protect the Low Latency queue is a
good example. It protects a shared queue from any
flow that is about to cause the delay to exceed a
target.

The DOCSIS QProt function does not interfere
with capacity allocation, except inasmuch as it at-
tributes blame for excess queuing in proportion to
the share of capacity being used when the queuing
occurs. As long as the queue remains shallow, flows
have a large degree of wriggle-room to use different
shares of the customer’s capacity.

The feature that distinguishes per-flow QProt from
per-flow scheduling is that, under regular condi-
tions, low latency still works without QProt (much
as TCP still shares out capacity without per-flow
rate policing). Indeed, if it turns out not to be
needed, DOCSIS operators can disable QProt, and
DOCSIS will still give low latency. Also the L4S ref-
erence implementation in Linux does not use queue
protection, instead using a simpler form of bulk
overload protection.

The next section criticizes per-flow scheduling for
violating layering. Admittedly that’s hypocrisy, be-
cause per flow queue protection similarly violates
layering. We can only admit that we’re guilty as
charged. And say in our defence that one crime
is better than two. In mitigation of the remaining
crime, if flow IDs are inaccessible at a lower layer
(e.g. in vRANs), L4S can still provide low latency
queuing but SCE cannot work at all. The conse-
quence of not being able to deploy queue protection
(e.g. in vRANs) would be that in anomalous condi-
tions (whether by accident or malice) queue delay
could become greater than was intended.

3 Layering

3.1 Encapsulation

Per-flow scheduling requires access to layer-4 flow
identifiers to be effective. It ought to be possible
to implement AQM at any layer. However, per-
flow scheduling does not satisfy this requirement,
because network encapsulation is not designed to
ensure layer-4 headers are accessible.

Many access networks are effectively layer-2 sub-
nets. For instance, in the 5G radio access network
(RAN), IP headers are compressed, ciphered and
encapsulated by Packet Data Convergence Protocol
(PDCP) headers then Radio Liink Control (RLC)
headers. The architecture of the 5G RAN includes
a facililty for a virtual RAN (vRAN). In a vRAN
PDCP encapsulation occurs remote from the gN-
odeB (the 5G base station). However, AQM would
need to be applied at the gNodeB, which will often
be the bottleneck. So in the vRAN case, visibility of
layer-4 headers would be impossible. 5G equipment
is not intended to scale to the alternative of giving
each layer-4 flow a separate 5G QoS flow identi-
fier (QFI) (typically QFIs are used for aggregates
of flows, e.g. all Internet traffic is usually within a
single QFI).

In contrast, an AQM is intended to be able to apply
ECN-marking at layer-2. [Joh17] is a proposal to
add an ECN-capability at the RLC layer, which is
part of the programme of work to add the ECN

c© bobbriscoe.net Ltd, 2019 Version 01 5 of 8



TR-BB-2019-001 Per-Flow Scheduling and the End-to-End Argument

capability to those lower layer protocols that need
it [BKT19], as has already been done with MPLS,
TRILL and various tunnelling protocols.

If the IETF made per-flow scheduling mandatory in
order to support extremely low latency with high
throughput, it would effectively send a message to
the 3GPP that the IETF did not care if its low la-
tency technology did not work for 3GPP networks,
especially given the 3GPP RAN has correctly fol-
lowed network layering principles.

3.2 Privacy

If a VPN at layer-3 or lower is used, e.g. using
IPSec, the layer-4 flow IDs are concealed from per-
flow scheduling.

Therefore per-flow scheduling treats all the flows in
a VPN as a single flow, giving the whole VPN 1/n
of the capacity when there are n-1 other flows at
the bottleneck, even if there are many flows within
the VPN.

IPSec conforms to the commonly agreed layering
practices of the Internet architecture. The prob-
lem here is that per-flow scheduling does not. So if
someone wants both high privacy and low latency,
they cannot. Certainly, they could still have pri-
vacy by using a layer-4 VPN, but such privacy is
more open to traffic analysis. It is not our place to
tell people who are concerned about privacy that
they don’t need strong privacy.

The L4S architecture was developed to give a really
high performance solution that was also compati-
ble with network layering. Then people don’t have
to choose between the best privacy and the best
performance—they can have both.

3.3 Transport Protocol Evolution

Layering is meant to decouple evolution of higher
layer protocols from the constraints of compatibil-
ity with lower layers. Strictly, per-flow scheduling
fails on this point. However, it is a rather picky
point, because per-flow scheduling only requires ac-
cess to the first 32 bits of the transport layer, which
are already widely accessed in the network by fire-
walls, load balancers, equal cost multipath routing,
etc. Thus, these 32 bits have already become a de
facto endpoint addressing sub-layer of the trans-
port layer that is common across all transport pro-
tocols.7

7 With the Encrypting Security Payload of IPSec, the 32-bit
Security Parameters Index sits in this position, but it is
common to all flows within the same security association.

4 Virtual Queues

The virtual queue (VQ) approach sacrifices a small
proportion of capacity (e.g. 1%) to keep the real
queue empty most of the time (i.e. just containing
the packet being serialized).

A VQ represents how long the queue would be if the
drain rate were slightly slower. It is a number repre-
senting the VQ’s length, that is added to whenever
a packet is enqueued and subtracted from slightly
faster than the real queue [Ear09, AKE+12, Bri17].
An AQM can then ECN-mark packets in the real
queue based on the length of the VQ, to keep the
average arrival rate just below capacity.

Johansson has simulated L4S with a VQ in a 5G
environment with varying capacity (see Annex of
[Joh17]). Average and 95-%ile queueing delay were
an order of magnitude lower than with L4S alone,
which in turn was an order of magnitude lower than
Cubic. A VQ is likely to be necessary to mitigate
queuing due to radio capacity decreases, which is
also demonstrated in Johansson’s simulations.

Low Latency DOCSIS [WSB19] includes a VQ. It is
currently recommended to be set at the same rate
as the real queue, but in future operators will be
able to dial it down to reduce queuing further if
they choose to trade off a little capacity.

It is likely that the VQ approach will become more
prevalent as capacity continues to become more
plentiful (but time does not).

In contrast, per-flow scheduling becomes ineffective
with a VQ, because the VQ usually leaves only one
real packet to choose from—perhaps two or three
at most. The irony of using per-flow scheduling to
reduce queuing delay is that it needs a queue to
work. Whereas a VQ exploits the collective abili-
ties of all the senders to distribute scheduling and
pacing, with minimal buffering and minimal func-
tion in the network.

5 Implementation Complexity

The DualQ AQM was designed with the aim of
shifting as much of the function of an AQM as pos-
sible to end-systems. Specifically, the low latency
side of the AQM shifts smoothing the queue and
scheduling out of the network.

No matter how much the implementation of per-
flow scheduling can be simplified, it seems unlikely
it can be simpler than not doing it at all.

Also, as we have already pointed out, ways will
be needed for applications to request exceptions to
per-flow scheduling, which will also add further to
whole system complexity.

6 of 8 Version 01 c© bobbriscoe.net Ltd, 2019



Per-Flow Scheduling and the End-to-End Argument TR-BB-2019-001

References

[AKE+12] Mohammad Alizadeh, Abdul Kabbani, Tom
Edsall, Balaji Prabhakar, Amin Vahdat, and
Masato Yasuda. Less Is More: Trading a Lit-
tle Bandwidth for Ultra-Low Latency in the
Data Center. In Proc. USENIX Symposium
on Networked Systems Design and Implemen-
tation (NSDI’12), April 2012.

[ASAB17] Rasool Al-Saadi, Grenville Armitage, and Ja-
son But. Characterising LEDBAT Perfor-
mance Through Bottlenecks Using PIE, FQ-
CoDel and FQ-PIE Active Queue Manage-
ment. In Proc. IEEE 42nd Conference on
Local Computer Networks (LCN), pages 278–
285, October 2017.

[B+15] Wei Bai et al. Information-Agnostic Flow
Scheduling for Commodity Data Centers. In
12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15),
pages 455–468, Oakland, CA, 2015. USENIX
Association.

[BKT19] Bob Briscoe, John Kaippallimalil, and Pat
Thaler. Guidelines for Adding Congestion
Notification to Protocols that Encapsulate
IP. Internet Draft draft-ietf-tsvwg-ecn-encap-
guidelines-13, IETF, May 2019. (Work in
Progress).

[Bri07] Bob Briscoe. Flow Rate Fairness: Disman-
tling a Religion. ACM SIGCOMM Computer
Communication Review, 37(2):63–74, April
2007.

[Bri17] Bob Briscoe. The Native AQM for L4S
Traffic. Technical Report TR-BB-2017-
002; arXiv:1904.07079 [cs.NI], bobbriscoe.net,
September 2017.

[BW19] Bob Briscoe and Greg White. Queue Pro-
tection to Preserve Low Latency. Internet
Draft draft-briscoe-q-protection-00, IETF,
July 2019. (Work in progress).

[DSBEAT19] Koen De Schepper, Bob Briscoe (Ed.), Olga
Albisser, and Ing-Jyh Tsang. DualQ Coupled
AQM for Low Latency, Low Loss and Scal-
able Throughput (L4S). Internet Draft draft-
ietf-tsvwg-aqm-dualq-coupled-10, IETF, July
2019. (Work in Progress).

[DSBET19] Koen De Schepper, Bob Briscoe (Ed.), and
Ing-Jyh Tsang. Identifying Modified Ex-
plicit Congestion Notification (ECN) Seman-
tics for Ultra-Low Queuing Delay (L4S).
Internet Draft draft-ietf-tsvwg-ecn-l4s-id-07,
IETF, July 2019. (Work in Progress).

[DW11] Dragana Damjanovic and Michael Welzl. An
Extension of the TCP Steady-state Through-
put Equation for Parallel Flows and Its Ap-
plication in MulTFRC. IEEE/ACM Trans-
actions on Networking, 19(6):1676–1689, De-
cember 2011.

[Ear09] Philip Eardley. Metering and Marking Be-
haviour of PCN-Nodes. Request for Com-
ments 5670, RFC Editor, November 2009.

[FA08] Sally Floyd and Mark Allman. Comments on
the Usefulness of Simple Best-Effort Traffic.
Request for Comments RFC5290, RFC Edi-
tor, July 2008. (Individual submission to RFC
Editor).

[GM02] Liang Guo and Ibrahim Matta. Schedul-
ing Flows with Unknown Sizes: Approxi-
mate Analysis. SIGMETRICS Perform. Eval.
Rev., 30(1):276–277, June 2002.

[HJ18] Toke Høiland-Jørgensen. Bufferbloat and Be-
yond; Removing Performance Barriers in
Real-World Networks. Phd thesis, Karlstad
University, November 2018.

[HRPA17] David Andrew Hayes, David Ros, Andreas
Petlund, and Iffat Ahmed. A Framework for
Less than Best Effort Congestion Control with
Soft Deadlines. IEEE, 2017.

[Joh17] Ingemar Johansson. Motivation to im-
proved ECN handling in NR. Tech-
nical Report TSG-RAN WG2 #99
Tdoc R2-1709469, 3GPP, August 2017.
http://www.3gpp.org/ftp/tsg_ran/WG2_

RL2/TSGR2_99/Docs/R2-1709469.zip.

[KMT98] Frank P. Kelly, Aman K. Maulloo, and David
K. H. Tan. Rate control for communication
networks: shadow prices, proportional fair-
ness and stability. Journal of the Operational
Research Society, 49(3):237–252, 1998.

[LVG07] S. Liu, M. Vojnovic, and D. Gunawar-
dena. Competitive and Considerate Conges-
tion Control for Bulk Data Transfers. In 15th
Int’l Wkshp on Quality of Service, pages 1–9.
IEEE, June 2007.

[MANC09] Patrick Mulroy, Steve Appleby, Mike Nilsson,
and Barry Crabtree. The Use of MulTCP
for the Delivery of Equitable Quality Video.
In Proc. Int’l Packet Video Wkshp (PV’09).
IEEE, May 2009.

[MH19] Jonathan Morton and Peter Heist.
Lightweight Fair Queuing. Internet Draft
draft-ietf-tsvwg-lightweight-fair-queuing-00,
IETF, March 2019. (work in progress).

[MSSM12] G. R. Moktan, S. Siikavirta, M. Srel, and
J. Manner. Favoring the short. In Proc. IEEE
INFOCOM Workshops, pages 31–36, March
2012.

[MT19] Jonathan Morton and David Taeht. The Some
Congestion Experienced ECN Codepoint. In-
ternet Draft draft-morton-taht-sce-00, IETF,
March 2019. (work in progress).

[RW13] D. Ros and M. Welzl. Less-than-Best-
Effort Service: A Survey of End-to-End Ap-
proaches. IEEE Communications Surveys Tu-
torials, 15(2):898–908, February 2013.

[Sd02] Shanchieh Yang and G. de Veciana. Size-
based adaptive bandwidth allocation: opti-
mizing the average QoS for elastic flows. In
Proc. IEEE Conference on Computer Com-
munications, volume 2, pages 657–666, June
2002.

[SRC84] Jerome H. Saltzer, David P. Reed, and
David D. Clark. End-to-end arguments in sys-
tem design. ACM Transactions on Computer
Systems, 2(4):277–288, November 1984.

[TE+15] Ing-Jyh Tsang (Ed.) et al. Deployment of
RITE mechanisms in use-case trial testbeds
report. Deliverable D3.3, RITE Eu FP7
Project 317700, November 2015.

[WSB19] Greg White, Karthik Sunderesan, and Bob
Briscoe. Low Latency DOCSIS: Technology
Overview. Internet Draft draft-white-tsvwg-
lld, IETF, March 2019.

[ZTH04] Thomas Ziegler, Hung Tuan Tran, and Ed-
uard Hasenleithner. Improving Perceived Web
Performance by Size Based Congestion Con-
trol. In Proc 3rd Int’l IFIP-TC6 Networking
Conf., page 687, May 2004.

c© bobbriscoe.net Ltd, 2019 Version 01 7 of 8

http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_99/Docs/R2-1709469.zip
http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_99/Docs/R2-1709469.zip


TR-BB-2019-001 Per-Flow Scheduling and the End-to-End Argument

Document history

Version Date Author Details of change

00A 20 Jul 2019 Bob Briscoe First complete draft.

01 22 Jul 2019 Bob Briscoe First Publication.

8 of 8 Version 01 c© bobbriscoe.net Ltd, 2019


	Introduction
	Rate Inequality is Desirable
	Unequal average flow rates
	Elastic Flows
	Scavenger Flows

	Unequal dynamic flow rates
	Policy vs. Mechanism

	Layering
	Encapsulation
	Privacy
	Transport Protocol Evolution

	Virtual Queues
	Implementation Complexity
	References
	Document history

