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ABSTRACT
This paper concerns the use of Active Queue Manage-
ment (AQM) to reduce queuing delay. It offers insight
into why it has proved hard for a Proportional Inte-
gral (PI) controller to remain both responsive and sta-
ble while controlling ‘Classic’ TCP flows, such as TCP
Reno and Cubic. Due to their non-linearity, the con-
troller’s adjustments have to be smaller when the target
drop probability is lower. The PI Enhanced (PIE) al-
gorithm attempts to solve this problem by scaling down
the adjustments of the controller using a look-up table.
Instead, we control an internal variable that is by defini-
tion linearly proportional to the load, then post-process
it into the required Classic drop probability—in fact we
show that the output simply needs to be squared. This
allows tighter control, giving responsiveness and stabil-
ity better or no worse than PIE achieves, but without
all its corrective heuristics.

With suitable packet classification, it becomes simple
to extend this PI2 AQM to support coexistence between
Classic and Scalable congestion controls in the public
Internet. A Scalable congestion control ensures suffi-
cient feedback at any flow rate, an example being Data
Centre TCP (DCTCP). A Scalable control is linear, so
we can use the internal variable directly without any
squaring, by omitting the post-processing stage.

We implemented PI2 as a Linux qdisc to extensively
test our claims using Classic and Scalable TCPs.

1. INTRODUCTION
Interactive latency-sensitive applications are becom-

ing prevalent on the public Internet, e.g. Web, voice,
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conversational and interactive video, finance apps, on-
line gaming, cloud-based apps, remote desktop. It has
been conjectured that there is also latent demand for
more interactivity and new interactive apps would sur-
face if there were less lag in the public Internet [10].
In the developed world, increases in access network bit-
rate have been giving diminishing returns as latency
has become the critical bottleneck. Recently, much has
been done to reduce propagation delay, e.g. by placing
caches or servers closer to users. However, latency is a
multi-faceted problem [7], so other sources of delay such
as queuing have become the bottleneck.

Queuing delay problems occur when a capacity-
seeking (e.g. TCP) traffic flow is large enough to last
long enough to build a queue in the same bottleneck
as traffic from a delay-sensitive application. Therefore
queuing delay only appears as an intermittent prob-
lem [17]. Nonetheless, perception of quality tends to
be dominated by worst case delays and many real-time
apps adapt their buffering to absorb all but worst-case
delays.

To remove unnecessary queuing delays, Active Queue
Management (AQM) is being deployed at bottlenecks.
AQM introduces a low level of loss, to keep the queue
shallow within the buffer. However, for an AQM to
reduce queuing delay any further, it has to worsen drop
and/or utilization. This is because the root cause of
the problem is the behaviour of current TCP-friendly
congestion controls (Reno, Cubic, etc.). They behave
like a balloon; if the network squeezes one impairment,
they make the others bulge out.

To remove one dimension from this trilemma, it
would seem Explicit Congestion Notification (ECN)
could be used instead of loss. However, the meaning
of an ECN mark was standardized as equivalent to a
loss [30], so although standard (‘Classic’) ECN can re-
move the impairment of loss itself, it cannot be used to
reduce queuing delay relative to loss-based protocols.

Per-flow queuing has been used to isolate each flow
from the impairments of others, but this adds a new
dimension to the trilemma; the need for the network
to inspect within the IP layer to identify flows, not to
mention the extra complexity of multiple queues.
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Figure 1: Controlling the window W with
drop/marking probability p. a) Linearized Re-
placement for PIE; b) Congestion Control Coexistence

To reduce queuing delay below that achievable with
state-of-the-art AQMs, and without other compromises,
we decided to investigate changing TCP itself. Data
Centre TCP (DCTCP [2]) is an existence proof of this
approach; drastically reducing queuing delay without
compromising the other factors. We shall show later
that this is because, as flow-rate scales, the sawtooth
variations in rate grow with TCP-friendly controls, but
they do not with DCTCP, which can keep queuing delay
low without compromising utilization. Thus DCTCP is
an example of a ‘Scalable’ congestion control. In con-
trast, we use the term ‘Classic’ for unscalable controls
such as Reno and Cubic.

It is a common misconception that DCTCP only
works in data centres but, on its own, it works fine over
wide area networks [3, 23]. However, it needs some ad-
ditions for safety, which are discussed in [8]. The most
critical problem is that DCTCP is too aggressive to co-
exist with Classic TCP. Therefore (until now) DCTCP
could only be deployed in controlled environments like
data centres because senders, receivers and the network
all have to be updated at the same time.

During our research to make the family of Scalable
congestion controls incrementally deployable on the In-
ternet (see DualQ concepts in [13, 5]), we were inter-
ested in reusing the PIE (PI Enhanced [28]) AQM, as
it can control target queuing delay and provide a rea-
sonably stable marking probability. We modified it to
separately support both Classic and Scalable congestion
controls. This led us to understand that a proportional
integral (PI) controller is inherently linear when control-
ling Scalable congestion controls, but not Classic ones.

The designers of PIE introduced scaling factors
within the controller that increase stepwise as the
drop/mark probability p increases, in order to keep
it within its stable region. We realized that it would
be much simpler to break down the structure of the
AQM into two parts (Figure 1a): i) a generic part that
controls a pseudo-probability p′ that is, by definition,
linearly proportional to the load; and ii) a congestion-

control-specific part, which encodes p′ into a congestion
signal, p, appropriate to the congestion control that is
predominant in the network.

For the case of Classic controls like TCP Reno, we
shall see that the second stage should be configured to
encode p as the square of p′, which counterbalances the
non-linear square root in the equations for the window
(W ) of Classic congestion controls (Figure 1a). We call
this ‘PI Improved with a square’ or PI2. We shall show
that PI2 can achieve similar or sometimes even better
results than PIE, while using a simpler algorithm.

For Scalable controls like DCTCP, the output of the
PI controller (p′) can be used directly for congestion
marking; no encoding is needed. This makes it feasi-
ble to solve the problem of coexistence of Scalable and
Classic traffic. The PI controller can be used for the
former and PI2 for the latter (Figure 1b). This coun-
terbalances the more aggressive response of scalable al-
gorithms with more aggressive congestion notification
(given 0 ≤ p′ ≤ 1, it is greater without the square).

In this paper we hold back from discussing the Du-
alQ concept, and instead focus on restructuring PIE in
single queue scenarios. The majority of the paper is
about simply replacing PIE with PI2 for Classic traffic.
Nonetheless, we also test how well PI2 would support
coexistence of Scalable and Classic congestion controls.

We must emphasize that a single queue is neither the
optimal nor the recommended deployment arrangement
for coexistence between Scalable and Classic traffic, be-
cause the Scalable traffic suffers the high queuing delay
of the Classic traffic. However, it provides interesting
insights and a basis for future development of DualQ
variants [12].

The paper is organized as follows. Section 2 gives
background on the scalability of congestion controls and
the PI AQM controller. Section 3 provides insights into
related work particularly the evolution of the Propor-
tional Integral controller. Section 4 describes how PI
can be improved with a square, while Section 5 provides
details of the PI2 AQM implementation. Experimental
evaluation of PI2 in comparison with PIE is presented
in Section 6. Conclusions are summarized in Section 7.
Appendices A and B respectively provide steady-state
throughput equations for DCTCP and a stability anal-
ysis for the PI2 AQM.

2. BACKGROUND

Congestion Control Scaling.
A congestion control like Reno or Cubic is termed

unscalable because, as flow rate scales, the number of
round trips between congestion signals increases. This
leads to less tight control and higher variation of queu-
ing and/or utilization.

The number of congestion signals per round trip in
the steady state is

c = pW, (1)
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Figure 2: Basic PI algorithm

where W is the number of segments per round trip (the
window) and p is the probability of congestion notifica-
tion (either losses or ECN marks). Appendix A gives
the formulae for the steady-state window of various con-
gestion controls, which are all of the form

W ∝ 1/pB , (2)

where B is a characteristic constant of the congestion
control.

The scalability of a congestion control can therefore
be determined by substituting for p from (2) into (1):

c ∝W (1−1/B). (3)

If B < 1, c shrinks as W scales up, which implies
fewer congestion signals per round trip (unscalable).
Therefore, a congestion control is scalable if B ≥ 1 and
unscalable otherwise.

From Appendix A, Reno and Cubic in its Reno mode
(‘CReno’) have B = 1/2 and pure Cubic has B = 3/4,
so all these ‘Classic’ controls are unscalable. While
DCTCP with probabilistic marking has B = 1 and with
step marking it has B = 2. Therefore DCTCP is scal-
able irrespective of the type of marking.

Proportional Integral (PI) AQM.
The core of the PIE AQM is a classical Proportional

Integral (PI) controller [18] that aims to keep queuing
delay to a target τ0 by updating the drop probability,
p, every update interval, T . Figure 2 recaps the basic
PI algorithm, which consists of a proportional and an
integral part, weighted respectively by the gain factors
β and α (both in units of Hz):

p(t) = p(t−T ) +α
(
τ(t)− τ0

)
+β

(
τ(t)− τ(t−T )

)
, (4)

where τ(t) is the queuing delay at time t. The propor-
tional part estimates how much load exceeds capacity
by measuring how fast the queue is growing. The inte-
gral part corrects any standing queue due to the load
having exceeded capacity over time, by measuring the
error between the actual queuing delay and the target.
Either term can be negative and the final probability is
bounded between and including 0 and 1.

The proportional gain factor β can be seen as the
best known correction of p to reduce the excess load.
The integral gain factor α is typically smaller than the
proportional, and corrects any longer term offset from
the target. Note that the integral part initially calcu-
lates a proportional value, and the proportional part a
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Figure 3: PIE AQM in Linux (additions to PI in green)

differential value. But these values are later integrated
by adding them as a delta to the probability used in the
previous update interval.

3. RELATED WORK
The evolution of the Proportional Integral controller

Enhanced (PIE) AQM started with the control theo-
retic analysis of RED by Holot et al [19], which ended by
pointing out that it was not necessary to adopt the ap-
proach of RED, which pushes back against higher load
with higher queuing delay and higher loss. Instead, in
[18], the same authors presented a Proportional Inte-
gral (PI) controller, using classical linear systems anal-
ysis with the objective of holding queuing delay to a
constant target, using higher loss alone to push back
against higher load.

This PI controller was used as the basis of the IEEE
Data Centre Bridging (DCB) standard, 802.1Qau [15],
published in 2010. Variants of the original PI AQM con-
troller had also been proposed in the research commu-
nity. In 2004, Hong et al claimed that the phase margin
of the original PI controller could be over-conservative,
leading to unnecessarily sluggish behaviour. Instead,
they proposed a design [21] that would self-tune to the
specified phase margin. In 2007, Hong and Yang [20]
proposed to self-tune the gain margin instead, and to
trigger the self-tuning process whenever it moved out-
side an operating range. However implementations have
not adopted these self-tuning designs, probably because
they require code to estimate the average (harmonic
mean) round trip time of the TCP flows, which in turn
depends on estimating the number of TCP flows, the
link capacity and the equilibrium dropping probability,
p. Of course, p is itself the output of the controller and,
by definition, determining its equilibrium value is prob-
lematic when network conditions are changing, which is
when self-tuning is required.

In 2013, the Proportional Integral controller En-
hanced (PIE [28]) was proposed as an evolution of
the original PI algorithm [18]. After extensive evalu-
ation [32], PIE became the mandatory AQM algorithm
for DOCSIS3.1 cable modems [9] and it is also being
documented in an IETF specification [29].

Figure 3 shows the building blocks of the Linux PIE
AQM implementation. PIE introduced three enhance-
ments over PI. The first was to use units of time (not
bytes or packets) for the queue, to hold queuing de-
lay constant whatever the link rate. This ensures the
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Figure 4: Bode plot margins for R=100 ms,
αPIE=0.125*tune, βPIE=1.25*tune, T=32 ms

algorithm does not need configuring for different link
rates, which could occur due to modem retraining, or if
the queue serves a wireless link or it is part of a larger
scheduling hierarchy. Using units of time for the queue
was taught by the CoDel algorithm [27] the year before.
Because PIE was designed for hardware implementa-
tion, it did not measure the service time of the queue
directly using the time-stamping approach of CoDel; in-
stead it converted queue lengths to queuing delay using
a regularly updated estimate of the link rate. Actually,
as far back as 2002, Kwon and Fahmy [24] had advised
that the queue should be measured in units of time.
Also, in 2003, S̊agfors et al had modified the Packet
Discard Prevention Counter (PDPC+ [31]) algorithm
by converting queue length to queuing delay to cope
with the varying link rate of 3G wireless networks.

The second main enhancement introduced in PIE was
to scale α & β dependent on the magnitude of p, which
was based on the stability analysis in [28] (see equation
(35) in Appendix B). The Bode margin plots in Fig-
ure 4 show the gain and phase margins for loss proba-
bilities between 0.0001% and 100%, with a fixed maxi-
mum RTT and for different α and β parameters. With
fixed α and β, the gain margin evolves diagonally as p
varies with load. When the gain margin and the phase
margin are negative, the control loop becomes unstable,
resulting in oscillating queue size and TCP throughput.
On the other hand, when the gain margin becomes too
high the control loop responds too sluggishly to load
changes. The auto-tuned plot shows the effect of intro-
ducing scaling steps in PIE to keep the margins above
zero for lower p, while keeping the gain margin low for
higher p. In the original PIE paper [28], no further
scaling steps were applied for p < 1%. In early versions
of the IETF specification, scaling did not extend below
0.1%, but following criticism during the IETF review
process that a table of values inherently limits the op-
erating range of the algorithm [6], the table of values
was extended down to 0.0001% as shown in Figure 5.

Figure 5: The factor ‘tune’ (stepped) that PIE uses to
scale ∆p from the lookup table in [29], compared against√

2p (both log scale, base 2)

Up to that point, the written justification for the scal-
ing had been rather arbitrary. However, the extra data
points confirmed suspicions that this scaling tracked the
square-root law of TCP Reno, although it is not clear
whether this was conscious design intent, or the out-
come of empirical design iterations.

The third main enhancement introduced in PIE [28]
was a burst allowance. This mechanism only allows
bursts when the queue first becomes active after a pe-
riod of no queuing, so it is inactive for bursts on top of
a low level of queuing. The paper itself points out that
the incremental evolution of drop probability p in the
underlying PI algorithm already filters out anomalous
bursts, but anyway adds an additional burst allowance
that can be explicitly configured, if required for the de-
ployment scenario.

The proportional-integral approach was generally
considered sufficient for AQM control, with the pro-
portional term ensuring loss increases more quickly if
the queue is growing and less if it is shrinking, and the
integral term returning the queue slowly enough to its
target level. Nonetheless, proportional-derivative and
proportional-integral-derivative controllers have been
proposed. These are summarized in Adams [1], which
provides a useful survey of a wide range of AQM
schemes, with a particular focus on those derived from
control-theoretic analysis.

As Adams [1] points out, all control theoretic ap-
proaches need to assume a model of how the traffic
responds to control signals, and all known schemes (un-
til now) assume that traffic consists predominantly of
long-running TCP Reno flows.

Kühlewind et al [23] investigated the feasibility of
using coupled AQM algorithms to deploy a scalable
TCP congestion control such as Data Centre TCP [2]
alongside existing TCP Reno traffic. It documented the
throughput deviations between linearly coupled AQMs
empirically, whereas we have derived the square rela-
tionship used in the present work analytically.

An IETF specification of a dual-queue coupled AQM
has been drafted [13], to enable coexistence of ‘Scalable’
(e.g. DCTCP) and ‘Classic’ (e.g. TCP Reno) congestion
controls. It requires the drop (or marking) probability
of the AQM for ‘Classic’ traffic to be the square of that
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for scalable traffic. It is written sufficiently generically
that it covers the PI2 approach, but the example AQM
it gives is based on a RED-like AQM called Curvy RED.

The present work focuses on PI2 in a single queue to
fully evaluate it relative to existing single queue solu-
tions before taking the next step of proposing its use in
a dual-queue.

4. PI IMPROVED WITH A SQUARE

Restructuring PIE.
When the probability is small PIE tunes α and β

to become smaller as well, in order to compensate for
the higher sensitivity of the signal p. In Figure 6 the
‘pi’ curve shows what happens if the α and β parame-
ters are not auto-tuned. For the lower load when there
are 10 flows (between 0-50s and 200-250s) any onset of
congestion is immediately suppressed very aggressively
(p becomes too high, because β is too high), resulting
in underutilization and an oscillating queue. Instead
of directly PI-controlling the applied packet congestion
notification probability (p), we propose to do the PI-
control process on a pseudo-probability (p′) in linear
space and afterwards to adapt the controlled value to
its non-linear form. In Figure 6 the ‘pi2’ curve shows
what happens if constant (non-auto-tuned) α and β pa-
rameters are used, before the pseudo-probability is con-
verted to its square and applied as a drop probability.
The square ensures that the pseudo drop probability is
adjusted to the right sensitivity level of the signal (

√
p)

and it makes room for higher α and β, as we shall see.
The load that an AQM has to push back against is

proportional to the number of TCP-like sources gen-
erating it. The total steady-state rate of arriving bits
is not a measure of load, because all the TCP sources
fit their total bit rate into the link capacity. Rather,
the excess load is the rate at which each source adds
packets to exceed the link capacity. For instance, TCP
Reno adds one segment per RTT, so when the number

of sources doubles the number of segments added per
RTT doubles. TCP eventually ensures the rate of each
flow halves, so load is inversely proportional to steady-
state flow rate. In fact, for ACK-clocked sources like
TCP, the load is proportional to 1/W , where W is the
steady-state window of each flow.

Therefore, for TCP Reno or CReno the load is pro-
portional to

√
p (from their steady-state window equa-

tions (5) and (7) in Appendix A). Therefore, we will
control p′ =

√
p. To transform the control output p′

to the non-linear form needed for applying congestion
notification we will simply square it (p = (p′)2).

Note that, even though p is smaller than p′, for the
same TCP load the PI2 controller will drive the steady-
state value of p′ sufficiently high so that its value when
squared (p) will be the same as that from PIE.

We shall now show that the heuristic table of scaling
factors in PIE was actually attempting to achieve the
same outcome as PI2. We will abbreviate the main
control terms in PIE (see (4) in section 2) as

π(τ) ≡ α
(
τ(t)− τ0

)
+ β

(
τ(t)− τ(t− T )

)
Then our proposed squaring approach can be written:

p←
(
p′ +Kπ(τ)

)2
,

where K is a constant used later. Expanding:

← (p′)2 + 2Kp′π(τ) +K2π2(τ).

Assuming Kπ(τ)� p′, this approximates1 to:

← p+ 2Kp′π(τ).

As Figure 5 illustrates, PIE’s stepped scaling factor
‘tune’ broadly fits the equation

√
2p. So we can say

2KPIEp
′ ≈
√

2p orKPIE ≈ 1/
√

2. Thus the stepped way
that PIE derives drop probability p is indeed broadly
equivalent to incrementing p′ using the core PI function
then squaring the result.2 Using the stability analysis
in Appendix B we shall now see that we can make PI2

more responsive than PIE without risking instability,
because KPI2 can be greater than KPIE.

Responsiveness without Instability.
In Misra et al [26] and Hollot et al [19] a fluid model is

used to describe the TCP Reno throughput, the queuing
process and the PI AQM behaviour, and to perform its
stability analysis. Appendix B describes this analysis
for TCP Reno over a PI2 AQM. Based on the derived
loop transfer functions (36) and (37), the Bode gain
and phase margins are plotted in Figure 7 (the lines
labelled ‘reno pie’ are the PIE auto-tuned margins, and
‘reno pi2’ the Reno on PI2 margins).3

1In the rare cases when this inequality is not valid, it
merely means that PI2 will calculate a higher ∆p than
PIE would; neither is necessarily more ‘correct’.
2PIE scales by the old value of p′; PI2 scales by the new.
3The octave scripts that generated these plots and those
in Figure 4 are available as auxiliary material with this
paper in the ACM Digital Library.
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Applying the squaring outside the PI controller flat-
tens out the otherwise diagonal gain margin and makes
it easy to choose values for the gain factors α and β
that only depend on the maximum RTT to be sup-
ported. Only at high loads, when p′ is higher than
60% (p > 36%) is the gain margin of PI2 slightly above
10dB. Because the gain margin of PI2 is flatter, it can be
made more responsive than PIE by increasing the gain
factors by ×2.5 without the gain margin dipping below
zero anywhere over the full load range, which could oth-
erwise lead to instability. This makes the gain of PI2

roughly 3.5 times (or 5.5 dB) greater than that of PIE,

because KPI2/KPIE ≈ 2.5
√

2 ≈ 3.5.

PI2 Design.
In Figure 8 the PI2 AQM is shown. Compared to PIE,

the scaling block is removed and the drop/mark decision
block is modified to apply the squared drop probability.
The squaring can be implemented either by multiplying
p′ by itself, or by comparing it with the maximum of 2
random variables during the drop decision. The first is
easy to perform in a software implementation, perhaps
as an addition to existing PIE hardware. The latter
might be preferred for a hardware implementation. As
the resolution of p′ is half that of its square, the number
of random bits used for each of the two random variables
only needs to be half that of a PIE decision function.

Coexistence between Congestion Controls.
Additionally the above analysis suggests that control

of ‘Scalable’ controls (see Section 2) such as DCTCP
might also exhibit the same stability properties. Equa-
tion 11 in Appendix A shows that the window of
DCTCP with probabilistic marking is inversely propor-
tional to the drop or marking probability. So it should
be possible to apply p′ directly to DCTCP packets with-
out the squaring during the drop/mark decision.

p′

Drop/Mark

Drop/Mark Feedback P[d] = (p′)2 = p

p′ > Y,Y
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delayPI
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max(Y,Y)
Y
random()
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Figure 8: PI2 for ‘Classic’ Traffic (PIE changes in blue)

This is confirmed analytically in Appendix B, where
stability is analysed for a congestion control that re-
duces its window by half a packet per mark, which is a
good approximation4 for what DCTCP effectively does
when a probabilistic AQM is used. Figure 7 shows its
gain margins (lines labelled ‘scal pi’). The plots are very
similar to the Reno on PI2 results but there was enough
margin to double the α and β parameters (lines labelled
‘reno pi2’) relative to the Classic α and β parameters.

We have seen that PI2 can be applied to Classic traffic
and PI without the square can be applied to Scalable
traffic. When both types of traffic coexist, it should
also be possible to apply whichever of the two controls
is appropriate, as long as each type of traffic can be
distinguished. The drop/mark probability relation be-
tween DCTCP and CReno flows for an equal steady
state throughput is derived in (14) (see Appendix A):
pc = (ps/k)2, with pc the drop or mark probability for
CReno flows, ps the mark probability for Scalable (e.g.
DCTCP) flows and k the coupling factor. In (14) a
value of 1.19 is derived for k but it is set to 2 in the
rest of this paper, having been validated empirically in
the following section. Note that k = 2 is also the opti-
mal ratio between the Scalable and Classic gain factors
for optimal stability. As the gain factors determine the
final probability, ps will also be double

√
pc, matching

k.

5. PI2 AQM IMPLEMENTATION
To verify the theoretical predictions, we have mod-

ified the PIE Linux AQM to support the PI2 control
method for classic congestion controls (Cubic, Reno,
DCCP, SCTP, QUIC, ...), to support control of scalable
congestion controls (DCTCP, Relentless, Scalable,... )
and to support coexistence between the classic and scal-
able congestion controls. The Linux qdisc source code
used for these experiments is released as open source
and can be retrieved at [11]. Figure 9 shows the de-
tailed implementation diagram.

To implement the PI2 control method, we removed
the code in PIE that scales the gain factors dependent
on the current probability and instead added code to
compare the resulting probability with two random vari-
ables.
4DCTCP additionally smooths (and consequently de-
lays) the response from the network over a fixed number
of RTTs which results in a more sluggish response for
bigger RTTs.
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To support Scalable congestion controls, we also
made the squared drop decision conditional on a con-
gestion control family identifier. We used the ECN bits
in the IP header to distinguish packets from Scalable
and Classic congestion controls.

The more frequent congestion signal induced by a
Scalable control makes using drop for congestion sig-
nalling intolerable. In contrast, explicit congestion no-
tification provides a congestion signal without also im-
pairing packet delivery. Currently, DCTCP enables the
ECN capability by setting the ECT(0) codepoint in the
IP header and it expects any AQM in the network to
mark congestion using a queue threshold that is both
shallow and immediate (not delayed by smoothing).

We modified DCTCP to set the ECT(1) codepoint,
which the IETF has recently agreed in principle to make
available with a view to using it as the identifier for Scal-
able traffic [4, 14]. This would allow Classic congestion
controls to continue to be able to support ‘Classic’ ECN
by using the ECT(0) codepoint. It is proposed that
both Classic and Scalable traffic would have to share
the same Congestion Experienced (CE) codepoint to
indicate a congestion marking. Then any congestion
marking on ECT(0) packets would continue to have the
same meaning as a drop. The pros and cons of using
different identifiers are outside the scope of this paper,
but they are discussed in the above-cited draft.

In the network, all packets use the same FIFO queue,
but we classify packets based on their ECN codepoint in
order to apply the appropriate drop/mark decision. We
emphasize again that this single-queue approach is not
intended or recommended for deployment; it is simply
an interim step in the research process to avoid changing
too many factors at once. To support coexistence we
ensure rough throughput equality (a.k.a. TCP-fairness)
by applying the k = 2 factor to Classic packets before
making the drop/mark decision based on the squared
probability.

Fewer Heuristics.
For our PI2 implementation, as well as removing all

the scaling heuristics, for PI2 we additionally disabled
the following heuristics that had all been added to the
Linux implementation of PIE:
• Burst allowance: In PIE 100ms after the queue was

last empty no drop or marking is applied. We disabled
this (as also allowed in the PIE specification) so as not

to influence DCTCP fairness, which is better when
probabilities are constantly coupled (avoiding on-off
behaviour).
• In PIE, if the probability is below 20% and the queue

delay below half the target, no dropping or marking
is applied. This rule was also disabled to avoid on-off
behaviour. If this rule were not disabled, the thresh-
old of 20% would have had to be corrected to the
square root (around 45%).
• In PIE, if the probability is above 10%, ECN capable

packets are dropped instead of marked. This is one
possible overload strategy to prevent ECN traffic from
overfilling the queue while starving drop based traf-
fic. We disabled this rule and instead placed a max-
imum limit of 25% on the Classic mark/drop prob-
ability and the equivalent limit (100%) on Scalable
marking probability. As a result the queue will be
allowed to grow over the target if it cannot be con-
trolled with this maximum drop probability. Then, if
needed, tail-drop will control non-responsive traffic,
whether ECN-capable or not.
• In PIE, if the probability is higher than 10% ∆p is

limited to 2%. We disabled this for now. Further
comparative evaluation is needed to investigate the
validity of this rule in the square root domain.
• In PIE, if the queue delay is greater than 250 ms, ∆p

is set to 2%. We also disabled this for now, again
re-evaluation in the square root domain is needed.
So far, the basis on which most of these heuristics

were chosen is undocumented and no-one has published
an exhaustive assessment of the precise impact on per-
formance of each. Therefore, given we had no sound
basis to reconfigure each one to interwork with the re-
structured PI2 mechanism, we chose to disable them.

The results for PIE shown in this paper are the
ones for the full Linux PIE implementation, with all
its heuristics except we reworked the rule that disables
ECN marking above 10%, as described above. This
avoided a discontinuity in the results for the through-
put ratio between Classic and Scalable flows.

We produced an implementation of PIE without the
above extra heuristics (called bare-PIE) and repeated
all the experiments presented in this paper. We saw no
difference in any experiment between bare-PIE and the
full PIE. This gives confidence that the results of the
PI2 experiments are only due to the PI2 improvements,
and not due to disabling any of the above heuristics.

6. EVALUATION
Our evaluations of PI2 consisted of two main sets of

experiments: comparing the performance of PI2 with
PIE, and verifying our claims that PI2 will enable co-
existence of Scalable and Classic flows.

Our testbed consists of an AQM, 2 client and 2 server
machines, all running Linux (Ubuntu 14.04 LTS with
kernel 3.18.9), which contained the implementation of
the TCP variants and AQMs.
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Figure 11: Queuing latency and throughput under various traffic loads: link capacity = 10 Mbps, RTT = 100 ms.

The experiments used unmodified DCTCP and Cu-
bic implementations in their default configurations. For
ECN-Cubic, we additionally enabled TCP ECN nego-
tiation on the relevant client and server. The AQM
configurations used the options as described in Table 1,
unless otherwise stated.

A more detailed overview of how these machines are
connected is presented in Figure 10. We used each
client-server pair (Client A - Server A, Client B - Server
B) for emulating TCP flows of the same congestion con-
trol (and UDP flows in addition, if necessary), so that
the competition between different congestion control
flows could be evaluated. For the experiments where
only one congestion control was evaluated, only a single
client-server pair was used.

Responsiveness and Stability.
For the first series of stability tests, we repeated the

main experiments presented by Pan et al. [28]. We re-
produced the PIE results and evaluated PI2’s perfor-
mance compared to those of PIE. For reference, we will
use the same test titles as those used by Pan et al. in
their paper (highlighted with italics).

Figure 10: Testbed topology

All Buffer: 40000 pkt (2.4 s @200 Mb/s), ECN
PI/PIE+Cubic/Reno Target delay: 20 ms, Burst: 100 ms,

α: 2/16, β: 20/16
PI/PI2+DCTCP Target delay: 20 ms, α: 10/16, β: 100/16

Table 1: Default parameters for the different AQMs.

We used TCP Reno, on a topology as shown in
Figure 10. To reproduce the same environment, the
bottleneck link capacity is 10 Mbps (except Figure 12
where we simulate varying link capacity) and the RTT
is 100 ms if not specified otherwise. The sampling in-
terval applied in the graphs is 1 s.

Figure 11 shows the queuing delay (upper row), and
total throughput for all flows (lower row), where we use
the following traffic mixes:

a) Light TCP traffic: 5 TCP flows.
b) Heavy TCP traffic: 50 TCP flows.
c) Mixture of TCP and UDP traffic: 5 TCP flows

and 2 UDP flows sending at 6Mbps each

The results show less queue overshoot on start-up for
PI2 and less (damped) oscillations afterwards. This is
because the flatter gain margin of PI2 allowed us to
set the responsiveness (gain) 3.5 times higher without
risking instability (see section 4).

Figure 12 shows the queuing delay for the test with
Varying Link Capacity as detailed in the caption. The
PI2 controller again seems to reduce overshoot and also
when the link capacity is reduced the queue reduces
faster and with less oscillation. The PIE AQM also
allows overshoot when flow rates increase to fill the in-
creased capacity at 100 s, while PI2 shows no visible
overshoot. Sampling at 100 ms intervals shows a peak
queuing delay at 50 s of 510 ms for PIE and 250 ms for
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Figure 13: Performance comparison under varying traf-
fic intensity: 10:30:50:30:10 TCP flows over durations
50:50:50:50:50 s, link capacity: 10 Mbps, RTT: 100 ms.

PI2. PIE has 2 more oscillation peaks above 100 ms
immediately afterwards, while PI2 none at all.

Figure 13 demonstrates queuing delay for the Varying
Traffic Intensity test as detailed in the caption. Again
PI2 reduces overshoot during load changes and also re-
duces upward fluctuations during non-transient periods.

Figure 14 shows the CDF of Queuing Delay Compar-
ison between PI2 and PIE, with target delay of 5 ms
(upper row) and 20 ms (lower row). For these experi-
ment, we use 20 TCP flows during the first part (a) and
5 TCP + 2 UDP flows during the second part (b). In
all situations PI2 has a similar queue size to PIE.

As we have seen, the improvement in responsiveness
and stability of PI2 is measurable but slight. Our ulti-
mate deployment goal is a dualQ structure [13], in order
to significantly reduce latency in the queue for Scalable
traffic. The improvement in short flow completion time
is evaluated in [12]. Using the single queue arrangement
of the present paper, we experimented with mixed flow
sizes over an extensive range of link rates and RTTs
and, as expected, mixed short flow completion times
with PIE, bare PIE and PI2 under both heavy and light
Web-like workloads were essentially the same.
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Figure 14: Queuing delay comparison under different
traffic loads using 5 ms and 20 ms target delays: link
capacity = 10 Mbps, RTT = 100 ms.

Coexistence.
The second series of tests was focused on coexistence

between Classic and Scalable congestion controls with
different traffic mixes and network conditions, exploring
different combinations of link capacity and RTT.

We performed experiments with mixed Cubic and
DCTCP flows and measured the ratio of their individual
flow throughputs (Figure 15), and the average and 99th
percentile of queue delay (Figure 16). We also mon-
itored mark or drop probability (Figure 17) and link
utilization (Figure 18) for each experiment.

In a first set of experiments, we used a single long-
running flow for each congestion control. Figure 15
demonstrates throughput ‘fairness’. As well as the Cu-
bic/DCTCP throughput ratio (blue), we also included
Cubic/ECN-Cubic (black) as a control to show the ef-
fect of the different congestion control algorithm sep-
arately from the addition of ECN. In both cases the
ratio is non-ECN-capable to ECN-capable flow rate.
As an illustration of the coexistence problem, the Cu-
bic/DCTCP ratio with PIE shows, as expected, that
DCTCP effectively starves Cubic, behaving about ten
times more aggressively. In contrast, applying PI2 to
Cubic and PI to DCTCP (labelled PI2) works remark-
ably well over the whole range of link rates and RTTs,
keeping the Cubic/DCTCP rate balance close to 1 in
all cases, nearly exactly counterbalancing DCTCP’s sig-
nificantly greater aggression. In the control case of
Cubic/ECN-Cubic, as expected, we see similar results
for both PI2 and PIE.5

As we have emphasized, the ultimate aim is to exploit
the low queuing delay of scalable controls using a dualQ.

5This experiment uncovered a possible bug in Linux
that currently limits the bandwidth-delay product
(BDP) to 1 MB. Despite considerable effort, the cause
is yet to be ascertained. Unfortunately this caused the
anomalous results at the high RTT end of the higher
link rates, not only for rate balance, but also for queu-
ing delay, drop/mark probability and utilization.
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Figure 15: Throughput balance. One flow for each congestion control.5
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Figure 16: Queuing delay. One flow for each congestion control.5
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Figure 17: Marking/dropping probability. One flow for each congestion control.5
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Figure 18: Link utilization. One flow for each congestion control.5
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Figure 19: Throughput balance for different combinations of flows, link: 40 Mbps, RTT: 10 ms
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Figure 20: Throughput stability shown as normalized rate per flow (rate per flow divided by ‘fair’ rate) for different
combinations of flows, link: 40 Mbps, RTT: 10 ms

With the single-queue approach studied in this paper,
the queuing delay experienced by each type of concur-
rent flow had to be the same. In Figure 16 we compare
the average and 99th %-ile (P99) of queue delay for each
packet between the two scenarios: a Cubic flow with an
ECN-Cubic or a DCTCP flow. As expected, there is
little difference between the scenarios. Nonetheless, the
results indicate that PI2 appears to be no worse than
PIE at keeping the queue delay at the target of 20ms.
PI2 even seems to outperform PIE at smaller link rates,
which can be seen at the link rate of 4Mbps, where P99

is larger for PIE.
To verify whether the throughput ratio is influenced

by the number of concurrent flows, we tested it with a
range of combinations of flow numbers. Figure 19 shows
the per-flow throughput ratio for the combinations of
flows displayed on the x-axis, where each combination
is represented by two numbers. The first is the num-
ber of Cubic flows, while the second is the number of
ECN-Cubic or DCTCP flows respectively. The results
were similar for different link capacities and RTTs, so
we show results for a link capacity of 40 Mbps and 10 ms
RTT as an example. Figure 20 visualizes the same ex-
periment, but includes the mean and %-iles by showing
normalized rates. The results are very similar to those
in Figure 15 showing that PI2 can maintain equal flow
rates irrespective of the number of concurrent flows.

7. CONCLUSIONS
The main conclusions of this work are twofold.

Firstly, despite PI2 being simpler than PIE, it achieves
no worse, and in some cases better performance, partic-
ularly superior responsiveness during dynamics without
risking instability. This has been demonstrated both
analytically and through a number of experiments. In
other words, the heuristic scaling steps introduced by
PIE can be replaced by squaring the output instead,
which is less computationally expensive and improves
stability in some cases.

Secondly, in contrast to PIE, a combination of PI and
PI2 can support coexistence of Scalable and Classic con-
gestion controls on the public Internet by counterbal-
ancing the more aggressive congestion response of Scal-
able controls with more aggressive congestion marking.
It has been emphasized throughout that the arrange-

ment of both PI and PI2 in the same queue evaluated
in this paper is only a step in the research process, not a
recommended deployment. The recommended deploy-
ment applies each AQM to separate queues [13] so that
Scalable traffic in the PI-controlled queue can maintain
extremely low latency while isolated from but coupled
to the queue built by Classic traffic controlled by PI2. A
complementary paper explains and evaluates this ‘Du-
alQ Coupled’ approach [12].
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APPENDIX
A. EQUAL STEADY STATE RATE

Classic TCPs have a throughput equation that is pro-
portional to the square root of the signal probability.
For our purposes, it is sufficient to ignore dynamic as-
pects, and apply the simplified models in (5) and (6)
for TCP Reno and Cubic window as in [25] and [16]:

Wreno =
1.22

p1/2
(5) Wcubic =

1.17R3/4

p3/4
(6)

where p is drop probabillity and R is the RTT.
As we said, the Cubic implementation in Linux falls

back to TCP Reno with a different decrease factor (B =
0.7 in Linux), thus the CReno steady state window will
deviate from (5) with a slightly higher constant (7).

The implicit switch-over RTT can be derived from (6)
and (7). Pure Cubic behaviour (as defined in (6)) will
become active when (8) is false.

Wcreno =
1.68

p1/2
(7) W ∗R3/2 < 3.5 (8)

This shows that the switch-over point does not de-
pend on a single RTT or BDP (bandwidth delay prod-
uct) value, but a more complex combination of RTT
and window (W ).

In this paper we focus on fairness between Scalable
flows and Cubic flows in their Reno mode (CReno). For



the Scalable TCP we use DCTCP with probabilistic
(not on-off) marking applied by the AQM. We have de-
rived the steady-state window equation for DCTCP in
this case, assuming an idealized uniform deterministic
marker, which marks every 1/p packets. A DCTCP con-
gestion controller has an incremental window increase
per RTT a = 1 and a multiplicative decrease factor
b = p/2 (with p being estimated). So, every RTT, W is
increased by W ← W + 1, meaning that under steady
state, this must be compensated every RTT by (9). This
decrease is steered by ECN marks, as defined in (10).

W ←
(

1− 1

W

)
W (9) W ←

(
1− p

2

)
W (10)

From (9) and (10), we see that to preserve this bal-
ance, window equation (11) must be true.

Wdc =
2

p
(11) Wdcth =

2

p2
(12)

Note that (12) derived in the DCTCP paper [2] has
a different exponent of p compared to (11). The reason
is that (12) is defined for a step threshold, which causes
an on-off pattern of RTT length marking trains. In
contrast, when marking for DCTCP is steered by a PI
controller, its random process with a fractional proba-
bility will cause an evenly distributed marking pattern,
so (11) will be applicable. This explains the same phe-
nomenon found empirically in Irteza et al [22], when
comparing a step threshold with a RED ramp.

A Scalable congestion controller such as DCTCP
achieves low throughput variations by driving the net-
work to give it a more responsive signal with a higher
resolution. Therefore, a solution must be found to re-
duce the congestion signal intensity for Classic conges-
tion controllers (TCP Cubic and Reno), balanced with
that for DCTCP.

Knowing the relation between network congestion sig-
nal (mark or drop) probability and window, we can ad-
just feedback from the network to each type of conges-
tion control. For TCP CReno and DCTCP, we substi-
tute (7) and (11) in Wcreno = Wdc:

1.68

p
1/2
creno

=
2

pdc
(13) pcreno =

( pdc
1.19

)2

(14)

Therefore, if the RTTs are equal, we can arrange the
rates to be equal using the simple relation between the
probabilities, defined in (14).

Probabilistic mark/drop is typically implemented by
comparing the probability p with a pseudo-randomly
generated value Y per packet. A signal is applied for
a packet when Y < p. The advantage of using rela-
tion (14) is that p2 can easily be acquired by compar-
ing p with 2 pseudo-random generated values and sig-
nalling only if both random values are smaller than p:
max(Y1, Y2) < p.

The phrase“Think once to mark, think twice to drop”
is a useful aide-mémoire for this approach, because Scal-
able controls always uses ECN marking (the marking
level is often too high to use drop), while Classic con-
trols typically use drop.

B. FLUID MODEL
In Pan et al [29] a PIE controller was designed for

TCP Reno. TCP Reno has a throughput that is pro-
portional to 1/

√
p. In this analytical section we define

first a model for a system that has an adaptor on the
output of the controller that squares the signal, so the
controller generates a signal p′ =

√
p which is finally

applied to the packets as a marking or dropping signal
p = (p′)2.

Secondly we define a system where the TCP is defined
as a so-called scalable congestion control (section 2)
with a throughput that is proportional to 1/p′, so no
squaring is needed at the end. We will consistently use
p′ to indicate a scalable probability and p to indicate a
classic probability. One can be derived from the other
with the above equation.

We start from the model of the evolution of the win-
dow of TCP Reno and the dynamics of the queue from
Misra et al [26] and [19]:

dW (t)

dt
=

1

R(t)
− 0.5

W (t)W (t−R(t))

R(t−R(t))
p(t−R(t)),

(15)

dq(t)

dt
=
W (t)

R(t)
N(t)− C(t), (16)

where W (t) is the window size, q(t) the queue size, R(t)
the harmonic mean of the round trip time of the differ-
ent flows, N(t) is the number of flows, and C(t) is the
link capacity, which might also vary over time, but is
here assumed independent from all other variables.

The Cubic implementation in Linux provides a fall-
back to TCP Reno when RTT or rate is small (CReno).
For CReno mode the multiplicative reduction factor is
0.7 instead of 0.5, which results in an equation that is
just slightly different:

dW (t)

dt
=

1

R(t)
− 0.7

W (t)W (t−R(t))

R(t−R(t))
p(t−R(t)).

(17)

For TCP Reno that is steered by a squared probabil-
ity, the following equation is used to derive the transfer
function:

dW (t)

dt
=

1

R(t)
− 0.5

W (t)W (t−R(t))

R(t−R(t))

(
p′(t−R(t))

)2
.

(18)

Doing the similar linearization exercise for (18) as
for (15) in [19], assuming for now N(t) = N , C(t) =
C, R(t) = R0 as constants, we get operating point
equations (defined by dW/dt = 0, dq/dt = 0 and



(W, q, p′) = (W0, q0, p
′
0)):

W 2
0 p
′2
0 = 2, W0 =

R0C

N
, R0 =

q0
C

+ Tp, (19)

where Tp is the base delay of a specific flow.
The partial derivations are the same as in Appendix

I of [19] except:

∂f

∂p′
= −W

2
0

2R0
2p′0 = −

√
2C

N
,

where f(W,WR, q, p
′) is defined as the RHS of Equa-

tion 18, and WR = W (t−R). Note that

∂f

∂W
=

∂f

∂WR
=
−W0

2R0
p′20 =

−W0

2R0

2

W 2
0

=
−1

R0W0
=
−N
R2

0C
,

∂f

∂q
= − 1

R2
0C

+
W 2

0 p
′2
0

2R2
0C

= − 1

R2
0C

+
2

2R2
0C

= 0,

both of which initially have different terms to the anal-
ysis in [19], but eventually resolve to the same result
as [19]. As a result, the linearized equation for a Reno
TCP with a squared p′ and its Laplace transform will
be:

d(δW (t))

dt
= − N

R2
0C

(δW (t) + δWR)−
√

2C

N
δp′(t−R0);

(20)

sW (s) = − N

R2
0C

W (s)(1 + e−sR0)−
√

2C

N
p′(s)e−sR0 .

(21)

Also for a scalable TCP that reduces its current win-
dow by half a packet per mark, the following equation
can be derived in a similar way:

dW (t)

dt
=

1

R(t)
− 0.5

W (t−R(t))

R(t−R(t))
p′(t−R(t)). (22)

The difference is that the current window size W (t) is
not present as it is not used to determine the window
reduction. This makes the reduction term only depen-
dent on the state at time t−R(t).

Re-running the linearization exercise for (22) as in
[19], we get operating point equations:

W0p
′
0 = 2, W0 =

R0C

N
, R0 =

q0
C

+ Tp. (23)

The partial derivations are the same as in [19] except
for:

∂f

∂W
= 0;

∂f

∂p′
= −W0

2R0
= − C

2N
.

Note that

∂f

∂WR
= − 1

2R0
p′0 = − 1

2R0

2

W0
= − 1

R0W0
= − N

R2
0C

,

which initially had different terms to the analysis in [19],
but eventually resolves to the same result as [19]. As a
result, the linearized equations for a scalable TCP and

its Laplace transform will be:

d(δW (t))

dt
= − N

R2
0C

δW (t−R0)− C

2N
δp′(t−R0);

(24)

sW (s) = −e−sR0
( N

R2
0C

W (s)− C

2N
p′(s)

)
. (25)

From [26] and [19] we repeat the linearized queue
equation, its Laplace transform and Laplace transfer
function:

d(δq(t))

dt
=

N

R0
δW (t)− 1

R0
δq(t); (26)

sq(s) =
N

R0
W (s)− 1

R0
q(s), (27)

Pqueue(s) =
q(s)

W (s)
=

N
R0

s+ 1
R0

. (28)

The PI transfer function in the Laplace domain is:

CPI(s) =
β+α/2
C s+ α

TC

s
. (29)

The combined PI and queue (=AQM) transfer function
in terms of R0 and W0 is:

A(s) =
(β + α

2 )s+ α
T

s

1
W0

s+ 1
R0

, (30)

A(s) =
κA
W0

(s/zA + 1)

s(s/sA + 1)
, (31)

with κA = αR0/T , zA = α/(T (β + α/2)) and sA =
1/R0.

The transfer functions of the different TCP and mark-
ing combinations in terms of W0, R0 and p0 or p′0 are:

Prenop(s) =
W (s)

p(s)
= − W0κRe

−sR0

s/sR + (1 + e−sR0)/2
; (32)

Prenop′2 (s) =
W (s)

p′(s)
= − W0κSe

−sR0

s/sR + (1 + e−sR0)/2
; (33)

Pscalp′ (s) =
W (s)

p′(s)
= − W0κSe

−sR0

s/sS + e−sR0
, (34)

with κS = 1/p′0, sS = p′0/(2R0), κR = 1/(2p0) = κ2S/2

and sR =
√

2p′0/R0 =
√

2p0/R0 =
√

8sS .
The complete loop transfer functions are:

Lrenop(s) =
κRκA(s/zA + 1)e−sR0

(s/sR + (1 + e−sR0)/2)(s/sA + 1)s
;

(35)

Lrenop′2 (s) =
κSκA(s/zA + 1)e−sR0

(s/sR + (1 + e−sR0)/2)(s/sA + 1)s
;

(36)

Lscalp′ (s) =
κSκA(s/zA + 1)e−sR0

(s/sS + e−sR0)(s/sA + 1)s
. (37)
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