
An End to End Price-Based QoS Control Component Using

Reflective Java

Jérôme Tassel, (jtassel@jungle.bt.co.uk)
Bob Briscoe, (rbriscoe@jungle.bt.co.uk)
Alan Smith, (asmith@jungle.bt.co.uk)

BT Advanced Research & Technology, UK

16 Oct 1997

Abstract

The main objective of the model we describe in this paper is to allow easy, flexible addition of quality
of service (QoS) control to Java Internet applications. In this work the QoS is expressed in terms
of network and host resources, the network QoS being controlled with RSVP. Flexibility is provided
by a prototype product from the ANSA research consortium; Reflective Java which uses the Meta
Object Protocol (MOP) to separate functional requirements (what the application does) from non-
functional requirements (how it does it). This protocol permits the design and implementation of a
generic QoS control element which can be added to an application for which QoS control is required.
Alternatively, an existing application with rudimentary QoS control can be modified to use a set
of QoS control classes designed by a specialist intended to reconcile competition for QoS between
applications. The QoS control element we have designed also has scope for QoS adaptation, moving
decisions on the introduction of QoS control from build-time to run-time when best-effort degrades
below a useful point. Charging is also considered in this work.

Acknowledgements

This work was funded by BT as part of an industrial placement agreement for Jérôme Tassel from the
MSc in Distributed Systems course at the University of Kent at Canterbury (UKC). Bob Briscoe and
Alan Smith are researchers in the Distributed Systems Group in BT’s research labs. The authors would
like to thank Steve Rudkin, Peter Bagnall and Andrew Grace at BT, Zhixue Wu working on the ANSA
project and Andy King from UKC for reviewing earlier versions of this paper and their valuable advice.

1 Introduction

In this paper, we describe the design of a flexible, easy-to-add adaptive quality of service (QoS) architec-
ture for multimedia, Java-based [12, 17], Internet applications. Control is provided for QoS properties
that we identified as crucial in specifying QoS for real-time applications. This set of properties can be
divided into two groups :

• User requirements (prioritisation, quality perception, budget)

• Mechanisms (Network QoS, RSVP in this case, and Host QoS)

Flexibility and adaptability is provided by a prototype product from the ANSA research consortium;
Reflective Java which uses a Meta Object Protocol [18, 11, 14, 22] (MOP) to separate functional require-
ments (what the application does) from non-functional requirements (how it does it) [22]. The generic
QoS control element we have defined can be added to an application for which QoS control was not orig-
inally thought of or to replace a deficient QoS control or to provide QoS control as a result of adaptation

1

mailto:jtassel@jungle.bt.co.uk
mailto:rbriscoe@jungle.bt.co.uk
mailto:asmith@jungle.bt.co.uk

to network conditions [6]. Applications which require such a control are emerging Internet collaborative
tools with a multimedia interface using audio and video streaming facilities. The QoS control element
we have built also has scope for QoS adaptation and charging. We believe this model provides a flexible
way to control the usage of the resources available to the user down to a fine level of granularity. A QoS
control interface is available to the user giving him complete flexibility over the sharing of his resources
among his application sessions, media sessions and streams. This interface might exist as an operating
system component separately from any applications that might use it.

The first half of the document describes RSVP (Internet ReSerVation Protocol) and Reflective Java,
focusing on the points of interest for this project. The second describes in depth the architecture we
have designed and some of the implementation results and experiences we have had so far.

2 QoS Control on the Internet with RSVP

RSVP is used in this work as the network QoS control mechanism. The design allows for other mech-
anisms to be used instead, or as well. Effectively RSVP allows control of the quality of service of data
streams over the Internet [30, 10]. Internet applications are changing from simple remote procedure call
(RPC) type text based point to point applications to real time, multi-user, multimedia applications [3].
The original design of the TCP/IP suite only provided support for a best effort delivery scheme, ideal for
applications such as ftp, World-Wide-Web, Telnet, and e-mail but is very deficient for real-time delivery
of data. The efforts of the Internet Engineering Task Force (IETF) are now focused on developing a new
Internet architecture which can provide Integrated Services on the Internet (the ISA). This will allow a
wide range of QoS to co-exist, some with hard or soft real-time delivery constraints and some with more
elastic timing constraints. The main weakness of the IP protocol for guaranteed delivery on the Internet
is the variable latency of packet processing time within the routers along the data path, due to queuing
delays which increase the jitter of the data stream, thus jeopardising real time delivery of data. The
objective of RSVP, as part of the ISA, is to provide some control over the routing queuing delays and
therefore the QoS of data streams as they pass through the routers.

RSVP attempts to reserve bandwidth for real time streams across the routers by setting packet priorities.
In the case of guaranteed delivery of streams, RSVP allows provision of a guaranteed set of resources
for a data stream based on an IP address (which can correspond to a unicast or multicast address) and
a port number. We now describe the major features of the RSVP protocol which are of interest for our
work.

2.1 Receiver Initiated Reservation and Message Processing

An Internet communication application can be divided into two parts, the sending and the receiving
part(s). The sending application acts as a source of data for the receiving application(s); there might
be multiple receiving applications in a multicast communication environment. Multiple senders can
be treated as separate sources and collected or synchronised independently if necessary. In order to
accommodate heterogeneous receivers on the Internet, receiver initiated reservation has been chosen
in RSVP. The receiver chooses the reservation it wishes to make for a given source data stream. It
uses information disseminated by the sending application about the data it is producing to decide what
reservation is required. Admission and policy control is the subject of current research work [28] to
provide administrative control of bandwidth sharing and to make sure that streams keep to their agreed
traffic properties.

Two types of messages are defined in RSVP, namely ’PATH’ and ’RESV’ messages. PATH messages
are used by the sending applications to disseminate information about their data streams, and RESV
messages are used to establish the reservations by the receivers that get the PATH messages.

2.2 QoS Attributes

RSVP does not know about QoS attributes but just conveys them transparently [28]. There are two main
types of service available for RSVP: a guaranteed service and a controlled load service In our work we use

2

the guaranteed service. The reservation attributes in the PATH messages define the sending application
requirements in terms of expected bandwidth usage. The reservation attributes in the RESV messages
represent the required bandwidth reservation for the receiving applications. The attributes used for the
control of the bandwidth are the generated traffic rate and peak rate, the token bucket rate, minimum
policed unit (defining a minimum size for packets to be policed) and the maximum packet size (for the
underlying network).

2.3 The RSVP API (RAPI) [4]

An application programming interface (API) is available to interact with the RSVP daemon on hosts
which implement RSVP. Operations are available to join a session (an RSVP session), register as a sender
and send PATH messages, reserve bandwidth, modify the reserved bandwidth and release a reservation.

Another important aspect of RSVP is that of event messages. These messages are asynchronous (but
synchronous results are also provided by the API calls, which provides some basic error checking such as
parameter checking). Errors and modifications might occur along the data path and messages are sent
back through the RAPI in order to notify the applications using RSVP for them to take appropriate
actions. Messages might indicate an arrival of PATH messages, RESV messages, path errors, reservation
confirmation or not. These upcalls are associated with an application level method which is called on
receipt of such events.

2.4 QoS Adaptation in RSVP

The PATH and RESV messages we describe above are sent periodically (the RSVP daemon handles this)
so that if the properties of the sending application stream are modified or the route through the network
changes the receiver can then adapt its reservation. An RAPI call is available to modify the attributes
of the reservation.

Aside from RSVP, Reflective Java is the other key element of an architecture which needs to be under-
stood and is therefore described in the next section.

3 Reflective Javathe meta-object design pattern

Inherit

Application

Reflection class
changeMeta()

Some
application class

Access to original objects

Access to
reflective objects

Meta Object
metaBefore()
metaAfter()

Java.net.Socket

QoteS

refl_Socket

Meta calls

Figure 1: The Reflective Java run-time model

Reflective Java is a prototype product from the ANSA research consortium [29, 20] providing the facility
to separate the functional aspects of an application from the non functional ones [21], this is done using
the Meta Object Protocol (MOP) [18, 11, 14, 22]. This separates the roles of application developers, one
focuses on what the application does and another on how it does it. The term MOP is unfortunate -

3

it is not a communications protocol, more a design pattern allowing this separation. Examples of non-
functional requirements are the well know transparency requirements of the distributed systems world:
replication, concurrency, failure transparency, some of which have also been worked on in a very similar
development called MetaJava [16]. This scheme means that some requirements can be added late in the
life cycle of an application, even if they had not been thought about originally.

Fig 1 illustrates how Reflective Java implements the Meta Object Protocol at run-time. The meta-objects
implement some non functional requirements and are independent from any application which uses them
so that they can be used by many applications. The meta-object developer can focus on designing
meta-objects providing some functionality and those objects are later bound to application code. The
meta-object defines two methods: metaBefore and metaAfter which implement some behaviour to be
executed before and after the normal invocation of an application method. For example a locking meta-
object providing concurrency control would provide some code to set a lock in the metaBefore method
and unlock it in the metaAfter method.

The Reflection class is used to bind applications to meta-objects (bind the meta methods to the ap-
plication class methods). A simple example is a locking meta-object and an account application class
which uses this meta-object to provide concurrency control on the accounts. So for example a deposit
method would be bound to the locking service provided by the meta-object. The original invocation of
the deposit method would then become:

Application call
deposit()

Reflective class
calls

metaBefore

Reflective class calls
original deposit method

through inheritance

Reflective class
calls

metaAfter

When the service provided by the meta-object is needed by the application class, the reflection class is
used in the application code instead of the application class it inherits from.

As shown on the above diagram another important feature of Reflective Java is that the meta-object
can be dynamically replaced by another one, implementing a new version of a service or a new service
being more adapted to a new environment. This overcomes the drawback of having to manually update
the code of the application to be able to make use of the reflection class as there is no need to further
modify the application when the services from another meta-object are required.

In the build process, it is the reflective pre-processor which creates the reflective class from a binding
specification file, which dictates which application method class should use the services of the meta-
object. The following diagram illustrates the build process of Reflective Java.

Design/Implement a meta object (MO)
providing some non-functional service

metaBefore
metaAfter

*The selector allows
refinement of which part
of the code in the meta -
object should be bound
to this method

Design/Implement an application class
methodA
methodB

etc…

Re-compile application code

Run Reflective Java pre-processor over
binding specification

Reflection class created

Specify the binding between the meta object and the
application class

MO & methodA: selector*

Update application, make use of reflection class instead of
original application class where required

Steps in using Reflective Java

Figure 2: Steps in using Reflective Java

4

This implementation of the reflection technique in Java is made possible by the dynamic class loading
feature of Java. The possibility to download Java classes over the network make this scheme very flexible
and place Reflective Java ahead of some other implementations of Reflection described in [18, 11, 14, 22].

In the work presented in this paper we use the capabilities of Reflective Java to separate the QoS control
of Internet applications from the mechanisms of those applications; sending data.

4 QoS Architecture

The aim of our architecture is to be able to provide a generic (adaptive) QoS control element, which
allows the best use, in terms of user-perceived value, of the host and network resources [2]. However, it
is of utmost importance that this element can be added to existing Internet communication applications
written in Java by an independent developer. This implies it is not necessary to know the detailed
internal mechanisms of the application and the integration could be reduced to a mechanical task in the
future. Source code access is required, however.

Currently, for applications without any QoS control [15], as the network or host becomes congested the
quality of the communication decreases due to the unreliable nature of the Internet best-effort data
transfer protocols and the lack of resource control in most current operating systems. Today’s Internet
communication applications, written in Java or any other language, provide functionality both for sending
the data and controlling the quality of the data sent. Typical examples are the vic and vat video/audio
conference tools [19, 7] which provide a control panel for the properties of the multimedia streams. These
applications do not make use of any network or host resource reservation protocols, although a recent
prototype of vic now supports RSVP. Some others such as Vosaic or QuickTime Conferencing provide
some form of QoS adaptation to network congestion in a best effort delivery environment but all in a
different and non compatible manner and some are becoming increasingly monolithic and complex [1] as
they try to introduce QoS control.

Moreover as QoS control is provided on a per-application basis the sharing of the host resources available
to the user between users will not be optimal. Further, QoS adaptation can only be done on a per
application basis, which again will not be optimal. Another downside of mixing the code of the application
task and the stream control is that it is then more difficult to understand the code of the application and
to modify just the stream control (non-functional) part or just the application task (functional) part.

Our component using reflection helps remove the limitations of the current ways of integrating QoS
control with real-time multimedia streaming [27] applications by providing guaranteed network resources
over the Internet as well as sharing efficiently the network and host resources among the users and giving
a flexible control to the user over his own resources. Our model provides a clear distinction between the
application and the QoS control. We also believe that adaptation can be more efficient as more host-wide
information is available to the adaptation mechanism.

The diagram on the following page is a representation of the model we have designed. There are three
major elements in this model:

1. The original application (which models typical Java Internet applications)

2. The QoS control architecture (which includes components to control host and network resources
in order to share them between application streams)

3. The reflective architecture (which binds the two previous parts together)

In the model, different components control or give quotes for a unique type of resources (host or network).
The QoS manager acts as a conductor of all of them. Resource control and quoting have been separated
to permit them to evolve independently. The model we designed is for receivers but the same techniques
could be adapted to senders. However we have only implemented the former. The following section
describes the design choices for the model we created.

5

4.1 Original Application (1)

The aim of this part of the model is to represent a typical Internet application that uses some commu-
nication class to interact with the network. The original application classes altogether provide both the
functional and the non-functional requirements of the application. The original application [15] (that
is, without our QoS control) would only use the communication class and not the reflection class. The
reflection class is the reflective element that allows us to include QoS control in the application with
minimal modifications to the code.

At the application level, an important issue related to the reflective architecture was to decide which
class in the application to make reflective. We were faced with two options:

• to make the communication class used by the application reflective

• to make a more high level application class reflective.

In order to make our solution reusable and portable we decided to take the first solution In the case
of Java this meant making the Socket class reflective. This means that when the application code is
to be modified there is no requirement to know the structure of the program but just to know where
communication objects are instantiated and to replace the original communication class by the new
reflective class we have designed. It also means that any application using the Java Socket class can
re-use the work we have produced (in the other case a new binding specification would have been required
for each new application).

This, of course, means that the application needs to be modified, which is even more constraining as it is
done manually (however, a modified class loader could be used to avoid this). The main issue during this
process is to decide which communication objects require QoS control as not all streams need timeliness;
some are signalling streams for which a best effort delivery scheme is very well suited. We identified the
following options:

• Make all communication objects (Sockets) reflective but test the port number within the meta
object class and set reservation only on some well known ports. A port number is an obvious
selection criterion as it is the only element of information guaranteed to be available when any
general communication channel is created. This information can be passed to the meta-object
which will then decide on the path to follow; interacting with the QoS manager or not. This has
got some run time cost as all communication objects would be reflective while only some would
really need to be. Also some applications use random ports in which case this scheme could not
be used. However , the main advantage of this method is that it requires only a few easy changes
to the application code.

• Make all communication objects reflective but include heuristic logic in the meta-object to decide
at run-time which calls do or do not require real-time control. This has the performance cost
drawback of the previous solution but avoids the need for port number conventions. It would be
the only solution if the need for

real-time control for each class varied depending on run-time conditions. Another drawback is that it is
not clear to us how one could define the heuristics.

• Make all communication objects reflective as the channels which do not require real-time control
will not receive PATH messages and therefore reservations will never be established. This again
has the same drawbacks as the previous solution and worse, RSVP sessions will be created which
will never be used, but the solution again requires no conventions concerning port numbers.

• Give control to the user to state whether or not a stream is to be timely. This would present the
user with a stream control panel. This of course is a too finely grained solution as the user should
not be aware of the stream notion and will probably not know when a stream is to be a data stream
which needs to be timely or a signalling stream which does not require real time control.

6

Receiver host QoS control
Application

Reflection
class

Budget
user-agent

QoS User
Interface

Budget control

QoS Meta
Object

Host O S
controller

Host quoting
engine

QoS
Manager

QoS
Specifications

Host quoting

Host resource
 control

RSVP
API

signalling
Communication

class

Network

signalling
Data path

Network
quoting engine

Net quoting

application

network

meta-object

QoS

Figure 3: Reflective model for (adaptive) QoS control

• Go manually through the code and decide according to the context if the stream requires QoS
control or not. This means that the code of the application must be clear enough for the system
integrator to decide if the data transmitted on a stream is real-time or not. In our case this is the
solution we have chosen due the prototype nature of the target applications we use. However, this
approach would not be appropriate if the need for real-time control varied with run-time conditions.

4.2 The Reflective Architecture (3)

The reflective part of the model allows us to link together the application services and the QoS control
architecture we have designed. Two classes make up this part of the model, the QoS meta-object
implements the QoS control which in our case is delegated further to the QoS manager. As a result
the role of the meta-object is only to call the QoS manager. The call to the QoS manager is in the
metaAfter method so that the creation of the socket is not held up, the metaBefore method is used to
release reservations on destruction of a socket. Furthermore making a call to the QoS manager (and not
directly to the RSVP API) does not tie down our Reflective model to the use of RSVP.

Notice that thanks to the dynamic facilities of Reflective Java the meta-object could be modified at
run-time. For example, when the environment changes (from a fixed to a mobile network, or from a
network using RSVP for bandwidth reservation to another using another reservation protocol [9, 13, 5])
a method is provided to switch to a new meta-object in response to such arbitrary events. This could be
used to call a different QoS manager more appropriate for the new environment or having some extra-
functionality. The QoS meta-object is generic, it is not designed with any host applications in mind. We
have added a call to the QoS manager (described in the following section) in the metaBefore method and
in the metaAfter call. The call in the metaBefore method is to set-up the required QoS for the newly
created stream (the key used to identify each stream is ”user name + application name + stream IP
address + port number”) and the call in the metaAfter call is to release reservations.

The second class is the reflection class, which is a refined version of the original application communication
class and binds together the meta-object methods to the appropriate methods of the original application
class. The reflection class is specific to the application class we decided to make reflective; the Socket

7

class. It was created originally by the Reflective Java pre-processor but we had to make manual changes
to it due to some limitations of ANSA’s Reflective Java prototype (no support for a Reflective constructor
or make classes from the Java APIs reflective).

4.3 The QoS Control Architecture (2)

The aim of the QoS control architecture is to manage resources on integrated service networks (focusing
on Internet and RSVP). The resources our architecture controls are network resources (in terms of
bandwidth), host resources (in terms of memory, CPU usage and hard disk space) and user resources
(budget). Fig 3 illustrates the different objects of our architecture. The model we have designed is host
oriented; the role of the QoS manager is to co-ordinate the services of the other QoS related objects
in order to manage resources on behalf of a host. Therefore on a network using our model, each host
would hold a copy of the full model described in Fig 3. Each user on the host could be running multiple
applications using many streams, some of which would require QoS control. There would therefore be
many instantiations of the QoS meta-object class and reflection class, one for each of the streams which
required QoS control. But each user has access to only one QoS user interface, which integrates control
over all the streams he owns. Also there is a single user budget agent per user.

Implementation issues regarding communications between objects running on different virtual machines
(the user applications and the user QoS control interface for example) have been solved by using a
product internal to BT: the JavaShell. With this, multiple applications can run on the same virtual
machine and communicate with each other (in our case the QoS control objects, which are unique for a
host, are static and can be accessed by all other objects). This avoids the need to differentiate between
real host resources and those allocated to each virtual machine, a problem likely to disappear as the
virtual machine becomes integrated with the operating system [23].

The architecture is not exhaustive in terms of how resources can be managed but objects could easily be
added to control resources differently (e.g. administrative QoS management, or adding billing facilities).
The next paragraphs discuss the different elements of this architecture.

Managing network resources In order to control network resources for the application streams, the
QoS requirements of those streams must be defined. As our QoS model can be added to an application
which does not deal with QoS control (or very little), those requirements must be emanating from
another source. As we use RSVP to manage the network QoS, we use the information provided in the
TSpec element of the PATH messages to decide on what QoS properties a stream might require. Those
requirements are then balanced by the QoS manager according to the user choice of priorities between
streams (see below) and the resources available (on the network and the host) [26]. Juggling of user
priorities is done in financial terms. The costs of network resources are therefore needed; these are
provided by the network quoting object. The assumption is that, in the future, all QoS will have a price
in order to put a brake on profligate users.

It is the QoS manager which issues demands for bandwidth reservation via the RSVP API; it holds
the set of users, their applications, their streams and the network QoS for these streams. Notice that,
because our implementation is in the Java language we had to implement a RSVP API in Java using
Java native (JNI) calls [24].

Streams that are controlled can remain in a best effort mode until they require reservation, as the
network or the host becomes congested. Another approach would be to provide them with a set of
default resources as defined by the TSpec element of the RSVP PATH messages. The user by changing
relative priorities between streams will then trigger modification of reservations.

A QoS monitoring object could signal the QoS manager when a stream is not performing well enough and
then the QoS manager would provide some reservation for this stream. In our current implementation,
the user can trigger reservation by using the QoS control interface we have designed, but integration of
our automatic QoS monitor [8] is outside the scope of this work.

Also we decided to implement an application API for some of the QoS manager services so that QoS
controlled directly from an application can also be taken into consideration. The QoS manager user
interface shown in Fig 4 will be enhanced to make the distinction between application and user control
of stream priorities.

8

Managing host resources The role of the host controller object is to provide some admission control
facilities regarding the usage of the host resources by the application streams on behalf of the users. We
designed and implemented a host resources control object, which holds the amount of available resources
on the host and registers their use. We also implemented a host quoting engine which returns a price from
a specification of host resources. The host QoS requirements for an application stream is deduced from
the required network QoS for the same stream. This might seem simplistic but it prevents overloading of
the host. A more complex version of this object could be implemented but the services required would
still remain the same as we have implemented. The QoS manager interacts with the host controller to
set and release reservations and the user budget agent uses the services of the host quoting engine to
authorise reservations.

Figure 4: The user QoS control interface
Note that the identification of streams by ’address:port’ is merely a prototyping convenience - textual

stream ids such as ’audio’ or ’video’ could have been generated relatively easily

Managing user priorities Note that the identification of streams by ’address:port’ is merely a pro-
totyping convenience - textual stream ids such as ’audio’ or ’video’ could have been generated relatively
easily

The figure above shows the user QoS control panel we have implemented. This interface is available for
each user to define the priorities between applications and streams within applications. The user can
select an application in order to get the list of streams created by the application (the Sockets instantiated
from the reflective class of the reflective part of the model). Then he can define which stream should
have more priority over the host and network resources by positioning the scroll bars accordingly. These
priorities have an impact on the distribution of the user budget over the current streams he is using.
For users not wanting to have such a finely grained level of control on the streams, we have added a
user preference which removes the list of streams from the control panel and only provides control over
the list of applications. The resources are then distributed over the applications in proportion to the
resources the PATH messages said were needed. Development of the GUI to express distinction between
application requirements on priorities and user override is ongoing.

These priorities are then sent to the QoS manager which increases or decreases the resources reserved
for the related streams in conjunction with the quoting engines, the resource controllers and the user
budget agent (network and host). Streams being defined with a null priority are left in a best effort
communication mode. This control could be part of a host control panel (similar to the one in MS

9

Windows) and the QoS architecture could be part of the host operating system to provide a QoS
management service to the user.

Managing charging issues We have introduced a user budget agent in our design, which controls
the budget of a user according to some rules predefined by him. The rules include the time constraints
on reservation establishment and restrictions on maximum spending per stream and per application .
When a new set of resources needs to be reserved on behalf of a stream, the QoS manager decides which
attributes to reserve and mediates between the quoting engines and the user budget agent. The QoS
manager requests a quote for the amount of resources it wants to reserve and sends this quote to the
user budget agent which then can authorise or refuse it, according to the user spending rules.

It was a deliberate decision to normalise all QoS comparison into units of relative financial cost rate.
This is the most convenient common unit both for the programmer and in terms of user understanding.

5 Conclusions and Further Work

One of the main achievements of our work is a component with a clear separation between the trans-
mission mechanisms of an Internet application and the policies and mechanisms to control its QoS. This
makes it very flexible in terms of later upgrades, configurability and adaptability. An Internet program-
mer can focus on the mechanisms of the application and a QoS specialist can focus on providing a QoS
control element, thus increasing productivity. This separation also means that existing applications as
well as forthcoming applications and the QoS control model we designed can easily be integrated. Re-
usability is also an important achievement in our model as meta-objects are application independent.
Our model also provides scope for adaptation to a changing environment. We only designed it for Inter-
net (RSVP) but another one could be designed for a different environment (e.g. ATM, mobile networks)
We have provided the run-time switching mechanism for this.

In our model, the presentation of QoS control to the user proved to be difficult. Our work has proved
to us that relative priorities between cost rates are the most useful concept in this respect. Reflective
Java proved to be relatively immature. Readers interested in a constructive critique of Reflective Java
for QoS control can refer to [25] where a more in depth description of this work is also available.

The implementation of the model is still continuing as at this first stage we concentrated on getting the
overall architecture working. We aim to provide better control in a multicast communication environ-
ment, provide more event-based reactions by the QoS manager and finally we would like to develop a
reusable RSVP API in Java because the one we implemented for this work is very specific to our QoS
manager. Another area of possible extension is in the run-time heuristic decision over whether to make
a socket reflective (and thus give it timeliness control) and finally the QoS manager could be further
separated to avoid over-centralisation.

References

[1] Rainer Aschwanden. Implementation of stream module in a distributed computing environment. Report on
BT Masters placement project, September 1996.

[2] C. Aurrecoechea, A.T. Campbell, and L. Hauw. A survey of QoS architectures. Multimedia Systems Journal,
1997. Special Issue on QoS Architecture.

[3] R. Braden, D. Clark, and S. Shenker. Integrated services in the Internet architecture: an overview. Request
for comments 1633, Internet Engineering Task Force, URL: rfc1633.txt, June 1994.

[4] R. Braden and D. Hoffman. RAPI — An RSVP application programming interface. Internet draft, Internet
Engineering Task Force, URL: http://www.isi.edu/rsvp/DOCUMENTS/rsvpapi.txt, August 1998. (Work
in progress) (expired).

[5] AndrewT. Campbell. QoS-aware middleware for mobile multimedia networking. Multimedia Tools and
Applications, 1997. Special Issue on Multimedia Information Systems.

[6] A.T. Campbell, G. Coulson, and D. Hutchison. Supporting adaptive flows in quality of service architecture.
Multimedia Systems Journal, 1997. Special Issue on QoS Architecture.

10

http://www.ietf.org/rfc/rfc1633.txt
http://www.isi.edu/rsvp/DOCUMENTS/rsvpapi.txt

[7] S. Casner and Steve Deering. First IETF internet audiocast. Computer Communication Review, 22(3), July
1992.

[8] D.A.Reed and K.J.Turner. Support components for quality of service in distributed environments: Mon-
itoring service. In Proc. 5th IFIP International Workshop on Quality of Service (IWQoS’97), URL:
http://comet.ctr.columbia.edu/iwqos97/, 1997.

[9] Nigel Davies, Gordon S. Blair, Keith Cheverst, and Adrian Friday. Supporting adaptive services in a hetero-
geneous mobile environment. In Proc. 1st Workshop on Mobile Computing Systems and Applications, URL:
http://www.comp.lancs.ac.uk/computing/research/mpg/most/reports/mcsa.ps.gz, December 1994.

[10] R. Braden (Ed.), L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation protocol (RSVP)
— version 1 functional specification. Request for comments 2205, Internet Engineering Task Force, URL:
rfc2205.txt, September 1997.

[11] Jacques Ferber. Computational reflection in class based object oriented languages. In Proc. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’89), October 1989.

[12] James Gosling and Henry McGilton. The JavaTM language environment. White paper, Sun Microsystems
Inc., URL: http://java.sun.com/docs/index.html, October 1995.

[13] Andrew Grace and Alan Smith. Quality of service control for adaptive distributed multimedia applications
using esterel. In 2nd Int’l Wkshp on High Performance Protocol Architectures, dec 1995.

[14] Mamdouh H. Ibrahim. Workshop: Reflection and metalevel architectures in object-oriented programming.
Report, Object-Oriented Programming, Systems, Languages and Applications (OOPSLA/ECOOP), Octo-
ber 1990.

[15] Roger Klein, Carsten Schulz-Key, and Stephane Chatre. Web2Talk, internet telephony application. Down-
loadable software, 1996?

[16] Jurgen Kleinoder and Michael Gölm. MetaJava: An efficient run-time meta architecture for Java. Technical
Report TR-I4-96-03, Friedrich-Alexander-University, Erlangen-Nurnberg, URL: http://www4.informatik.
uni-erlangen.de/Projects/PM/Java/, June 1996.

[17] Douglas Kramer. The JavaTM platform. White paper, Sun, URL: http://www.javasoft.com/docs/white/
platform/CreditsPage.doc.html, May 1996.

[18] Pattie Maes. Concepts and experiments in computational reflection. In Proc. Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA’87), October 1987.

[19] Steve McCanne and Van Jacobsen. Vic: A flexible framework for packet video. In Proc. ACM Multimedia
’95, November 1995.

[20] Scarlet Schwiderski. Design and implementation of a persistence service for java. Technical Report
APM.1940.02, ANSA, URL: http://www.ansa.co.uk/Research/ReflectiveJava.htm, January 1997.

[21] Alan Smith and Andrew Grace. A QoS configuration system for distributed applications. In Proc. 5th
IFIP International Workshop on Quality of Service (IWQoS’97), URL: http://comet.ctr.columbia.edu/
iwqos97/, 1997.

[22] R.J. Stroud and Z. Wu. Using meta-object protocols to implement atomic data types. Distributed Syst.
Engineering, 952(2):168–189, 1995.

[23] Secure computing with Java: Now and future. White paper, Sun Microsystems Inc., URL: http://java.
sun.com/docs/index.html, June 1997.

[24] Sun Microsystems Inc., URL: http://java.sun.com/docs/books/tutorial/native1.1/implementing/

index.html. The Java Native Programming Interface, 1995–2001.

[25] Jérôme Tassel. Quality of service (QoS) adaptation using reflective Java. Master’s thesis, Dept. of Computer
Science, Uni of Kent at Canterbury, URL: http://www.btexact.com/people/briscorj/projects/lsma/jt_
thesis/thesis_final.htm, September 1997.

[26] Daniel G Waddington. QoS mapping home page and set of supporting slides. Web page, December 1995.
End-system QoS in Multi-service Networks project.

[27] Daniel G. Waddington, Geoff Coulson, and David Hutchison. Specifying QoS multimedia communications
within distributed programming environments. In 3rd International COST237 Workshop, volume 1185,
pages 10–4–130, URL: ftp://ftp.comp.lancs.ac.uk/pub/mpg/MPG-96-34.ps.Z, November 1996. Springer
LNCS.

[28] John Wroclawski. The use of RSVP with IETF integrated services. Request for comments 2210, Internet
Engineering Task Force, URL: rfc2210.txt, September 1997.

[29] Zhixue Wu and Scarlet Schwiderski. Design of reflective java. Technical Report APM.1818.00.06, ANSA,
http://www.ansa.co.uk/Research/ReflectiveJava.htm, December 1996.

[30] Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala. RSVP: A new resource
ReSerVation protocol. IEEE Network, September 1993.

11

http://comet.ctr.columbia.edu/iwqos97/
http://www.comp.lancs.ac.uk/computing/research/mpg/most/reports/mcsa.ps.gz
http://www.ietf.org/rfc/rfc2205.txt
http://java.sun.com/docs/index.html
http://www4.informatik.uni-erlangen.de/Projects/PM/Java/
http://www4.informatik.uni-erlangen.de/Projects/PM/Java/
http://www.javasoft.com/docs/white/platform/CreditsPage.doc.html
http://www.javasoft.com/docs/white/platform/CreditsPage.doc.html
http://www.ansa.co.uk/Research/ReflectiveJava.htm
http://comet.ctr.columbia.edu/iwqos97/
http://comet.ctr.columbia.edu/iwqos97/
http://java.sun.com/docs/index.html
http://java.sun.com/docs/index.html
http://java.sun.com/docs/books/tutorial/native1.1/implementing/index.html
http://java.sun.com/docs/books/tutorial/native1.1/implementing/index.html
http://www.btexact.com/people/briscorj/projects/lsma/jt_thesis/thesis_final.htm
http://www.btexact.com/people/briscorj/projects/lsma/jt_thesis/thesis_final.htm
ftp://ftp.comp.lancs.ac.uk/pub/mpg/MPG-96-34.ps.Z
http://www.ietf.org/rfc/rfc2210.txt

	1 Introduction
	2 QoS Control on the Internet with RSVP
	2.1 Receiver Initiated Reservation and Message Processing
	2.2 QoS Attributes
	2.3 The RSVP API (RAPI) Braden98:RAPIv5ID
	2.4 QoS Adaptation in RSVP

	3 Reflective Java
	4 QoS Architecture
	4.1 Original Application (1)
	4.2 The Reflective Architecture (3)
	4.3 The QoS Control Architecture (2)

	5 Conclusions and Further Work
	References

